next up previous
Next: About this document ... Up: Eigenvalues and production Previous: Example 1

Example 2

Consider an economy with three industries with the following consumption matrix


\begin{displaymath}C = \left[ \begin{array}{rrr}
k & k&k \\
k & k&k \\
k & k&k \\
\end{array}
\right]\end{displaymath}



where $ 0 < k < 1 $



a) For what values of $k$ will $ ( I-C)^{-1} $ exist ?



b) For what values of $k$ will $ ( I-C)^{-1} $ be nonnegative ?

c) What will be the production vector if the demand vector is $d= \left[ \begin{array}{c}
1000 \\
1000 \\
1000 \\
\end{array}
\right]$ ?

Solution:

a) Eigenvalues of $C$ are $ \lambda _1 =0 $ and $\lambda _2 =3k$. Multiplicity of $ \lambda _1 =0 $ is $ 2 $ and multiplicity of $\lambda _2 =3k$ is 1. So the eigenvalues of $ ( I-C) $ are 1-0= 1 and $ 1-3k $. Therefore, for $k \ne \frac{
1}{3} $ zero is not an eigenvalue of $ ( I-C) $, hence $ ( I-C) $ is invertible.



b) Note that $ ( I-C)^{-1} $ is nonnegative if and only if $C$ is profitable. Since the sum of the rows of $C$ are equal to $ 3k $, $C$ is profitable if $3k<1$ or $ k<\frac
{1} {3} $.



c) We want to find a production matrix $p$ such that $ d= ( I- C )p$. Note that $v= \left[ \begin{array}{c}
1 \\
1 \\
1 \\
\end{array}
\right]$ is an eigenvector of $ ( I-C) $ with the eigenvalue of $ 1-3k $. Hence


\begin{displaymath}( I-C) \left[ \begin{array}{c}
1 \\
1 \\
1 \\
\end{ar...
... \begin{array}{c}
1 \\
1 \\
1 \\
\end{array}
\right], \end{displaymath}



and for $p = \frac{ 1} { 1-3k}\left[ \begin{array}{c}
1000 \\
1000 \\
1000 \\
\end{array}
\right]$ we will get :

$d = \left[ \begin{array}{c}
1000 \\
1000 \\
1000 \\
\end{array}
\right] = (I-C) p
$.




next up previous
Next: About this document ... Up: Eigenvalues and production Previous: Example 1
Ali A. Daddel 2000-09-19