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Quantum mechanics is one of the most interesting
and surprising pillars of modern physics. Its basic
precepts require only undergraduate or early grad-
uate mathematics; but because quantum mechanics
is surprising, it is more difficult than these prerequi-
sites suggest. Moreover, the rigorous and clear rules
of quantum mechanics are sometimes confused with
the more difficult and less rigorous rules of quantum
field theory.

Many working mathematicians have an excellent
intuitive grasp of two parent theories of quantum
mechanics, namely classical mechanics and probabil-
ity theory. The empirical interpretations of each of
these theories — above and beyond their mathemat-
ical formalism — have been a great source of ideas
for mathematics proper. I believe that more mathe-
maticians could and should learn quantum mechan-
ics and borrow its interpretation for mathematical
problems. Two subdisciplines of mathematics that
have assimilated the precepts of quantum mechan-
ics are mathematical physics and operator algebras.
However, the prevailing intention of mathematical
physics is the converse, to apply mathematics to
problems in physics. The theory of operator algebras
is closer to the spirit of this article; in this theory the
precepts of quantum mechanics are sometimes called
“non-commutative probability”.

Recently quantum computation has entered as a
new reason for both mathematicians and computer
scientists to learn the precepts of quantum mechan-
ics. Just as randomized algorithms can be moder-
ately faster than deterministic algorithms for some
computational problems (such as testing primality),
some problems admit quantum algorithms that are
faster (sometimes much faster) than their classical
and randomized alternatives. These quantum algo-
rithms can only run on a new kind of computer called
a quantum computer. As of this writing, convincing
quantum computers do not exist. Nonetheless, the-
oretical results suggest that quantum computers are
possible rather than impossible. Entirely apart from
its potential as a technology, quantum computation
is a beautiful subject that combines mathematics,
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physics, and computer science.
This article is a concise introduction to quantum

probability theory, quantum mechanics, and quan-
tum computation for the mathematically prepared
reader. Chapters 2 and 3 depend on Section 1 but
not on each other, so the reader who is interested in
quantum computation can go directly from Chap-
ter 1 to Chapter 3.

This article owes a great debt to the textbook on
quantum computation by Nielsen and Chuang [20],
and to the Feynman Lectures, Vol. III [12]. An-
other good textbook written for physics students is
by Sakurai [21].

Exercises

These exercises are meant to illustrate how empir-
ical interpretations can lead to solutions of mathe-
matical problems.

1. The probabilistic method: The Ramsey num-
ber R(n) is defined as the least R such that if
a simple graph Γ has R vertices, then either it
or its complement must have a complete sub-
graph with n vertices. By considering random
graphs, show that

R(n) ≥ 2(n−1)/2

(2(n!))1/n
.

2. Angular momentum: Let S be a smooth sur-
face of revolution about the z-axis in R3, and
let ~p(t) be a geodesic arc on S, parameterized
by length, that begins at the point (1, 0, 0) at
t = 0. Show that ~p(t) never reaches any point
within 1/|p′y(0)| of the vertical axis.

3. Kirchoff’s laws: Suppose that a unit square is
tiled by finitely many smaller squares. Show
that the edge lengths are uniquely determined
by the combinatorial structure of the tiling,
and that they are rational. (Hint: Build the
unit square out of material with unit resistivity
with a battery connected to the top and bot-
tom edges. Cut slits along the vertical edges of
the tiles and affix zero-resistance wires to the
horizontal edges. Each square becomes a unit
resistor in an electrical network.)



2

1. QUANTUM PROBABILITY

The precepts of quantum mechanics are neither
a set of physical forces nor a geometric model for
physical objects. Rather, they are a variant, and
ultimately a generalization, of classical probability
theory. (This is following the standard Copenhagen
interpretation; see Section 1.6.) Quantum proba-
bility is usually defined using the matrix mechanics
model, which describes vector states (or pure states)
and offers a probabilistic interpretation of final mea-
surement. We will present this model together with
an important extension to mixed states. In physics,
wave mechanics is sometimes presented as an alter-
nate definition of quantum mechanics; we will de-
scribe it as a special case of pure-state matrix me-
chanics.

Since classical probability is a major analogy for
us, it is reviewed in Section 1.10. In short, we can
think of classical probability as a category Prob
whose objects are measure spaces (or in the finite
case, finite sets) and whose morphisms are stochas-
tic maps. (For readers who are not comfortable with
this terminology, Section 1.11 is a cursory review.)
Even though category theory can be very abstract
[18], our interpretation of this category is very em-
pirical: A measure space is the natural model for a
physical (or otherwise empirical) object that can be
in a random state, and stochastic maps are the ac-
tions on such objects that are empirically allowed in
classical probability. Stochastic maps also subsume
the notions of events and random variables. Finally
(and crucially) the probability category Prob is a
tensor category: A Cartesian product of measure
spaces, which is in spirit a tensor product, carries
the joint states of two (or more) separate probabilis-
tic objects.

We will define a category Quant for quan-
tum probability which is analogous to the cate-
gory Prob. The ultimate generalization, discussed
in Section 1.8, is a category vN that contains
both Quant and Prob. Its objects are von Neu-
mann algebras, which are sometimes called “non-
commutative measure spaces”. The objects of
Quant are, famously, Hilbert spaces. Until Sec-
tion 1.7, we will consider only finite-dimensional vec-
tor spaces. These are enough to learn from, just as
the finite case is enough to learn most of the empir-
ical interpretation of classical probability.

1.1. Vector states and unitary maps

Although it lacks some crucial empirical structure,
most of quantum mechanics and much of quantum
computation relies only on a simpler category (than

Quant) which we will call U. The objects of U
are complex Hilbert spaces and the morphisms are
unitary maps. We also add subunitary maps to U
to make a moderately larger category U’. We will
also mostly restrict our attention to the subcategory
U<∞ of finite-dimensional Hilbert spaces.

Recall that a Hilbert space is a complex vector
space H with a positive-definite Hermitian inner
product 〈·|·〉. This means that 〈·|·〉 is a function from
H → H to C that satisfies these axioms:

〈ψ1 + ψ2|ψ3〉 = 〈ψ1|ψ3〉+ 〈ψ2|ψ3〉
〈ψ1|ψ2〉 = 〈ψ2|ψ1〉
〈ψ1|αψ2〉 = α〈ψ1|ψ2〉
for α ∈ C

〈ψ|ψ〉 > 0 for ψ 6= 0.

(In the infinite case, H must also be complete rela-
tive to the norm

||ψ|| =
√
〈ψ|ψ〉.)

In quantum theory, the traditional notation is |ψ〉 (a
“ket”) for ψ and 〈ψ| (a “bra”) for the dual vector

〈ψ| = ψ∗ = 〈ψ|·〉.

If X is an operator on H, then

〈ψ1|X |ψ2〉

is an expression for “the inner product of ψ1 with
X(ψ2)”. If

X = |ψ1〉 ⊗ 〈ψ2|

has rank 1, then we can omit the “⊗” and just write

X = |ψ1〉〈ψ2|.

This notation is due to Dirac [10] and is called “bra-
ket” notation. A linear map U : H1 → H2 is unitary
if it preserves the inner product 〈·|·〉; it is subunitary
if it preserves or decreases the attendant norm || · ||.
Recall also that a linear map from a Hilbert space
to itself is called an operator.

The standard finite example of a Hilbert space is
the standard complex vector space Cn with the inner
product

〈~x|~y〉 = x1y1 + x2y2 + · · ·+ xnyn.

We can generalize this to say that for any finite set
A, the vector space CA is a Hilbert space with stan-
dard orthonormal basis A. Every finite-dimensional
Hilbert space is isomorphic to Cn for some n, and
therefore CA for any A with |A| = n.
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In finite quantum mechanics, as in classical prob-
ability, we can define a physical object by specifying
a finite set A of independent configurations. In in-
formation theory (both quantum and classical), the
object is often called “Alice”. In the classical case,
the set of all normalized states of Alice is the sim-
plex ∆A spanned by A in the vector space RA (see
Section 1.10). I.e., a general state has the form

µ =
∑

a∈A

pa[a]

for probabilities pa ≥ 0 that sum to 1. (For unnor-
malized states, the sum need not be 1.) The number
pa is interpreted as the probability that Alice is in
state a. Quantumly, Alice’s set of vector states is the
vector space CA. In formulas, a state of this type is
a vector

|ψ〉 =
∑

a∈A

αa|a〉.

The state |ψ〉 is normalized if

〈ψ|ψ〉 =
∑

a∈A

|αa|2 = 1

and subnormalized if the left side is at most 1. The
coefficient αa is called the amplitude of the quantum
state |a〉 and the square norm |αa|2 is interpreted as
the probability that Alice is in state |a〉. The phase
of αa (i.e., its argument or angle as a complex num-
ber) has no direct probabilistic interpretation, but it
will be immediately relevant when we consider op-
erations on |ψ〉. More precisely, the relative phase
of two coordinates αa and αa′ is indirectly measur-
able. It will turn out that the global phase of |ψ〉
is not empirical; Section 1.4 discusses a change in
formalism that eliminates it.

The state |ψ〉 is also called a quantum superpo-
sition, an amplitude function, or a wave function.
This last name, perhaps the most common term in
physics, is motivated by the fact that |ψ〉 typically
satisfies a wave equation in infinite quantum me-
chanics (Example 1.7.1 and Section 2.1). It also pre-
dates the Copenhagen interpretation and arguably
distracts from it.

If A and B are the configuration sets of two quan-
tum systems (“Alice” and “Bob”), then, as we said,
an empirical transition from Alice’s state to Bob’s
state is a unitary (or subunitary) map

U : CA → CB.

The requirement that U be linear is the quantum
superposition principle. It contradicts the similar-
looking classical superposition principle: if ampli-
tudes add, then probabilities usually do not. (They

will eventually be reconciled.) The entries of U
are also called amplitudes, just as the entries of a
stochastic map are themselves probabilities. The
unitary condition is interpreted as conservation of
probability. Since we have posited that |αa|2 is a
probability, U conserves total probability if and only
if

||Uψ|| = ||ψ||

for all ψ ∈ CA. If U is allowed to extinguish the
state ψ, then in general

||Uψ|| ≤ ||ψ||

for all ψ ∈ CA, i.e., U is subunitary.

i/2

i/2

−i/2

i/2

i/2

i/2

Figure 1: An idealized two-slit experiment.

It is traditional to illustrate the quantum super-
position principle in an idealized setting called the
“two-slit experiment” (or a more general diffraction
experiment). Figure 1 shows the basic idea: A laser
emits photons that can travel through either of two
slits in a grating and then may (or may not) reach
a detector. The source has a single state (the state
set A has one element), while the grating has two
states and there are two detectors (B and C each
have two elements). The transitions for each pho-
ton, as it passes from A to B to C, are described by
two subunitary matrices

U : CA → CB V : CB → CC .

The matrices are

U =

(
i
2
i
2

)
V =

(
i
2

i
2

i
2 − i

2

)
,

and

V U =

(
− 1

2
0

)
.

The total amplitude of the photon reaching the top
detector is − 1

2 and the probability is 1
4 ; this case

is called constructive interference. The total ampli-
tude reaching the bottom detector is 0, so the photon
never reaches it; this case is called destructive in-
terference. On the other hand, if one of the slits of
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blocked, then we can discard one of the states in |B|,
with the result that each detector is reached with
probability 1

16 . The classical superposition principle

would dictate a probability of 1
8 for each detector

with both slits open; thus it is violated.

i/2

i/2

±i/2

i/2

Figure 2: An angle-dependent detector in the two-slit
experiment.

A natural reaction to the violation of classical su-
perposition is to try to determine which slit the pho-
ton went through. One way to do so is to use a de-
tector which is sensitive to the angle that the photon
comes in, as in Figure 2. But then this detector rep-
resents two distinct states rather than one. Thus the
final state vector is

|ψ〉 =

(
− 1

4
± 1

4

)

and its total probability is

〈ψ|ψ〉 = ||ψ||2 =
1

8
,

regardless of the phases of path segments to and
from the slits. The broader lesson is that amplitudes
of different trajectories of an object only add when
there is no evidence of which trajectory it took; oth-
erwise the probabilities add. If we want to see quan-
tum superposition, it is not enough to wittingly or
unwittingly ignores such evidence. Rather, if the two
trajectories induce different states of the universe,
so that some observer could in principle distinguish
them, then they obey classical superposition. More-
over, the effect is not the result of interaction be-
tween photons; photons do not interact with each
other1. Indeed, the laser could be tuned to shoot
only one photon at a time. Of course, our two-slit
“experiment” is only an idealization of a real exper-
iment; but see Sections 1.3 and 1.6.

Examples 1.1.1. A qubit is a two-state quantum
object with configuration set {0, 1}. Two of their

1 More precisely, detecting photon-photon interactions re-
quires enormous particle accelerators.

quantum superpositions are:

|+〉 =
|0〉+ |1〉√

2
|−〉 =

|0〉 − |1〉√
2

Both of these states have probability 1
2 of being in

either configuration |0〉 or |1〉, but they are differ-
ent states. This is demonstrated by the effect of a
unitary operator H called the Hadamard gate:

H =

(
1 1
1 −1

)
.

It exchanges |0〉 with |+〉 and |1〉 with |−〉.
The spin state of a spin- 1

2 particle is a two-state
system which is important in physics. (Electrons,
protons, and neutrons are all spin- 1

2 particles.) The
conventional orthonormal basis is |↑〉 (“spin up”) and
|↓〉 (“spin down”). The names of the states refer to
the property of the electron spinning (according to
the right-hand rule) about a vertical axis in these
two states. Even though a rotated electron is still
an electron, this configuration set for it does not ro-
tate to itself; neither does any other. The resolution
of this paradox is that rotated states appear as su-
perpositions. For example, the states “spin left” and
“spin right” are analogous to |+〉 and |−〉:

|→〉 =
|↑〉+ |↓〉√

2
|←〉 =

|↑〉 − |↓〉√
2

.

Exercises

1. Suppose that the lengths of the entries of a
complex matrix U are all fixed, but the phases
are all chosen uniformly randomly. (If you like,
you can also suppose that for any choice of the
amplitudes, U is subunitary.) Show that on
average, each entry of U |ψ〉 satisfies the clas-
sical superposition principle.

2. If U is a matrix, then the matrix

Mab = |Uab|2

can be called dephasing of U . A dephasing of
a unitary matrix is always doubly stochastic,
meaning that the entries are non-negative and
the rows and columns add to 1. Find a 3 ×
3 doubly stochastic matrix which is not the
dephasing of any unitary matrix.

3. Show that every n × k subunitary matrix U
can be extended to an (n+k)×(n+k) unitary
matrix V :

V =

(
U ∗
∗ ∗

)
.
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Show that V cannot usually have order less
than n+ k.

4. If U1, U2, . . . , Un are unitary operators, then
each entry of their product

U = Un . . . U2U1

can be expressed as a sum of products of en-
tries of the factors:

〈an|Un . . . U2U1|a0〉
=

∑

a0,a1,...,an

〈an|Un|an−1〉 . . . 〈a2|U1|a1〉〈a1|U1|a0〉.

Such an expansion is interpreted as path sum-
mation; it is the same idea as a sum over his-
tories in classical probability.

For example, let n = 4 and let each

Uk =
1√
2

(
1 1

−1 1

)
.

Find the amplitudes of the 16 paths and group
them according to how they sum.

5. In general for a spin- 1
2 particle, the state

|~v〉 = α|↑〉+ β|↓〉

spins in the direction

~v = (Re αβ, Im αβ, |α|2 − |β|2).

Check that this is a unit vector when |~v〉 is
normalized, and that every unit vector in R3 is
achieved. This formula is therefore a surjective
function from the unit 3-sphere S3 ⊂ C2 to the
2-sphere S2 ⊂ R3. What is its usual name in
mathematics?

1.2. Measurements and basis independence

Suppose that H (or H = CA) is the Hilbert space
of a quantum object, and that the object is in the
state |ψ〉 ∈ H. A measurement or real-valued quan-
tum random variable is a Hermitian operator X on
H. The eigenvalues of X are interpreted as its range
as a random variable. (Since we are assuming that
H is finite-dimensional, X admits a complete set of
orthogonal eigenvectors. For the infinite case see
Section 1.7.) The assertion that X = λ as a random
variable is interpreted as the condition that |ψ〉 is an
eigenvector of X with eigenvalue λ. More generally,
for any |ψ〉, the probability that X = λ is given by
the formula

P [X = λ] = 〈ψ|Pλ|ψ〉,

where Pλ is the orthogonal projection onto the
eigenspace of λ. (Note that this probability does not
depend on the global phase of |ψ〉.) Moreover, if the
value λ is measured, the conditional state afterward
is

|ψ′〉 =
Pλ|ψ〉√
〈ψ|Pλ|ψ〉

.

Conditioning on a measurement is also called “state
collapse” or “wave function collapse”.

This abstract definition of a measurement, and the
references to abstract Hilbert spaces, can be moti-
vated by the more concrete discussion in Section 1.1,
and they lead to a better presentation of unitary
quantum probability. In Section 1.1, we tacitly ac-
cepted that if H = CA is Alice’s state space, then
one kind of a valid measurement is whether Alice is
in the configuration a ∈ A, and we said that its prob-
ability of this is the square amplitude |αa|2. More
generally, if D : A→ S is some function, then

P [D = s] =
∑

D(a)=s

|αa|2;

this was implied by the discussion about distinct and
identical states. But, taking S = R, the function
D uniquely extends to a Hermitian operator on H
which is diagonal in the basis A. At the same time,
we posited that unitary operators represent the em-
pirical operations on Alice. Since every Hermitian
operator X is diagonalized by a unitary operator,

X = U−1DU,

we can think of a general measurement X as a mea-
surement of Alice’s configuration a ∈ A after Alice
is prepared by the transition map U .

Example 1.2.1. Consider a spin- 1
2 particle and let

Jx =

(
0 1

1 0

)
Jz =

(
1 0

0 −1

)

be two Hermitian operators, given as matrices in the
standard basis {↑, ↓}. These operators measure the
particle’s spin in horizontal and vertical directions.
If Jz is definite, then the spin state is either |↑〉 or
|↓〉. Both of these states are superpositions of |←〉
and |→〉, so if Jz is definite, Jx is not; rather, it
has a 1

2 chance of being either 1 or −1. If Jx is
measured, then the particle’s state becomes one of
the two conditional states |←〉 or |→〉, after which
Jz is no longer definite; its old value is forgotten.

This example illustrates that every state of a
quantum system is a source of randomness; every
state is indefinite. The popular paraphrase of Ein-
stein, “God does not play dice with the universe,”
refers to this principle.
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By the same token, if H is the Hilbert space of a
quantum object, we can think of any orthonormal
basis A of H as its configuration set. Two com-
pletely different orthonormal bases can be equally
empirical; a very important part of empirical think-
ing in quantum theory is to be able to change from
one orthonormal basis to another. In physics such a
change of description is often called a “duality”. For
example, one form of particle-wave duality (namely,
second quantization of bosons) is very similar to an
orthonormal change of basis (Section 2.6).

Example 1.2.2. We can now have a second un-
derstanding of a qubit as a quantum object with a
two-dimensional Hilbert space H. We can label any
orthonormal basis |0〉 and |1〉, or we can choose not
to distinguish any particular basis. For example,
one person’s |0〉 and |1〉 may be another person’s
|+〉 and |−〉. One important quantum algorithm,
the Grover search algorithm (Section ??) alternates
between (dilated) classical computations in the two
bases.

A spin- 1
2 particle illustrates the same point more

geometrically. As it happens, every orthonormal ba-
sis of its spin state space consists of the positive
and negative spin states in some direction. But the
model of a qubit as a spin- 1

2 particle is ultimately
misleading. Particle spin has been successfully em-
ployed as a qubit, but some other qubit devices have
much more complicated states. Figure 3 shows one
example.

Figure 3: A Josephson junction qubit: superconducting
aluminum on a silicon chip [17].

A Boolean measurement or quantum random vari-
able can be represented as a Hermitian operator P
whose eigenvalues are 0 (for “no”) and 1 (for “yes”).
I.e., P is an orthogonal projection on H. More gen-
erally, a random variable X that takes (discrete) val-
ues in a set S can be represented by an orthogonal
decomposition

H =
⊕

s∈S

Hs.

The outcome X = s corresponds to the orthogonal
projection Ps onto the summand Hs. Its probability
of occurrence in the state |ψ〉 is

〈ψ|Ps|ψ〉,

which is also the squared length of the projected
vector Ps|ψ〉. The corresponding conditional state
is

|ψs〉 =
Ps|ψ〉
〈ψ|Ps|ψ〉

.

One common case is that of several random vari-
ables X1, . . . , Xn. If they commute, then they have
a common diagonalization, and they induce an or-
thogonal decomposition of H with S = Rn. If two
measurement operators X1 and X2 do not commute,
then the set of states for which they are both def-
inite does not span H. As in Example 1.2.1, there
is often no state for which X1 and X2 are both def-
inite; they do not share an eigenvector. In words,
two such variables are mutually uncertain; they are
not simultaneously measurable.

Exercises

1. Verify that if X and Y are commuting Her-
mitian operators, then X + Y and XY corre-
spond, as measurements, to adding and mul-
tiplying the outcomes of the measurements X
and Y .

2. Let H = CZ/n be a state space whose basis is
the cyclic group Z/n. Define operators X and
Z by

X |k〉 = |k + 1〉 Z|k〉 = e2πi/n|k〉

Confirm that X has the same eigenvalues as
Z. Find the eigenvalues of X + Z.

3. Show that if X is an anti-Hermitian operator,
it represents an imaginary random variable;
that if X is unitary, it represents a random
variable with values in the unit circle S1 ⊂ C;
and that if X commutes with its adjoint, it
represents a complex random variable. In the
last case, X is called a normal operator.

4. Suppose that |ψ〉 and |φ〉 are two states in
the same Hilbert space H, and suppose that
a physical object is in state |ψ〉. Show that
the probability that it is in state |φ〉 is

|〈φ|ψ〉|2.
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5. Following Exercise 1.1.5, show that every or-
thonormal basis of the spin- 1

2 Hilbert space
consists of two spin states that point in op-
posite directions.

6. Show that a state |ψ〉 which is simultaneously
definite for two Hermitian operators X and Y
lies in the kernel of the commutator

[X,Y ] = XY − Y X.

Show that these states span ker[X,Y ] when X
and Y commute with [X,Y ], but not in gen-
eral.

7. Show that if a measurement X is performed on
a state ψ, its expectation (or average value) is
given by:

E[X ] = 〈ψ|X |ψ〉.

8. Suppose that X and Y are Hermitian opera-
tors on a Hilbert spaceH with a state ρ. Recall
that if X is a classical random variable,

V [X ] = E[X2]− E[X ]2

denotes the variance of X . Prove the general-
ized Heisenberg uncertainty relation:

V [X ]V [Y ] ≥ E[i[X,Y ]]2

4
.

(Hint: After subtracting the means from X
and Y , show that the 2× 2 matrix

(
E[X2] E[XY ]

E[Y X ] E[Y 2]

)

is positive semi-definite. The expectation for-
mula in Exercise 1.2.7 is reasonable for arbi-
trary operators, not just normal ones.)

1.3. Joint states

Up until this point, a skeptic could still view quan-
tum “probability” as kind of a cloud model and not
really a modification of probability theory itself. If
a configuration set A of a particle is a set of po-
sitions, then perhaps the particle is merely diffuse,
like a cloud. Quantum superposition, measurement,
and equivalence between different orthonormal bases
are all surprising, but they are not quite show stop-
pers. The topic of this section, namely the correct
model of joint quantum states, radically contradicts
the cloud interpretation. (Section 1.6 has a more
conclusive result in this direction.)

If A and B are finite configuration sets for two
classical systems, then the configuration set for the
joint system is the Cartesian product A×B. Equiv-
alently, the state space of the joint system is a tensor
product:

RA ⊗ RB ∼= R[A×B].

This definition extends to the quantum case: If two
quantum systems have state spaces HA and HB,
then the joint system has state space HA ⊗HB. In
particular if A and B are orthogonal bases of HA

and HB (i.e., configuration sets for Alice and Bob),
then A × B is a joint basis, just as in the classical
case. (But see Section 2.4.)

If a quantum object were somehow a cloud of am-
plitudes or probabilities, we would expect Alice and
Bob to have independent states |ψA〉 and |ψB〉, at
least if they were physically separated. When this
happens, their joint state is |ψA〉 ⊗ |ψB〉; this is also
called a product state. But most states are not prod-
uct states; these states are called entangled. Entan-
gled quantum states are evidently similar to corre-
lated classical states.

Examples 1.3.1. Since a qubit has the configura-
tion set |0〉 and |1〉, a system of n qubits has config-
uration set {0, 1}n. Thus the general state for this
system has 2n amplitudes; for example the general
three-qubit state is

|ψ〉 = a000|000〉+a001|001〉+a010|010〉+a011|011〉
+ a100|100〉+ a101|101〉+ a110|110〉+ a111|111〉.

It may look as if an n-qubit state carries an expo-
nential amount of information, namely its 2n ampli-
tudes, but this is only true in a weak sense. With
respect to a reasonable definition of information (see
Exercise 1.4.5 and Section 1.8), a quantum superpo-
sition is not a record of its list of amplitudes, just as
a hand of poker is not a record its

(
52
5

)
probabilities.

One important product state on n qubits is the
constant state:

|ψ〉 = |+ + . . .+〉 = 2−n/2
∑

s∈{0,1}n

|s〉.

One important entangled state is the cat state (as
in “Schrödinger’s cat”):

|ψ〉 =
|00 . . . 0〉+ |11 . . . 1〉√

2
.

As another example, an EPR pair (see Sec-
tion 1.6.2) is a pair of electrons or other elementary
particles in the entangled spin

|ψ〉 =
|↑↓〉 − |↓↑〉√

2
.
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It is similar to the cat state with n = 2. In general
any state one two qubits of the form

|ψ〉 =
|a, b〉+ |c, d〉√

2

with

〈a|c〉 = 〈b|d〉 = 0

is called a Bell state or a Bell pair.

Unitary transitions and Hermitian measurements
on a joint system |ψA〉⊗|ψB〉 which affect only Alice
(respectively Bob) take the form X⊗I (respectively
I ⊗ X), where X is unitary or Hermitian. This is
exactly analogous to the classical case. Such opera-
tions are also called local to Alice or Bob.

The combined model of unitary transitions, Her-
mitian measurements, and tensor products for joint
states describes an isolated quantum object whose
state is measured after a period of evolution. It is
the standard description of quantum mechanics in
many physics courses. It also describes a unitary
quantum computer that is alternately manipulated
and interrogated by a classical controller. But it
also has shortcomings and omissions which confuse
its interpretation, namely:

1. Hermitian measurements are missing from the
unitary category U. In physical terms, the
model does not include observers, even though
observers can also be observed. (But note
that a Boolean measurement P is subunitary;
conditioning without normalization does lie in
U’.)

2. Many physical objects, including typical ob-
servers, are effectively classical, even if they are
prima facie quantum. These are also missing
from the category U.

3. The category U is only weakly connected:
there is no strictly unitary map from HA to
HB when

dimHA > dimHB.

The subunitary category U’ is strongly con-
nected, but a subunitary map from HA to HB

then includes extinction. In other words, in the
category U’, if Alice has more states than Bob,
she cannot transfer her state to Bob without
the possibility that the world ends.

4. There is no notion of marginals: If Alice and
Bob are in an entangled state, there is no vec-
tor state for Alice alone. In particular, Alice
can entangle with the environment (“Eve”).

5. Even though measurements are a source of
randomness, the category Ucannot express
classical randomness. For example, if the spin
state of an electron is prepared by randomly
choosing between |↑〉 and |↓〉, what is its state?
The model of probability distributions on the
manifold of vector states of an object is sus-
pect, and in the end, redundant.

Sections 1.4 and 1.5 describe another model of
quantum probability, the category Quant, that ad-
dresses most of these problems. Section 1.8 describes
a final model, the category vN, that settles them
more completely.

Exercises

1. Another description of the EPR state in Ex-
amples 1.3.1 is via measurement. Let H have
the spin basis |↑〉 and |↓〉 and define the oper-
ators

J tot
x = Jx ⊗ I + I ⊗ Jx J tot

z = Jz ⊗ I + I ⊗ Jz

on H ⊗ H, where Jx and Jz are defined as
in Example 1.2.1. Show that J tot

x and J tot
z

have one common eigenstate, for which both
eigenvalues vanish.

2. Show that if H is a Hilbert space of dimension
at least 2, there does not exist a linear map

U : H → H⊗H

that takes every state |ψ〉 to a state equivalent
to |ψ〉⊗ |ψ〉. (Recall that two states are equiv-
alent if they differ by a global phase.) This is
the simplest of a series of no cloning theorems
for quantum states. A harder version: Show
that such a map U is not even approximately
linear.

3. Show if |ψ〉 and |φ〉 are two Bell states shared
by Alice and Bob, then there is a unitary op-
erator local to Alice (i.e., of the form U ⊗ I)
which takes |ψ〉 to |φ〉:

(U ⊗ I)|ψ〉 = |φ〉.

Thus all Bell states are equivalent.

4. Show that if |ψ〉 ∈ HA ⊗HB is a vector state
and

dimHA ≤ dimHB,

then it has the form

|ψ〉 =
∑

a∈A

αa|a〉 ⊗ |f(a)〉
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for some orthonormal bases A and B and some
function f : A → B. This presentation is
called a Schmidt decomposition of |ψ〉. Show
that the unordered set of numbers |αa|2 is
uniquely determined by |ψ〉.

5. A common error in quantum probability is to
mistake the direct sum HA ⊕HB for the joint
state space of Alice and Bob. Provide an em-
pirical interpretation for direct sums which,
among other properties, would also work in
classical probability.

6. Show that the cat states from Examples 1.3.1
are entangled.

1.4. Operator states

Let H be the (finite-dimensional) Hilbert space
of a quantum object, Alice. We define an opera-
tor state of Alice (or more simply a state) to be a
positive semi-definite Hermitian operator ρ on H.
(Positive semi-definiteness is denoted ρ ≥ 0.) The
state ρ is normalized if Tr(ρ) = 1 and subnormalized
if Tr(ρ) ≤ 1. In this section and the next one we
will define a new model (the category Quant<∞) of
quantum probability by replacing vector states with
operator states, and by replacing unitary operators
by a more complete class of quantum operations,
analogous to stochastic maps.

LetM(H) be the vector space of all operators on
H. (Later we will abbreviate the algebra of n × n
matrices M(Cn) as Mn.) The set

M+,1(H) ⊂M(H)

of all normalized states is the Bloch region of Alice.
Also let M+,≤1(H) be the set of all subnormalized
states and let M+(H) be the set of all states.

Proposition 1.4.1. If H is an n-dimensional
Hilbert space thenM+,1(H) is a compact and convex
set of real dimension n2− 1. Its extremal points are
rank 1 operators: If ρ is extremal, it has the form

ρ = |ψ〉〈ψ|

for a unit vector |ψ〉 ∈ Cn.

The Bloch region M+,1(H) is analogous to the
classical simplex ∆A of probability distributions on
a finite set A. (Section 1.8 will discuss a mutual
generalization.) First, the positivity and normaliza-
tion conditions that define the two regions are both
mathematically similar and have similar interpreta-
tions. If we choose an orthonormal basis A for H,

then an operator state ρ becomes a matrix; it can
be written

ρ =
∑

a,a′∈A

pa,a′ |a〉〈a′|.

The diagonal entry pa,a is the probability of the con-
figuration |a〉. Thus the positivity condition ρ ≥ 0
asserts that the probability of any configuration (in
any basis) is non-negative. The normalization con-
dition asserts that the total probability in any basis
is 1:

Tr(ρ) =
∑

a∈A

pa,a = 1;

evidently this condition is basis-independent. Be-
cause the diagonal entries of ρ are probabilities, it is
often called a density matrix or a density operator
in physics.

The geometric features of M+,1(H) and ∆S are
also similar, albeit with some important differences
as well. Both regions are convex in order to allow
classical superpositions. More precisely, if ρ1 and ρ2

are two states and 0 < p < 1 is a probability, then
the state

ρ = pρ1 + (1− p)ρ2 (1)

is a classical superposition or mixture of ρ1 and ρ2;
it can be prepared by choosing randomly between
them. If ρ is a mixture, i.e.if it is not an extremal
point ofM+,1(H), then it is also called a mixed state.

If a state µ ∈ ∆S is extremal, then it is an ele-
ment of S itself. It can then be called definite in
the sense µ possesses no randomness: the proba-
bility of every event is either 0 or 1. If a state
ρ ∈ M+,1(H) is extremal, then it is called pure.
By Proposition 1.4.1, pure states correspond to vec-
tor states, except that |ψ〉〈ψ| does not depend on
the global phase of |ψ〉. As in Example 1.2.1, every
state M+,1(H) is a source of randomness; all states
are indefinite.

Example 1.4.1. Our third and final understand-
ing of a qubit is set of states is the Bloch region
M+,1(H). In this caseM+,1(H) is a round ball and
is called the Bloch sphere, as shown in Figure 4. Two
pure states are orthogonal if and only if they are an-
tipodal as points on the Bloch sphere. The state in
the middle,

ρ =
|0〉+ |1〉

2
,

is the uniform state; it is the equal mixture of any
two orthonormal states.



10

0

1

(a)Deterministic bit

[0]

[1]

(b)Randomized bit

|0〉

|1〉

|+〉
|−〉

(c)Quantum bit

Figure 4: The space of states for three different types of bits.

Example 1.4.1 hints at a more general fact: Ev-
ery mixed state is a mixture of pure states in many
different ways. A mixed state encodes all of the sta-
tistical information that can be extracted by mea-
surements and other operations. Thus a probability
distribution on pure states is a highly redundant de-
scription of a mixed state.

Also following Example 1.4.1, if H has d states,
then the state ρ = I/d, where I is the identity op-
erator, is called the uniform state. It is the uniform
mixture of all configurations in any orthonormal ba-
sis, hence a strong analogue of the uniform distribu-
tion on a finite set in classical probability.

All of the operations defined for vector states read-
ily extend to operator states. If

U : HA →HB

is a unitary or subunitary operator, its induced ac-
tion on operators is given by

U(ρ) = UρU∗.

If U is unitary, then

U(M+,1(H1)) ⊂M+,1(H2),

while if U is subunitary, then

U(M+,1(H1)) ⊂M+,1(H2).

If

X : H → H

is a Hermitian measurement, then its expectation
value is defined as

Eρ[X ] = Tr(ρX).

If H = P is a Hermitian projection, i.e.a Boolean
measurement, then the probability of P is defined as

Pρ[P ] = Tr(ρP )

and the conditional state is

ρ̂|P =
PρP

Tr(ρP )
.

These rules for probabilities and conditional states
also apply to set-valued measurements, using the
projection Ps corresponding to an outcome s ∈ S.

Recall that if HA and HB are the Hilbert spaces
of Alice and Bob, then their joint Hilbert space is
HA⊗HB . If Alice and Bob have independent states
ρA and ρB, then their joint state is ρA⊗ρB, a prod-
uct state. General non-product joint states are a
non-trivial mutual generalization of classical corre-
lation and quantum entanglement, and their nomen-
clature reflects some of their surprising properties.
A joint state ρ is called separable if it is a mixture
of independent states. Non-independent separable
states are roughly analogous to classical correlated
states, but even these have some interesting quan-
tum properties [5]. If ρ is not separable, then it is
entangled. In some crucial respects, entanglement
of mixed states is a weaker condition than entangle-
ment of pure states. Current research is devoted to
relating these two forms of entanglement.

As promised, there is a way to express marginals
of joint states using operator states. If ρ is a joint
state on HA ⊗ HB, its marginal states on HA and
HB are defined as partial traces:

ρA = TrB(ρ) ρB = TrA(ρ).

More explicitly, suppose that A and B are orthonor-
mal bases of HA and HB. Then

ρA = TrB(ρ) =
∑

a,a′∈A;b∈B

|a〉〈a, b|ρ|a′, b〉〈a′|

ρB = TrA(ρ) =
∑

a∈A;b,b′∈B,

|b〉〈a, b|ρ|a, b′〉〈b′|.

Example 1.4.2. Suppose that Alice and Bob are
qubits in the entangled vector state

|ψ〉 =
|00〉+ |11〉√

2
.
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The operator form of this state is then

ρ = |ψ〉〈ψ| = 1

2




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


 .

Both of its marginals are the uniform state:

ρA = ρB =
1

2

(
1 0

0 1

)
.

Whereas in classical probability, a marginal of a def-
inite state is definite, in quantum probability the
marginal of a pure state need not be pure.

In general a linear map

E :M(HA)→M(HB)

is called a superoperator. If we interpret a unitary
map (including both dimension-preserving operators
and dimension-increasing embeddings) as a super-
operator, and we have described a partial trace as
another kind of superoperator. Both of these op-
erations are empirical, and we can naively consider
the category that they generate inside the category
of all superoperators. For the moment we will call
it Quant; in the next section we will show that it
includes all maps of states that could reasonably be
empirical.

Exercises

1. Verify that a local measurement X⊗ I applied
to a state ρ on a joint system HA ⊗ HB has
the same probabilities as the measurement X
applied to the marginal state TrB(ρ), and that
the conditioned states are also consistent.

2. Prove Proposition 1.4.1.

3. Show, as Example 1.4.1 claims, thatM+,1
2 is a

round 3-dimensional ball and that pure states
are orthonormal if and only if they are antipo-
dal. Show that the probability of any Boolean
measurement on a state ρ is proportional to
the displacement of ρ from some hyperplane
passing through the center ofM+,1

2 .

4. Show that every state ρ ∈ M+,1
n is a convex

combination of at most n pure states that have
the same diagonal entries as ρ.

5. The entropy S(ρ) of a state ρ is defined as
Tr(ρ(log ρ)). Show that the uniform state I/d
maximizes the entropy S onM+,1

n . Show that
a state is pure if and only if it has no entropy.

6. Verify that a pure state conditioned on a mea-
surement is still pure. More generally, show
that measurement does not increase entropy:
For any projection P and any state ρ,

S(PρP ) ≤ S(ρ).

7. Show that the each marginal of a pure joint
state |ψ〉 ∈ HA ⊗HB is pure if and only if |ψ〉
is unentangled.

8. A purification of a state ρ on H is a pure state
on a joint system H⊗H′ whose left marginal
is ρ. Show that every state on H has a purifi-
cation in H⊗H, and that it is unique up to a
unitary operator local to the second factor.

9. The support of a state ρ on H is its image in
H as a linear operator. Show that if ρ has full
support, then every outcome of a projective
measurement has non-zero probability.

10. Show that the uniform state on H is the only
one which is invariant under all unitary opera-
tors onH. Show, following Exercise 1.1.5, that
the uniform spin- 1

2 state is the only state that
is not direction-dependent.

11. Show that every state in an open neighborhood
of the uniform state on HA⊗HB is separable.

12. Given a joint Hilbert spaceHA⊗HB, compute
the dimension (in terms of the dimensions of
HA and HB) of:

a) the space of all joint states on HA ⊗HB.

b) the space of all joint pure states.

c) the space of all product states.

d) the space of all pure product states.

13. This exercise requires knowledge of some
topology and differential geometry. Show that
the space of pure states of an n-dimensional
Hilbert space H is a 2n− 2-dimensional man-
ifold, explicitly the manifold CPn−1. Show
that the Riemannian metric that it inherits
from its embedding in M(H) is two-point ho-
mogeneous, meaning that isometries act tra-
sitively on unit tangent vectors. Show that the
Riemannian metric (which is called the Fubini-
Study metric) is positively curved.

1.5. Quantum operations

This section is mathematically more challenging
than previous sections in Chapter 1. Our goal is to
characterize all maps

E :M(HA)→M(HB)
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that satisfy relatively weak conditions that we might
want from empirical operations. A map that satis-
fies them will be called a “quantum operation”. We
will abbreviateM(HA) asMA for Alice’s operators,
MB for Bob’s, etc.

By the classical superposition principle, an empir-
ical map

E :MA →MB

should first be a linear map, i.e., a superoperator. If
E is linear, it is called positive if

ρ ≥ 0 =⇒ E(ρ) ≥ 0

and trace-preserving if

Tr(ρ) = 1 =⇒ Tr(E(ρ)) = 1.

Thus the condition that

E(M+,1(HA)) ⊂ E(M+,1(HB))

says that E is positive and trace-preserving or TPP.
(Likewise E is positive if it preserves all states and
positive, sub-trace-preserving or PSTP if it preserves
subnormalized states.) By analogy with stochastic
matrices, it is tempting to propose TPP maps as
quantum operations. However, the tensor product of
two TPP maps need not be positive, so the category
of TPP maps is not compatible with joint states as
they are defined in Section 1.3.

A map E : MA → MB is called completely posi-
tive (CP) if for every quantum system C, the map

E ⊗ I :MA ⊗MC →MB ⊗MC

is positive, where I is the identity on MC .

Example 1.5.1. The transpose map T : ρ 7→ ρT on
Mn for n ≥ 2 is positive but not completely positive.

Completely positive, trace-preserving (TPCP)
maps do form a tensor category which for the mo-
ment we will call Quant. Every quantum operation
should be TPCP; the category Quant should con-
tain the empirical class Quant of quantum opera-
tions. (If extinction is allowed, then every quantum
operation should be STPCP.) In Section 1.4, we de-
fined a category Quant generated by unitary maps
and partial traces; it should be contained in the em-
pirical class Quant. The important result is that

Quant = Quant,

which justifies either one as a definition of Quant.
We can likewise define Quant′ as the category of
STPCP maps and Quant+ as the category of CP
maps.

Theorem 1.5.1 (Stinespring,Kraus). Let

E :MA →MB

be a superoperator. Then E is completely positive if
and only if there exist operators

E1, . . . , EN : HA →HB

such that

E(ρ) =

N∑

k=1

EkρE
∗
k . (2)

Equivalently E factors as

MA
U→MB ⊗MC

TrC→ MB,

where

D(ρ) = DρD∗

and TrC is a partial trace.
The map E is trace-preserving if and only if

N∑

k=1

E∗
kEk = I ∈MA, (3)

in which case D is unitary.

Often Theorem 1.5.1 is called Stinespring’s the-
orem [23]. Equation (2) is called the operator-sum
representation or the Kraus decomposition [16]. The
operation D, or the corresponding operator D, is a
dilation of the CP map E .

Theorem 1.5.1 justifies the quantum superposition
principle as a consequence of the classical superpo-
sition principle and complete positivity. These two
assumptions alone imply that every quantum oper-
ation is a sum (or classical superposition) of subuni-
taries (which are quantum superpositions.) In this
sense, the radical element of quantum probability is
not quantum superposition itself, but rather replac-
ing the simplex of states ∆A with the Bloch region
M+,1(H).

This point of view is further supported by the fol-
lowing corollary. Say that a CP map is coherent if it
is a single Kraus term. In particular, a unitary map
is coherent.

Corollary 1.5.2. If a CP map E : MA → MB

takes pure states to pure states, then either it is ei-
ther coherent, or all states in its image are propor-
tional. If E is invertible in the category Quant, then
it is unitary.

Note that in physics, an invertible process is usu-
ally called reversible.
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We will prove these results at the end of this
section; we first consider some particular classes of
quantum operations.

A state ρ on a Hilbert space H can be interpreted
as a quantum operation from the 1-state Hilbert
space C to H. In the other direction, the trace map

Tr :M(H)→ C

is also a quantum operation. These two operations
can be thought of as creation and destruction of
states. The composition ρ ◦ Tr can be thought of
as initializing an object in the state ρ. A partial
trace

TrA :M(HA)⊗M(HB)→M(HB)

is also completely positive.
Suppose that an orthogonal decomposition

H =
⊕

s∈S

Hs

represents a set-valued measurement. We noted in
the previous section that the probability of the out-
come s is given by

Tr(ρPs)

and that the conditional state is

ρ̂|Ps
=

PsρPs

Tr(ρPs)
.

If we imagine a hidden observer, Eve, performing
this measurement, she will effect the operation

P(ρ) =
∑

s∈S

PsρPs (4)

on the state ρ. This is evidently a quantum oper-
ation, one that expresses blind or hidden measure-
ment. It has an explicit dilation

D : H→ H⊗ CS

given by the formula

Dψ = ⊕s∈SPsψ ⊗ |s〉.

We can interpret this dilation as a visible measure-
ment, because the factor CS could belong to Eve and
does record the measurement outcome.

The main shortcoming of the dilation D as a
model of of measurement is that Eve must possess
quantum memory — she cannot be a classical com-
puter or a human being. Section 1.8 discusses a bet-
ter model with both quantum and classical objects.
Nonetheless the model is very useful. An object
can be measured by its environment; one electron

or other particle can measure another one; a quan-
tum computer can measure some of its qubits and
place the outcome in other qubits; etc. Whenever
two objects become entangled, we can say that each
one is measuring the other. We can also say that
decoherence is generally equivalent (by dilation) to
entanglement with the environemtn. In the limit,
one description of a non-quantum physical object is
that it is a quantum object which is constantly being
measured, or becoming entangled with, its environ-
ment.

Proof of Theorem 1.5.1. The proof here is based on
a characterization of CP maps due to Jamio lkowski
and Choi [7, 15, 22]. First, any superoperator

E :MA →MB

can be interpreted as an element

XE ∈MA ⊗MB =M(HA ⊗HB).

The point is that E is a tensor with four indices (Sec-
tion 1.11), two for HA and two for HB. In indices,
its usual interpretation as a map is given by the ex-
pression:

E(ρ)b
b′ = Eba′

b′aρ
a
a′ .

But we can also pair the indices differently as follows:

XE(χ)a′

b′ = Eba′

b′aχ
a
b .

Here |χ〉 ∈ HA ⊗ HB. In reference to the alternate
pairing of indices, we will callXE the sideways action
of E .

We claim that E is completely positive as a super-
operator if and only if XE ≥ 0 as a Hermitian opera-
tor. This identification is known as the Jamio lkowski
criterion or (in greater generality) the Choi isomor-
phism. We will rephrase the completely positivity
condition to establish the logical equivalence. The
map E is completely positive if and only if for any
MC ,

(E ⊗ I)(ρ) ≥ 0

for all states ρ ∈ MA ⊗MC . The lemma that E
(and therefore E ⊗I) preserves the Hermitian prop-
erty of ρ if and only if XE is Hermitian is left to Ex-
ercise 1.5.2. The more interesting positive semidefi-
niteness condition says that

〈ψ|(E ⊗ I)(ρ)|ψ〉 ≥ 0

for all vectors |ψ〉 ∈ HB ⊗ HC . This numerical in-
equality is linear in ρ, so we may assume that ρ is
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extremal, i.e., pure. Thus by Proposition 1.4.1, com-
plete positivity may be written more symmetrically
as

〈ψ|(E ⊗ I)(|φ〉〈φ|)|ψ〉 ≥ 0

for all

|ψ〉 ∈ HB ⊗HC |φ〉 ∈ HA ⊗HC .

In indices,

ψbcψb′c′Eab′

a′bφ
a′c′φac ≥ 0.

If

dimHC ≥ min(dimHA, dimHB),

then

χa
b = ψbcφac

is an arbitrary vector in HA⊗HB. With this abbre-
viation, complete positivity of E is the condition

χb′

a′Eab′

a′bχ
a
b ≥ 0

for all χ. This is precisely positivity of XE .
The operator XE is extremal among positive op-

erators if and only if it has rank 1, i.e.,

XE = |E〉〈E|

for some E ∈ HA ⊗HB . In indices,

Eab′

a′b = Ea′

b′ E
b
a.

In operator form, this says that

E(ρ) = EρE∗.

In other words, E is a single Kraus term if (and only
if) it is extremal among CP maps. Therefore the
general CP map is a sum of such terms.

The further assertions when E is trace-preserving
are left to Exercise 1.5.3.

Proof of Corollary 1.5.2. Let D be a dilation of E ,
and let

D : HA →HB ⊗HC

be its operator form. If |ψ〉 ∈ HB ⊗HC is a vector
state, then its marginal

TrC(|ψ〉〈ψ|)

is pure if and only if |ψ〉 is a product state (Exer-
cise 1.4.7):

|ψ〉 = |ψB〉 ⊗ |ψC〉.

By hypothesis, every vector in the image of D must
have this form. Now let

|ψ〉 = |ψB〉 ⊗ |ψC〉 |ψ′〉 = |ψ′
B〉 ⊗ |ψ′

C〉

be two inequivalent states (i.e., non-proportional
vectors) in the image of D. If the sum |ψ〉 + |ψ′〉
is also a product state, then either the left factors
|ψB〉 and |ψ′

B〉 or the right factors |ψC〉 and |ψ′
C〉

are proportional — but not both, because then |ψ〉
and |ψ′〉 would be proportional. If this relationship
holds for every inequivalent pair of states in imD,
then they must all have either the same left factor
or the same right factor.

If all vectors in imD have the same left factor,
respectively the same right factor, then

D|ψ〉 = |ψB〉 ⊗ (E|ψ〉),

respectively

D|ψ〉 = (E|ψ〉) ⊗ |ψC〉,

for some linear map E. In the first case, states in the
image of E = TrC ◦ D are proportional to |ψB〉〈ψB |.
In the second case,

E = 〈ψC |ψC〉D,

hence it is coherent.
If E is invertible, then it must send extremal points

of M+,1
A to M+,1

B . (This is generally true of any in-
vertible map in the category of linear maps between
convex bodies.) I.e., it must send pure states to pure
states. In this case E is unitary for two independent
reasons: E is invertible, and E preserves trace.

Exercises

1. Show directly from the definition of complete
positivity that every state ρ on a Hilbert space
H is Eρ(1) for a completely positive map

Eρ : C→M(H).

Show that dilation of E is equivalent to purifi-
cation of ρ.

2. Establish a missing step of Theorem 1.5.1: The
map E commutes with the Hermitian adjoint
operation if and only if XE is Hermitian.

3. Establish the other missing step of Theo-
rem 1.5.1: E is TPCP if and only if Equa-
tion (3) holds, if and only if D is unitary. Mod-
ify Equation (3) to the case when E is STPCP,
and show that in this case D is subunitary.
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4. Show that if

E :MA →MB

is STPCP, then there is an STPCP map

F :MA → C

such that

E ⊕ F :MA →MB ⊕ C

is TPCP. Compare with Exercises 1.1.3 and
??.

5. Find Kraus elements for a partial trace map

TrB :MA ⊗MB →MA.

6. Show that every blind measurement quantum
operation (4) can be expressed as a convex
combination of unitary quantum operations.

7. Show that the uniform state on H is sent to it-
self by every blind measurement quantum op-
eration (4), and that it is the only state with
this property.

8. A quantum operation E is doubly stochastic if
and only if it is both trace-preserving and pre-
serves the uniform state. For example, uni-
tary quantum operations are doubly stochas-
tic. Doubly stochastic quantum operations for
a fixed Hilbert space H form a convex region,
and unitary quantum operations are extremal
points (check). Show that if dimH = 2, then
all extremal doubly stochastic quantum oper-
ations are unitary, but that this is not true
when dimH > 2. Compare with Exercise ??.

1.6. Empiricism

1.6.1. Interpretation and evidence

Having defined the category Quant of quantum
operations, we can now state its empirical interpre-
tation:

1. State: Every observer in the universe can
model external reality as a quantum system
with a Hilbert space H that carries some par-
ticular state in the Bloch region M+,1(H) at
each point in time.

2. Independence: Reality decomposes into ap-
proximately disjoint subsystems whose joint
Hilbert spaces are tensor products such as
HA ⊗ HB. An observer is an approximately
independent subsystem whose residual non-
independence is described by measurements
such as Hermitian operators.

3. Evolution: After an observer performs a mea-
surement, the new state of reality is given by
projecting its state. More generally the state
of reality evolves by quantum operations.

4. Statistics: An observer’s experiences are in-
terpreted as independently repeatable experi-
ments. The probability of a measured value is
the fraction of times that it occurs in repeated
trials of the experiment.

This interpretation is exactly parallel to the one
for classical probability theory at the end of Sec-
tion 1.10. The first person to understand it clearly
was Max Born in 1926 [6], an insight for which he
eventually won the Nobel Prize. (Our presenta-
tion with mixed states is due to von Neumann and
Hellwig-Kraus [13, 14, 16, 24].) It is intellectually
healthy to have trouble accepting the Copenhagen
interpretation. It is not healthy to reject it outright,
even though this fate befell two disappointed parents
of the interpretation, Einstein and Schrödinger. In
this section we will discuss some of the overwhelm-
ing physical evidence for this interpretation, and a
mathematical result in support of its radical nature.

First the evidence:

1. Quantum probability and quantum mechan-
ics were originally developed to understand
molecular, atomic, and subatomic structure
and processes. It is a vast edifice that makes
quantum probability truly irrefutable. For ex-
ample, the structure of a hydrogen molecule
is grossly arbitrary is understood in great de-
tail This is in the same sense that an ex-
pert game of backgammon can be understood
in great detail with classical probability, but
seems grossly arbitrary without it.

2. A variety of real experiments and demonstra-
tions match the thought experiments of quan-
tum probability. This includes the examples in
this article. For one, the two-slit “experiment”
in Section 1.1 is a qualitatively correct model
of laser speckle (scattering interference) and
holography (photographic interference). Laser
speckle is familiar as the twinkle in the dot of a
laser pointer; see Figure 5. At the same time,
light is composed of discrete, non-interacting
photons. This is an unavoidable aspect of low-
intensity X-ray photography, as shown in Fig-
ure 6.

Photons are not the only particles that ex-
hibit quantum superposition; in principle ev-
ery physical object does. Figure 7 shows is an
image of electrons obeying quantum superpo-
sition. Recently it has been demonstrated for
C60 carbon molecules (buckyballs) [1].
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Figure 5: Laser speckle [25].

Figure 6: An X-ray image of Venus comprised of discrete
photons (from the Chandra telescope) [9].

3. As mentioned in Section 1.3, and as discussed
further in Section 1.6.2, the radical aspects of
quantum probability require entangled joint
states. Entanglement has also been demon-
strated by a variety of experiments; see Exer-
cise 1.6.3.

4. The known fundamental laws of physics are re-
versible, or in the quantum language, unitary.
Unitary quantum probability does not encom-
pass determinism or classical probability as a
special case. Thus if the laws of physics are
reversible and any physical objects are quan-
tum, then the entire universe must be quan-
tum. Among fundamental forces, the only one
without a satisfactory quantum model is grav-
ity2.

2 And string theory is a promising attempt at such a model.

Figure 7: Quantum interference of individual electrons
[19].

Even if quantum probability is irrefutable, is it
necessary? Classical probability theory is (to some
extent) unnecessary in the sense that it can be repro-
duced by hidden determinism. On the other hand,
there is no reasonable reduction from quantum prob-
ability to classical probability or hidden determin-
ism; see Section 1.6.2. Some entirely new theory
could conceivably arise to “explain” quantum prob-
ability, but there is no reason to expect that a hypo-
thetical successor would spare anyone from disbelief.
Even irrefutable scientific facts can be refined; but
if they are irrefutable, there is no turning back3. As
it happens, the other known fundamental laws of
physics do not modify quantum probability at all:
relativity is geometric, while quantum field theory
postulates specific physical forces.

If quantum probability is true and necessary, why
is most macroscopic experience (on biological length
scales and above) classical? In fact, length does not
directly determine whether a physical system is de-
scribed by classical or quantum probability. Rather,
the system’s relevant attribute is the number of
accessible states. If the system has many states,
then different evolutionary paths in the sense of Sec-
tion 1.1 are likely to arrive at different final states,
whence total probability is given by classical rather
than quantum path summation. In quantum theory,

3 For example, if you do not want to believe that the Earth
orbits the sun, it does not help to learn that its orbit is an
ellipse rather than a Copernican circle.
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“microscopic” and “macroscopic” properly refer to
amounts of entropy rather than to distances.

Another way to say it is that macroscopic objects
typically evolve by highly decoherent quantum oper-
ations. They therefore constantly export entangle-
ment to the environment. This is why the mixed-
state model is useful for empirical interpretations.
The macroscopic world consists of physical systems
whose quantum state is strongly coupled to a com-
mon sea of thermal entropy, but which retain ap-
proximately independent classical states.

In particular the “paradox” of Schrödinger’s cat,
which Schrödinger offered as a criticism of the
Copenhagen interpretation, is misleading. (But it
is a useful antecedent of the notion of a cat state;
see Examples 1.3.1.) The claim is that if a cat is
at risk of death from a vial of poison that is con-
trolled by a radioactive decay, then the cat is in a
quantum superposition of life and death. But for
thermal reasons, any room-temperature state of a
cat is massively mixed, and typical superpositions
are effectively classical. Such mixed states are also
unaffected by typical blind measurement operations
(Exercise 1.5.6). Only a frozen cat could be pre-
pared in a pure state well enough to demonstrate
non-commutativity of measurements.

Finally we caution against over-interpreting quan-
tum probability. The best reason to believe or inter-
pret anything in science is to understand it better.
The basic statistical interpretation — the Copen-
hagen interpretation — is very helpful for under-
standing quantum mechanics and almost manda-
tory for understanding quantum computation. It
is useful in the theory of operator algebras and po-
tentially useful in some other areas of mathemat-
ics. One claimed alternative, the Everett “many
worlds” interpretation, is narrowly relevant to path
summation (Exercise 1.1.4). Another alternative,
the Bohm interpretation, makes the narrow point
that quantum probability can be viewed as a non-
local deterministic system. (Non-local means that
the model sacrifices any notion of independence in
joint systems.) These alternative interpretations are
not broadly useful.

1.6.2. Entanglement paradoxes

Einstein was a more inspired critic of the Copen-
hagen interpretation than Schrödinger. In a joint
paper with Podolsky and Rosen [11], he noted that
commuting measurements on an EPR pair,

|ψ〉 =
|↑↓〉 − |↓↑〉√

2
,

possess classically implausible correlations. Their
argument was sharpened by John Bell [3]. He es-
tablished a simple inequality in classical probability,
Bell’s theorem, that is violated by quantum mea-
surements on the EPR state. (Bell was also unsat-
isfied with the Copenhagen interpretation [4].)

We first give an informal description of Bell’s the-
orem. Suppose that Alice and Bob are two sus-
pects in prison together who are taken apart for
separate questioning. In questioning, they are al-
lowed to use notes and even electronic organizers,
but they are not supposed to communicate by any
means. Each of the suspects is given a sequence of
questions (which may continue for several interroga-
tion sessions). There are only three distinct ques-
tions, “X”, “Y ”, and “Z”, and only two answers,
say “yes” and “no”. The suspects are not expected
to give consistent answers, but the authorities still
hope to glean some information from the pattern of
the answers. For simplicity, the questions are ran-
dom and independent.

Suppose that the authorities notice that if the nth
question posed to Alice and Bob is the same, they
always give the same answer; but when the nth ques-
tion posed is different, they only give the same an-
swer 1

4 of the time. Can they conclude that Alice
and Bob are secretly communicating during the in-
terrogations, or that they have advance access to the
question lists, despite efforts to isolate them? If they
are classical entities, then they must be cheating. If
they always give the same answer when asked the
same question in the nth round, then they must have
prepared common answers lists to all three questions
in advance. But if the nth question differs, then at
least two of the three prepared answers are equal, if
they are not all equal, so the probability of giving
the same answer is at least 1

3 .
But if Alice’s and Bob’s electronic organizers can

store entangled EPR pairs, then they can reduce the
rate of agreement for distinct questions to 1

4 . It is
convenient to re-express the EPR pair as the qubit
cat state

|ψ〉 =
|00〉+ |11〉√

2
.

Alice and Bob can each answer one the three “ques-
tions” by performing the corresponding measure-
ments

X = J2π/3 Y = J−2π/3 Z = J0,

where

Jθ =

(
cos(θ) sin(θ)

sin(θ) − cos(θ)

)

Let

XA = X ⊗ I XB = I ⊗X
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be the corresponding factor measurements for Alice
and Bob, and likewise for Y and Z. Then (Exer-
cise 1.6.1):

1. Each of the six variables is an unbiased ±1-
valued random variable.

2. The variables XA and XB (and likewise for Y
and Z) agree with probability 1.

3. The variables XA and YB (and likewise the
other pairs) agree with probability 1

4 .

(Note that each pair of questions converts an EPR
pair to a product state; the EPR pair cannot be
reused.) If the interrogators witness these classically
impossible correlations, they might be tempted to
seize Alice’s and Bob’s electronic devices and try to
use them to communicate with each other. But they
would not succeed, because no quantum operation
on Alice’s qubits affects the marginal state on Bob’s
qubits, or vice-versa.

More formally, Bell’s theorem is an inequality con-
cerning correlations of two-valued classical random
variables which does not hold for quantum random
variables:

Theorem 1.6.1 (Bell). If X, Y , and Z are three
classical random variables taking values in {±1},
then

E[XY ] + E[XZ] + E[Y Z] ≥ −1.

Proof. We would like to show, equivalently, that

E[XY +XZ + Y Z] ≥ −1.

It is easy to check that

XY +XZ + Y Z =

{
3 if X = Y = Z

−1 otherwise
.

Since the random variable XY +XZ+Y Z is always
at least −1, its expectation is at least −1.

A variant of the Bell-EPR paradox (with a dif-
ferent set of classically impossible correlations) was
famously demonstrated in an experiment by Aspect
et al [2], and since then by others. In the experi-
ment the two halves of Bell-state photon pairs were
interrogated at almost simultaneously, so that there
was not enough time for a message to travel from
one photon to the other. These experiments should
not be taken as self-contained proof of that quan-
tum probability is true, because they have possible
“loopholes” that could allow the photons to com-
municate. At the same time, there is no evidence

of any genuine interaction between the photons in
these demonstrations, much less non-quantum inter-
actions that would present an illusion of quantum
non-interaction.

The original purpose of the Bell-EPR paradox was
the simple conclusion that quantum operations do
not admit a deterministic or classically random sim-
ulation that preserves locality. In hindsight, it is
a first step in the direction of quantum algorithms
(Section ??) and especially quantum security (Sec-
tion ??), since these can also be viewed as entan-
glement paradoxes. The problem of communication
security is for two parties (Alice and Bob) to share
information with some confidence that there is no
eavesdropper (Eve). The shared information is ide-
ally random, because it can then be used to mask
arbitrary messages. In Bell’s protocol, the same ar-
gument that Alice’s and Bob’s answers are classi-
cally impossible also shows that there cannot be an
Eve who knows their answers in advance. Thus the
shared answers are also shared secrets.

The relation to quantum algorithms is less for-
mal. Intuitively, quantum algorithms exploit entan-
glement as a kind of communication. For example,
the result of Grover’s search algorithm (Section ??)
can be described as a guessing game: If Alice thinks
of a number from 1 to N and only responds “yes” or
“no” depending one whether Bob guesses correctly,
then Bob can guess it with O(

√
N) guesses, provided

that he can guess in quantum superposition and Al-
ice’s consideration of each guess is unitary. Grover’s
algorithm is a classically impossible form of commu-
nication afforded by quantum entanglement.

Exercises

1. Establish that Bell’s operators XA, YA, ZA,
XB, YB, and ZB applied to a Bell state violate
Bell’s inequality.

2. The quantum violation of Bell’s theorem can
be called a “no hidden variables” theorem:
Quantum operations cannot be simulated by
hidden structure which is deterministic or clas-
sically random. One rigorous (but possibly
limited) interpretation of this principle can be
phrased as category theory: There does not
exist a non-trivial linear tensor functor from
the category Quant<inf to the category Prob.
Prove this result using Bell’s theorem and mea-
surements of EPR pairs.

3. The Aspect experiment employs the inequality

E[XAXB] + E[XAYB] + E[YAYB]− E[YAXB] ≤ 2
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for ±1-valued classical random variables, due
to Clauser, Horne, Shimony, and Holt [8].
(This avoids the assumption in Bell’s theorem
that when Alice and Bob perform the same
measurement, they will agree with probability
one.) Prove this inequality, and then find a
violation using the operators Jθ for four par-
ticular values of θ.

1.7. Infinite systems

The immediate way to extend the finite-state the-
ory to infinite quantum systems is to allow the
Hilbert space H to be infinite-dimensional (but usu-
ally separable). Section 1.8 discusses a better and
more general extension due to von Neumann, but
much can be learned from the this less creative ap-
proach.

We can use various definitions from operator the-
ory [? ] to adapt various objects such as states,
random variables, and quantum operations to in-
finite Hilbert spaces. Once these are defined, we
can define the category Quant to be the category of
Hilbert spaces (both finite and infinite) with TPCP
maps as the morphisms or quantum operations.

First, a (normal) state ρ is defined as a positive
semi-definite trace-class operator with trace 1. In
other words, the Bloch region B+,1(H) is defined as
the trace 1 subspace of Bt(H), the algebra of trace-
class operators. The spectral theorem for compact
operators implies that such a state ρ can be ex-
pressed as:

ρ =
∑

s∈S

ps|s〉〈s|

for some orthonormal basis S of H. Thus as in the
finite case, pure states (by definition the extremal
elements of the Bloch region M+,1(H)) correspond
to vector states (by definition unit vectors in H) up
to a global phase.

A real-valued, bounded random variable X on H
is defined as a self-adjoint bounded operator. This
matches the definition of states in that B(H), the
algebra of bounded operators, is the Banach space
dual of Bt(H). This duality means that for any state
ρ and any bounded variable X , the trace Tr(ρX) is
well-defined as a finite real number. Thus we can
define the expectation

Eρ[X ]
def
= Tr(ρX)

as before. More generally, a state ρ and a real-valued
random variable X produce a probability measure
on R, the distribution of X , by the spectral theorem
for bounded operators. This theorem expressesX as

an integral with respect to an operator-valued mea-
sure µP whose value on any interval is a projection
that commutes with X :

X =

∫

R

λdµP . (5)

If we pair the measure µP with the state ρ, the result
is the desired scalar-valued measure on R, indeed on
the spectrum of X .

A (projective) measurement X is again defined as
a direct sum decomposition

H ∼=
⊕

s∈S

Hs

for some outcome set S, which may now be infinite.
Probabilities and conditional states have the same
formulas:

Pρ[X = s] = Tr(Psρ) ρ̂|X=s =
PsρPs

P [X = s]
.

Not every real-valued random variable defines a mea-
surement of this type. Rather, the spectral theorem
says that a Hermitian operator X has a point spec-
trum and a continuous spectrum. Only the point
spectrum possesses eigenspaces, so X must have a
pure-point spectrum in order to define a measure-
ment. However, there are various ways to approxi-
mately measure a continuous-spectrum values of an
operator. The point spectrum is usually discrete,
meaning that the eigenvalues are isolated, while the
continuous spectrum usually consists of intervals,
which in quantum mechanics are called bands. But
there are other possibilities for both parts of the
spectrum.

An unbounded random variable is defined as a
self-adjoint unbounded operator, although such an
operator is an artifice in the sense that it is only
defined on a dense subset of H. By definition it is
a densely defined function whose graph is a closed
vector subspace of H ⊕ H which is invariant under
switching the two summands. The definition is cho-
sen so that self-adjoint operators satisfy the spectral
theorem. If X is a self-adjoint operator, then

U(t) = eitX

is a one-parameter group of unitary operators, and
conversely every strongly continuous one-parameter
group of unitary operators defines a possibly un-
bounded operator. Either the spectral theorem or
the unitary operator model could be taken as an
alternate definition of an unbounded self-adjoint op-
erator.

Example 1.7.1. The function spaces L2(Rd), with
1 ≤ d ≤ 3, are very common in quantum mechan-
ics. Pure states are naturally referred to as wave or
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amplitude functions. Technically they are half den-
sities, meaning that the square norm of a wave func-
tion is a probability density function with a volume
form factor. For example, the wave function

ψ(x) =
e−x2/2

π1/4

√
dx,

here written as a half density, is called a coherent
state onH = L2(R) (notwithstanding that elsewhere
every pure state is called coherent). It will appear
later as the ground state of the harmonic oscillator.

To give an example of a mixed state on L2(R), let
a ≥ 1 and let

ρ(x, y) =
1√
πa
ea(x−y)2+a−1(x+y)2)/4

be a kernel (in the sense of integration, not null
spaces). The corresponding operator

ρ(f)(x) =

∫

R

ρ(x, y)f(y)dy

is trace-class with trace 1 and is called a quasifree
state; when a = 1 it is the coherent state.

Example 1.7.2. If f(x) is a continuous (or even
integrable) function on R, then multiplication by f is
an operator on H which is given the same name. For
example, x is an unbounded, continuous-spectrum
operator whose distribution with respect to the pure
state ψ(x) has the density function |ψ(x)|2. Another
example is the operator

p = −i ∂
∂x

which has the same spectrum as x, namely all of R
as a continuous spectrum. They are both Gaussian
random variables with respect to coherent and quasi-
free states. We will see later that the operator

H =
p2 + x2

2

has discrete spectrum Z≥0 + 1
2 . In the standard co-

herent state, H is definite with value 1
2 , while in a

standard quasi-free state, it has a discrete exponen-
tial distribution.

Exercises

1.8. Operator algebras

Following von Neumann, we can represent a quan-
tum object not as a Hilbert space H, but as an ab-
stract algebra A whose elements can be called “op-
erators”. Such an operator algebra should satisfy

suitable axioms so that we can define states, random
variables, and quantum operations. Von Neumann
defined two types of algebras for this purpose, C∗-
algebras and W ∗-algebras; the latter are now called
von Neumann algebras. Von Neumann algebras are
actually just C∗-algebras with a stronger topological
closure property.

The algebrasM(H) of all bounded operators on a
Hilbert spaces H are one class of von Neumann alge-
bras that happen to contain all von Neumann alge-
bras as subalgebras. But considering only M(H) is
a very restricted view of the theory of operator alge-
bras, just as considering only symmetric groups is a
very restricted view of finite group theory. Quantum
physics has also drifted towards considering specific
algebras of operators, although not usually with von
Neumann’s axioms.

A C∗-algebra A is, first, a complex vector space
with an associative and bilinear multiplication law.
It also has an abstract anti-linear, product-reversing
adjoint operation denoted “∗”:

(X + Y )∗ = X∗ + Y ∗ (λXY )∗ = λY ∗X∗.

Finally A is also a Banach space a norm || · || that
satisfies the relation

||X∗X || = ||X ||2.

This last axiom, the “C∗ axiom” is coy and has many
consequences for the structure of A. Among other
things, it means that the norm || · || is completely
determined by the algebra structure of A and that

||X∗|| = ||X ||.

IntuitivelyA consists of bounded operators and ||X ||
behaves as the spectral radius of X . For simplicity
we will assume that every C∗-algebra A has a unit,
even though non-unital C∗-algebras are also an in-
teresting class.

Possessing a unit is traditionally an optional ax-
iom for C∗-algebras; we will assume it for simplicity.

Theorem 1.8.1 (Gelfand,Naimark). If A is a (uni-
tal) commutative C∗-algebra, then it is isomorphic to
an algebra of continuous functions C(A) on a com-
pact Hausdorff topological space A.

By Theorem 1.8.1, and since C(A) is a C∗-algebra
for every compact Hausdorff space A, a C∗-algebra
can be thought of as a “non-commutative topolog-
ical space”. In particular if A is a finite set, then
C(A) = CA is exactly the model of finite probabil-
ity described in Section 1.10 — its set of normalized
states is ∆A.

Theorem 1.8.1 also implies that if X ∈ Asa (the
self-adjoint subspace of A) and f : R → R is a con-
tinuous function, then there is a well-defined element
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f(X) ∈ Asa (Exercise ??). For example, sinX and
|X | are well-defined. We will need a slight gener-
alization of this principle: An element X ∈ Asa is
positive, or X ≥ 0, if X = Y ∗Y for some Y . If
f : R≥0 → R is continuous and X ≥ 0, then f(X) is
well-defined; if f ≥ 0 as a function, then f(X) ≥ 0.

A representation of a C∗-algebra A is a homomor-
phism from A to the C∗-algebra B(H) of bounded
operators on a Hilbert space. (A homomorphism be-
tween two C∗-algebras is a linear map that respects
multiplication, ∗, and is continuous with respect to
the Banach norm.) Crucially, the algebra B(H) has
other topologies besides the one coming from its Ba-
nach norm, namely the strong and weak operator
topologies. If M is a C∗-algebra which is closed
with respect to the weak operator topology in some
faithful representationH, thenM is a von Neumann
algebra.

Theorem 1.8.2. If M is a commutative von Neu-
mann algebra, then it is isomorphic to the algebra
L∞(M) for some σ-field M .

By Theorem 1.8.2, and since L∞(M) is a von Neu-
mann algebra for many natural σ-fields M , a von
Neumann algebra M can be thought of as a “non-
commutative measure space”.

Theorem 1.8.2 also implies that if X ∈ Msa (the
self-adjoint subspace of A) and f : R→ R is a mea-
surable function, then there is a well-defined element
f(X) ∈Msa. This closure property is called “func-
tional calculus”.

The traditional definition of von Neumann alge-
bra via a faithful action on a Hilbert space H is
contrary to our intention of emphasizing operators
over vectors. Happily there are other characteriza-
tions of von Neumann algebras within the class of
C∗-algebras:

Theorem 1.8.3 (???). A C∗ algebra M is a von
Neumann algebra if and only if it has a pre-dual
#M as a Banach space. The pre-dual, if it exists,
is unique up to isometry.

In particular, the algebra B(H) of bounded opera-
tors on a Hilbert space H is a von Neumann algebra
with pre-dual Bt(H). Theorem 1.8.3 interplays with
the general fact that every Banach space B embeds
isometrically in its second dual B##. Thus the pre-
dual #M can be viewed as subspace of the dualM#.
Also, by a construction of ???, if A is a C∗-algebra,
its second dual A## has the natural structure of a
von Neumann algebra, the universal enveloping von
Neumann algebra of A.

If A and B are two C∗ algebras, there is a natural
tensor product C∗-algebraA⊗B which is a topologi-
cal completion of the algebraic tensor product. IfM

and N are von Neumann algebras, there a von Neu-
mann algebraM⊗N which is a further topological
completion than the C∗-algebra completion.

After accepting these preliminaries (perhaps on
faith), we can proceed to define the basic structures
of quantum probability. A C∗-algebra A or a von
Neumann algebra M can be assigned. The algebra
is termed its algebra of observables, because the self-
adjoint elements (Asa orMsa) will be interpreted as
real-valued random variables. If A is a C∗-algebra,
a state is a dual vector ρ ∈ A# which is positive,
meaning that

X ≥ 0 =⇒ ρ(X) ≥ 0.

The state ρ is normalized if

ρ(I) = 1.

Previously we took ρ to be an operator rather than
a dual vector; this is not really different if we define

ρ(X) = Tr(ρX).

In particular we can call ρ(I) the “trace” of ρ.
A state ρ on a von Neumann algebraM is normal

if it lies in the pre-dual #M. The commutative case
illustrates the reason to take states from the dual of a
C∗-algebra but from the pre-dual of a von Neumann
algebra. If A = C(A), then by the ??? theorem,
states are equivalent to finite Borel measures on A.
If M = L∞(M), then general states are equivalent
to finitely additive, finite measures on M ; normal
states are equivalent to countably additive measures
and are hence more empirical. Note also that the
states of the C∗-algebra A are the normal states of
the von Neumann algebra A##.

A pair (M, ρ) consisting of a von Neumann al-
gebra M and a normalized, normal state ρ is
also called a quantum probability space or a non-
commutative probability space. Each random vari-
ableX ∈ Msa has a well-defined spectrum SpecX ⊂
R (which depends crucially on the structure ofM),
and each state ρ induces a probability distribution
on SpecX . If M ⊆ B(H) is defined as an alge-
bra of operators on a Hilbert space, one way to
construct the spectrum and distribution of X is by
Equation (5). The point is that #M is a quotient of
Bt(H), and we can use any lift of ρ to a trace-class
operator on H.

As usual, ifA and B are Alice’s and Bob’s algebras
of observables, their joint algebra of observables is
A⊗ B.

If A and B are C∗-algebras, then a linear map

E : B → A
is positive if it takes positive elements of A to posi-
tive elements of B; it is completely positive if

E ⊗ I : B ⊗ C → A⊗ C
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is positive for every C∗-algebra C; and it is unital if

E(I) = I.

If M and N are von Neumann algebras, a linear
map

E : N →M

is normal if it has a pre-transpose

#E : #M→ #N .

In general E is unital if and only if the pre-transpose
#E (or the transpose E#) is trace-preserving. The
category vN is defined as the category of pre-duals
of von Neumann algebras with TPCP maps as its
morphisms. Equivalently it is the category of von
Neumann algebras with normal UCP (unital and
CP) maps as contravariant morphisms (Exercise ??).
The category vN is the most satisfactory model of
infinite quantum probability, and its morphisms can
be called quantum operations. An interesting also-
ran is the category C∗ of C∗ algebras with arbitrary
UCP maps as contravariant morphisms. Although
vN can be viewed as a subcategory of C∗, C∗ can
also be viewed as a subcategory of vN, by taking
each C∗-algebra A to its enveloping algebra A##.

1.9. Classical and quantum coexistence

Because the category vN includes commutative
algebras, which are the corresponding models of clas-
sical probability, they can model coexistence of clas-
sical and quantum objects and interactions between
them. We can then use these categories to study
measurements of quantum systems by classical ob-
servers, and classical behavior of quantum systems.
(As discussed in Section 1.6.2, the converse of the
latter is impossible.)

As a first case, suppose that Alice is classical and
finite, so that her von Neumann algebra is

A = CA

for some finite set A. Suppose that Bob has some
other von Neumann algebra B. Then we can ax-
iomatically define a destructive measurement to be
an arbitrary quantum operation

E : #B → #A.

Then (Exercise ??) the general form of P is

E(ρ) =
⊕

a∈A

ρ(Ea),

where each Ea ≥ 0 and

∑

a∈A

Ea = I.

This structure is also known concretely as a positive,
operator-valued measure, or POVM, because it is a
probability measure on A that takes values in the
positive cone B+ rather than in the real numbers.

We can construct a sensible conditional state on B
in the same setting. It would be given by a quantum
operation

F : #B → #B ⊗ #A

such that the composition TrB ◦ F (in which Alice
applies F and then destroys Bob) is a POVM

E : #B → #A.

We further suppose that F is initial among all such
factors of E , in the sense that Bob retains as much in-
formation as possible about his previous state. Then
(Exercise ??) one form for F is

F =
⊕

a∈A

[a]⊗ ρ
√

Ea ,

where in general the state ρX is defined as

ρX(Y ) = ρ(X∗Y X);

also if X ≥ 0,
√
X is its unique positive square root.

In light of this possible structure for F , the condi-
tional state of the POVM E applied to ρ with out-
come a is

ρ|E=a = ρ
√

Ea .

Finally the POVM E has mutually exclusive out-
comes if and only if its non-destructive lift F is a
projection, i.e., F2 = F . In this case (Exercise ??)
the Eas are projections such that

EaEa′ = 0

when a 6= a′. Thus the projective measurements de-
fined in Sections ?? and ?? are exactly those POVMs
with mutually exclusive outcomes.

The above discussion can be extended to the case
where Alice is classical but infinite. In this case her
von Neumann algebra is L∞(A) for some σ-field A,
and a POVM is a measure on A that takes values in
B+. This structure is closely related to a normalized
measure on B+ itself.

We turn to a result from the theory of operator
algebras that shows how decoherence can reduce a
quantum object to a classical one. Suppose that A
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is Alice’s algebra of observables and that she evolves
according to a quantum operation

P : A → A
in a unit period of time. Very often we can suppose
that P is an idempotent, i.e., P2 = P (Exercise ??).
Intuitively this means that Alice stabilizes in a short
period of time and, once stable, her temporal evolu-
tion does not further affect her state.

Theorem 1.9.1 (Choi-Effros). If A is a C∗-algebra
and P is an SUCP idempotent on A, then the image
of P is a C∗-algebra B with a modified product

X ◦ Y = P(XY ).

Theorem 1.9.1 says that if Alice’s evolution is an
idempotent P , then she can be modelled by a smaller
effective C∗-algebra B. In particular, B can be com-
mutative even whenA is not. The algebra B is a vec-
tor subspace of A, but not in general a subalgebra.
Rather, the modified product defined by Choi and
Effros matches the process of applying P between
external interactions with Alice. Note also that if A
is a von Neumann algebra and if P is normal, then
B is also a von Neumann algebra.

Example 1.9.1. The blind projective measurement
operation P defined in Equation (4) is an idempo-
tent. In this case imP is closed under multiplication
and is the algebra

⊕

s∈S

M(Hs).

Finally, the classification of finite-dimensional C∗-
algebras, or von Neumann algebras, also fits the
theme of classical and quantum coexistence. Say
that a ∗-algebra A is positive if

X∗X = 0 =⇒ X = 0.

If A is positive and finite-dimensional, then it is au-
tomatically a C∗-algebra, indeed a von Neumann al-
gebra. This can be seen from the following classifi-
cation theorem.

Theorem 1.9.2 (Artin-Schreier). If A a positive,
finite-dimensional ∗-algebra, then it is a direct sum
of matrix algebras:

A ∼=
n⊕

k=1

Mλk

for some integers

λ1 ≥ λ2 ≥ · · · ≥ λn.

The vector (λ1, λ2, . . . , λn) in Theorem 1.9.2 can
be called the shape of the algebra A.

Examples 1.9.2. A joint system consisting of a fi-
nite classical Alice with algebra Cn and a finite quan-
tum Bob with algebraMk has the rectangular shape
(k, k, . . . , k). For example, Bob could be a quantum
computer with qubit memory and Alice could be a
classical controllers with classical bit memory. The
first finite quantum system which is not of this form
is the hybrid trit M2 ⊕ C. The author [? ] has
analyzed the storage properties of finite quantum
systems such as the hybrid trit.

Exercises

1.10. Appendix: A classical review

Consider a classical probabilistic system with a fi-
nite set A of configurations. The general probability
distribution or measure µ on A can be written in the
form

µ =
∑

a∈A

pa[a],

where each probability pa ≥ 0 and

∑

a∈A

pa = 1.

The symbol [a] represents both the configuration a
and the probabilistic state in which a is certain.
(This state is also called an atom or a Kronecker
delta function.) The set of all normalized states
forms a simplex ∆A whose vertices are the set A.
These simplices are the objects of a reasonable if
slightly non-standard definition of finite, classical
probability theory. The other elements of this defi-
nition are as follows.

An event is a subset E ⊆ A. A state µ assigns a
probability to E between 0 and 1 by the formula

P [E] = Pµ[E] =
∑

a∈A

pa.

If P [E] > 0, then E and µ induce a conditional state
on E given by the formula

µ̂|E =
1

P [E]

∑

a∈E

pa [a].

A random variable or measurement is a function
X : A → B for some set B. It is interpreted as
a partition of A into disjoint events: the equation
X = b, as an event, is the set of all a such that
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X(a) = b. If X takes values in R or C, then it also
has an expectation, defined as

E[X ] =
∑

a

paX(a).

If A and B are two finite configuration sets, then
a function

M : ∆A → ∆B

is a stochastic map (or a Markov map) if it comes
from a linear map

M : RA → RB.

The linearity ofM is the classical superposition prin-
ciple. Another way to describe a stochastic map is
to start with a linear map M and impose the posi-
tivity condition M(∆A) ⊆ ∆B. If M is viewed as a
matrix, the positivity condition says that the entries
of M are non-negative and each column sums to 1.
In this case M is called a stochastic matrix. Stochas-
tic maps are the natural empirical class of maps in
probability theory.

A non-negative vector µ in RA is a subnormalized
state if the total probability is at most 1, and a linear
map

M : RA → RB

that preserves subnormalized states is called sub-
stochastic. A substochastic map is also called an
extinction process. It can be converted to a stochas-
tic map by adding an extinction state to the target
set B.

If A and B are the configuration sets of two proba-
bilistic systems, then the two systems together have
a joint configuration set A × B. The joint simplex
∆A×B lies in a tensor product:

∆A×B ⊂ R(A×B) = RA ⊗ RB.

A joint state µ ∈ ∆A×B is independent or a product
state if it factors as a tensor product:

µ = µA ⊗ µB.

More typically µ does not have this form, in which
case it is correlated. A stochastic map that affects
only one of A and B has the form M ⊗ I or I ⊗M ;
likewise an event that depends on only one of A or
B has the form E ×B or A× E. Whether or not µ
is independent, it induces states on A and B called
marginals. They are defined as:

µA =
∑

a∈A

(∑

b∈B

p(a,b)

)
[a] µB =

∑

b∈B

(∑

a∈A

p(a,b)

)
[b].

Evidently, if µ is a product, then it is the product of
its marginals.

Example 1.10.1. Two fair dice are rolled. If we
take the dice as subsystems A and B with a joint
state, then A = B = {1, . . . , 6} and the state µ is
the uniform state

µ =
1

36

∑

1≤s,t≤6

[(s, t)].

The event of rolling 7 is the set E = {(s, t)|s+t = 7}.
The chance of E is P [E] = 1

6 . The state µ is an
independent state, but the conditional state µ|E is
correlated. A protocol such as “if you rolled 7, pick
one die at random and roll it again” is modelled by
a stochastic map.

The rules of classical probability theory are the
basis of a (Bayesian) statistician’s model of ordinary
human experience, as well as most scientific experi-
ments, according to the following interpretation:

1. State: Each observer can model external re-
ality as a measure space, such as a finite set
A, that carries has probability distribution at
each point in time.

2. Independence: Reality decomposes into ap-
proximately disjoint subsystems modelled by
Cartesian products of measure spaces. An ob-
server is an approximately independent sub-
system whose residual non-independence is de-
scribed by witnessed information.

3. Evolution: After an observer witnesses an
event, the new state of reality is given by
conditional expectation. More generally the
state of reality evolves by stochastic and sub-
stochastic maps.

4. Statistics: An observer’s experiences are
viewed as independently repeatable experi-
ments. The probability of an event is the frac-
tion of times that it occurs in repeated trials
of the experiment.

These rules can be accepted in one of two ways:
(1) they hold empirically; (2) they can be mimicked
by deterministic systems with hidden information.
The first reason, but not the second, applies to the
quantum analogue of these rules.

Exercises

1.11. Appendix: Categories and tensors

Much of the presence of category theory in math-
ematics is in the spirit of Moliere: You can use
categories without knowing it. In many areas of
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mathematics there is a distinguished class of objects
(e.g., sets, groups, topological spaces, vector spaces)
and a distinguished class of functions between them
(e.g.all functions, group homomorphisms, continu-
ous functions, linear maps). In some cases two ob-
jects are related by a transformation which isn’t
strictly a function but behaves a lot like one; the his-
torically important example was a function between
two topological spaces considered up to homotopy.

A category C is a possibly abstract class of set-
like objects and a class of function-like relations, or
morphisms. Every morphism f has a domain A and
a target B (both of them objects in C) and is then
denoted

f : A→ B.

There is a partial composition law: If the target of
f is the same object as the domain of g, or

f : A→ B g : B → C,

then there is a composition

f ◦ g : A→ C.

The composition law for C is required to be asso-
ciated, and for every object A there should be an
identity morphism

i : A→ A

which satisfies the obvious identity axiom with re-
spect to composition. These axioms are not all that
restrictive and there are a wide variety of different
kinds of categories.

Examples 1.11.1. The category of sets, with all
functions as the morphisms, is called Set. The cate-
gory of vector spaces over a field F, with linear trans-
formations as the morphisms, can be called VectF.
The category of topological spaces with continuous
functions as the morphisms is called Top.

Two different categories can have the same objects
but different morphisms. For example, the obejcts
of the category iSet are sets, but the morphisms are
just the injective functions.

As an example of a more abstract category, if G is
a group, it yields a category with one object whose
morphisms are the elements of G.

A tensor category is a category with a multiplica-
tion law, denoted “⊗” and called a “tensor product”,
for both objects and morphisms. The multiplication
law should be associative: A⊗(B⊗C) should be the
same object as (A⊗B)⊗C4. The axioms for taking

4 There is a distinction between a strict tensor category, in

tensor products of morphisms is more complicated
because the axioms include compatibility relations
between the operations of composing and tensoring
morphisms. The tensor categories of interest in this
article are all symmetric, meaning that “⊗” is com-
mutative as well as associative, both for objects and
morphisms.

The most important example of a tensor category
is Vect, the category of vector spaces.

which A⊗ (B ⊗ C) and (A⊗ B)⊗ C are exactly the same
object, and a lax tensor category, in which they are iso-
morphic and the isomorphisms are meta-associative; this
meta-associativity is called “coherence”. We don’t have to
worry about lax tensor categories here, but note that they
arise in physics in the guise of spin calculus; the main co-
herence axiom is known as the Biedenharn-Elliott identity.
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2. MECHANICS

Basic quantum mechanics assumes the rules of
quantum probability plus a single additional rule.
If a physical system is independent and autonomous
(or closed), then quantum mechanics postulates that
it has a pure state space H and its state evolves ac-
cording to a one-parameter group U(t) of unitary
operators. The group has the form

U(t) = exp(−itH)

for some self-adjoint (but often unbounded) operator
H , which is called the Hamiltonian of the system. If
the state at time t is |ψ〉 = |ψ(t)〉, it evolves by the
Schrödinger equation,

i
∂

∂t
|ψ〉 = H |ψ〉.

Besides the system’s autonomous behavior, it can
also be measured. In particular, H itself is a mea-
surement and its value is called the energy of the
system. A state |ψ〉 with definite energy E satisfies
the eigenvalue equation

E|ψ〉 = H |ψ〉,

which is also called the time-independent
Schrödinger equation.

The operator ∂
∂t has physical units of inverse time,

while the Hamiltonian H has units of energy. There-
fore quantum mechanics requires a conversion factor
~, known as Planck’s constant, to relate the two op-
erators. Written with units, the Schrödinger equa-
tion is

i~
∂

∂t
|ψ〉 = H |ψ〉.

If ~ is small compared to the scale of a physical sys-
tem, its quantum phase will oscillate wildly, which
leads to classical probabilistic behavior. In metric
units,

~ ≈ 6.6262× 10−34Js,

where J is joules and s is seconds. So Planck’s con-
stant is extremely small on the human scale.

The fact that the Hamiltonian H often has a dis-
crete spectrum points to the origin of quantum me-
chanics and its name. The word “quantum” now of-
ten means simply “non-commutative”, but the orig-
inal meaning is “discrete”. The original purpose of
quantum mechanics was to explain why many physi-
cal measurements unexpectedly take discrete values.
For example, the energy spectrum of the quantum
harmonic oscillator is Z≥0 + 1

2 . The energy of a
classical harmonic oscillator can of course be any
non-negative real number.

2.1. Wave mechanics

Wave mechanics is a model of a single particle
moving in Rd with 1 ≤ d ≤ 3. To give the particle
something to do, it interacts with a potential V (~x).
Then wave mechanics posits the specific Hamilto-
nian

H =
~p · ~p

2
+ V (~x),

where ~x and ~p are two vector-valued operators. The
component xk of ~x is interpreted as multiplication
by the coordinate xk, while ~p = −i∂/∂~x. The
Schrödinger equation then becomes the linear par-
tial differential equation

i
∂ψ

∂t
= −∆ψ

2
+ V (~x)ψ,

where

∆ =
∂

∂~x
· ∂
∂~x

is the Laplacian. Since this is a wave equation, it
illustrates half of particle-wave duality. The state
of a particle travels through space as a wave, which
is why it is called a wave function (but see exercise
2.1.3).

The operator ~x is interpreted as position and has
physical units of distance. The potential V (~x) has
units of energy, the same as H . With a factor of ~,

~p = −i~ ∂

∂~x
,

the operator ~p is interpreted as the particle’s linear
momentum. The kinetic energy of a particle with
momentum ~p is (~p · ~p)/2m, where m is its mass, so
with units the Hamiltonian becomes

H =
~p · ~p
2m

+ V (~x).

The mass m, an energy scale E, and Planck’s con-
stant ~ fully determine the dimensional scale of
Schrödinger’s equation. For example, the length
scale of the particle’s quantum behavior is d =
~/
√
Em, which decreases as m increases. Thus if

several particles interact on a common length and
energy scale, heavier particles behave more classi-
cally than lighter ones.

Example 2.1.1. A particle in the potential V (~x) =
0 is called free. In this case the Hamiltonian
has no point spectrum and the time-independent
Schrödinger equation has no solutions with finite
Hilbert norm. But the plane wave

ψ(~x) = ei~k·~x



27

is an interesting infinite-norm solution. It has defi-

nite momentum ~p = ~k as well as definite energy. It
can be approximated by a wave packet (or wavelet)
that, according to the Schrödinger equation with

physical units, travels with velocity ~k/m.

The behavior of a free particle illustrates an inter-
pretation of the continuous spectrum of an arbitrary
Hamiltonian. A state |ψ〉 is unbound if it wanders
under unitary evolution:

lim
t→∞
〈ψ|U(t)|ψ〉 = 0.

It is bound if it recurs:

lim sup
t→∞

|〈ψ|U(t)|ψ〉| = 1.

These are the quantum analogues of the notions of
wandering and non-wandering points in (reversible)
classical dynamical systems. The spectral theorem
implies that point-spectrum states are bound and
continuous-spectrum states are unbound. In partic-
ular, every bound state is a quantum superposition
of fixed-energy or stationary states.

Example 2.1.2. The simple harmonic oscillator is
a 1-dimensional system with Hamiltonian

H =
p2

2
+
x2

2
.

The coherent state

ψ(x) =
e−x2/2

(2π)1/4

√
dx

is an eigenstate with energy 1
2 . The rest of the spec-

trum can be found with ladder operators. This is a
Lie-algebraic method that begins with the commu-
tation relations

[x, p] = i [H,x] = −ip [H, p] = ix.

Define the lowering and raising operators

a =
x+ ip√

2
a∗ =

x− ip√
2
.

Then H , a, and a∗ satisfy

[a, a∗] = 1 [H, a] = −a [H, a∗] = a.

These commutation relations imply that if a state
|ψ〉 has energy E, then a|ψ〉 has energy E − 1 and
a∗|ψ〉 has energy E + 1, provided that either vector
is non-zero. The coherent state spans the kernel of
a and we rename it |0〉. The commutation relations
imply, by induction, that

〈0|an(a∗)n|0〉 = n!,

so the state

|n〉 =
(a∗)n|0〉√

n!

is normalized and is an eigenstate with energy n+ 1
2 .

Thus the harmonic oscillator has a sequence of
eigenstates |0〉, |1〉, . . .. To show that they span
L2(R), observe that H ≥ 0 as an operator, so its
spectrum is non-negative. If the spectrum of a state
|ψ〉 lies in the interval [0, n], then

an+1|ψ〉 = 0.

It follows that

|ψ〉 = P (a∗)|ψ〉

for some polynomial P of degree at most n. Thus
|ψ〉 is a linear combination of |0〉, . . . , |n〉.

Wave mechanics also postulates a multiparticle
Schrödinger equation. The state space of n parti-
cles in d dimensions is

L2(Rd)⊗n ∼= L2(Rdn).

The dn coordinates of this Hilbert space are divided
into n vector-valued position operators ~x1, . . . , ~xn,
and there are n corresponding momentum operators
~p1, . . . , ~pn. The Hamiltonian has the general form

H =
n∑

k=1

~pk · ~pk

2
+ V (~x1, . . . , ~xn).

The corresponding Schrödinger equation is a PDE in
dn dimensions. It is usually intractable, even with
the aid of computers (but see Chapter 3). Almost
the only case with a satisfactory solution is the one
in which the potential factors,

V (~x1, . . . , ~xn) =
n∏

k=1

Vk(~xk),

which means that the particles do not interact with
each other.

Exercises

1. Show that

ψ(~x) =
sink|~x|
|~x|

is an infinite-norm solution to the free-particle
Schrödinger equation. It represents a spheri-
cally radiating particle.
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2. The function

ψ(~x) =
1

|~x|
is not considered an infinite norm solution to
the free-particle Schrödinger equation. For ex-
ample, f(~x) is a smooth bump function, then
f(~x)ψ(~x) is not an approximate eigenstate of
H . Why not?

3. A nonlinear Schrödinger equation is a partial
differential equation

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ V (x, ψ)

for some function V which is not linear in ψ.
Similarly, given a pair of wave functions

(ψ1, ψ2) ∈ L2(R)⊕ L2(R),

we can write coupled Schrödinger equations
(either linear or nonlinear):

i
∂ψ1

∂t
= − 1

2m1

∂2ψ1

∂x2
+ V1(x, ψ1, ψ2)

i
∂ψ2

∂t
= − 1

2m2

∂2ψ2

∂x2
+ V2(x, ψ1, ψ2).

Explain why a nonlinear Schrödinger equation
cannot model a quantum particle and coupled
Schrödinger equations cannot model coupled
quantum particles.

4. Prove that if a state lies in the point spectrum
of H , then it recurs, while if it lies in the con-
tinuous spectrum, then it wanders. Prove that
in the Schrödinger wave equation, if the po-
tential V (x) is non-negative, then an unbound
particle must escape to infinity.

5. Prove that the harmonic oscillator state |n〉
has the form

Hn(x)e−x2/2

for some polynomial Hn(x) of degree n. Since
the polynomials are orthogonal, they are Her-
mite polynomials up to rescaling x and multi-
plying by a constant factor.

6. Let ρ be the standard quasifree state with pa-
rameter a, defined in Example 1.7.1. Show
that the harmonic oscillator Hamiltonian H
has a discrete exponential distribution with re-
spect to the state ρ with parameter

t =
a− 1

a+ 1
.

I.e., show that

ρ =

∞∑

n=0

(t− 1)tn|n〉〈n|.

2.2. A classical limit

In this section we will reformulate wave mechanics
as a version of Hamiltonian mechanics. In classical
physics, Hamiltonian mechanics produces a dynam-
ical system (Hamilton’s equations) on the configu-
rations of a physical object for every smooth func-
tionH (the Hamiltonian) on the configuration space.
The configuration space must have a symplectic or
Poisson structure and is also called phase space. The
quantum version is an important generalization of
wave mechanics, and it also limits to classical Hamil-
tonian mechanics as ~→ 0.

We first restate quantum mechanics so that mea-
surement operators evolve and states does not.
Given a general Hamiltonian H acting on an arbi-
trary Hilbert space H, let |ψ(t)〉 be the state at time
t and let

|ψ〉 = |ψ(0)〉.

If A is a measurement operator to be applied at time
t, define

A(t) = U(−t)AU(t).

Then evolving the operator A and fixing the state ψ
is statistically equivalent to fixing the operator and
evolving the state:

〈ψ|A(t)|ψ〉 = 〈ψ(t)|A|ψ(t)〉.

This equivalence is a special case of the conjuga-
tion principle in group theory: If a group G acts
on a set S, then ghg−1 does to g(s) what h does
to s. As applied to quantum mechanics, it is called
the Heisenberg picture. The differential form of the
Heisenberg picture is an operator-valued differential
equation called the Heisenberg equation:

i
∂A

∂t
= [A,H ].

We can now rename variables to match Hamilton’s
equations in symplectic R2n. Substitute ~q for ~x and
n for d and drop the restriction d ≤ 3; the state
space becomes L2(Rn). The operator ~q consists of
the coordinates q1, . . . , qn on Rn, while ~p is defined
by

pk = −i ∂
∂qk

.

These operators satisfy the commutation relations

[qj , pk] = iδj, k.

Now assume that the Hamiltonian operator H is a
“function” H(~p, ~q) of ~p and ~q. For example it might
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be a non-commutative polynomial in the coordinates
of ~p and ~q or a suitably convergent power series.
Then formally

[qk, H ] = i
∂H

∂pk
[pk, H ] = −i ∂H

∂qk
.

Combining this with the Heisenberg equation yields
an operator form of Hamilton’s equations for conju-
gate variables:

∂qk
∂t

=
∂H

∂pk

∂pk

∂t
= −∂H

∂qk
.

To see the classical limit, assume for simplicity
that n = 1 and the conjugate variables are just p and
q. In units of Planck’s constant, their commutator
is

[q, p] = i~.

Now take the limit ~ → 0. The Heisenberg uncer-
tainty relation (Exercise 1.2.8) yields the inequality

V [q]V [p] ≥ ~2

4
.

In fact the inequality is sharp: Gaussian wave pack-
ets (i.e., coherent states) achieve equality. If ~ is
small, then p and q can both be nearly definite in
the initial state |ψ(0)〉. A Hamiltonian expressed
in terms of p and q is also nearly definite and the
quantum dynamics of the system preserves near def-
initeness at least for a while. In conclusion, classical
Hamiltonian dynamics is a valid short-term approx-
imation to quantum Hamiltonian dynamics.

Exercises

1. Let |ψ〉 be a state with respect to which

V [q]V [p] =
~2

4
.

Show that |ψ〉 is pure and has the form

ψ(x) =
ea(x−b+ic)2/2

(πa)1/4

for some real constants a, b, and c. (The con-
verse of this exercise is also worthwhile and is
much easier.)

2.3. Symmetry and spin

If a physical system can be rotated in space, its
state space H becomes a representation of the Lie

group SO(3). By Noether’s theorem for quantum
systems, if the system’s Hamiltonian H is invariant
under rotation, the Lie generators, if multiplied by
i, are Hermitian operators with conserved values.
The angular momentum operators in the x, y, and z
directions in R3 are written Jx, Jy, and Jz ; the an-
gular momentum in the direction of a general unit

vector ~v is ~v · ~J . These operators do not commute
with each other, so they are not simultaneously def-
inite. There is another twist as well. Since global
phase is not statistically meaningful, the state space
H might only be a projective representation of any
given symmetry group. This can happen with spa-
tial rotations, so the true quantum rotation group is
the double cover

S̃O(3) ∼= SU(2).

Whether H is a projective representation or a lin-
ear one, the analysis will show that angular momen-
tum takes discrete values that differ by multiples of
~, even though there is a continuous family of di-
rections in which to measure it. Moreover, the ro-
tational state space of a physical system is typically
finite.

The operators Jx, Jy, and Jz satisfy the commu-
tation relations

[Jx, Jy] = iJz [Jy, Jz] = iJx [Jz, Jx] = iJy.

Angular momentum has the same physical units as
Planck’s constant, so for example [Jx, Jy] = i~Jz in
units. Since SU(2) is compact, every unitary repre-
sentation decomposes as an orthogonal direct sum
of finite-dimensional irreducible representations (ir-
reps). By Cartan-Weyl theory, it has a unique irrep
of dimension n+ 1 for every integer n ≥ 0, which we
will call Vj with j = n/2. It is also called a spin-j
system. The standard basis is

| − j〉, |1− j〉, . . . , |j〉,

where |m〉 is an eigenstate of Jz with eigenvalue m.
The proof that the irreps of SU(2) have this struc-
ture uses the same ladder operator method as in the
harmonic oscillator system. In this case the ladder
operators are

J+ = Jx + iJy J− = Jx − iJy.

By convention their action on the standard basis is

J+|m〉 =
√

(j −m)(j +m+ 1)|m+ 1〉
J−|m〉 =

√
(j +m)(j −m+ 1)|m− 1〉.

Another important operator is

J2 = J2
x + J2

y + J2
z ,
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which in representation theory is called a Casimir
operator. Its sole eigenvalue on the spin-j system is
j(j + 1).

The term “spin” often refers to the intrinsic an-
gular momentum of a particle. Electrons, protons,
neutrons, and neutrinos all have spin 1

2 , while the
cobalt-60 nucleus, for example, has spin 5. The spin-
1
2 spin states are also written |↑〉 and |↓〉, and they
are also called right-handed spin and left-handed spin
when measured in the direction of the particle’s mo-
tion. A photon is a spin-1 particle, but the spin state
|0〉 never occurs in the direction of motion. (This is
only possible because of special relativity.)

Although some of the most interesting behavior of
a particle is due to its spin, it is worth remembering
that most of its state is in its position. In general if
a particle has spin-j, its total state space (in a flat
universe) is Vj ⊗ L2(R3).

There are two ways that Vj arises extrinsically.
First, if a particle lies on the unit 2-sphere S2, or if
it exists in R3 but its radial state is an independent
factor, then it possesses orbital angular momentum.
(Orbital angular momentum operators are often de-
noted Lz, L

+, . . ., but we will stay with J .) The
rotation group SO(3) acts on S2 and by extension
L2(S2). It decomposes as

L2(S2) ∼= V0 ⊕ V1 ⊕ V2 ⊕ . . . ,

where a vector in the summand Vj is a spherical
harmonic of degree j. If the particle moves freely on
S2, then its Hamiltonian is

H = −∆

2
.

The Laplacian ∆ equals the action of the Casimir
operator J2 on the representation L2(S2). Thus the

spectrum of H is { j(j+1)
2 }, and the jth eigenvalue

(numbered from 0) has multiplicity 2j+1. Especially
in atomic physics, the first several harmonic spaces
are often denoted by letters: s, p, d, f, g, . . .

Second, when two or more spin systems are com-
bined, their joint state space decomposes as a direct
sum of spin systems. The Clebsch-Gordan rule gives
the decomposition of two spin systems:

Vj ⊗ Vk
∼= Vj+k ⊕ Vj+k−1 ⊕ · · · ⊕ V|j−k|.

Thus a spin-j particle and a spin-k particle can to-
gether be in a spin-ℓ state with

ℓ ∈ {|j − k|, . . . , j + k}.

Higher tensor products also decompose, of course,
but in a more complicated way. The main rule to
remember is that the total angular momentum oper-
ators match the Leibniz rule for the diagonal action

of a Lie algebra on a tensor product. I.e., the action

of ~J on

Vj1 ⊗ Vj2 ⊗ · · · ⊗ Vjn

is given by

~J =

n∑

k=1

~J (k) =

n∑

k=1

I⊗k−1 ⊗ J~v ⊗ I⊗N−k.

Exercises

2.4. Identical particles

Following Section 1.1, two coherent trajectories
of a physical system obey quantum superposition if
they arrive at the same state and classical super-
position if they arrive at different states. Thus in
quantum mechanics there is a difference between a
pair of particles (or any other two physical systems)
that are logically identical and a pair that merely
appear the same. If they are identical, then a co-
herent beam apparatus that conditionally switches
them,

(picture)

exhibits quantum interference. By this test and its
consequences, many classes of particles are known to
be identical. All electrons are identical, all helium
nuclei are identical, etc.

More explicitly, suppose that two particles have
the same state space H. Then by the independence
rule, their joint state space is H⊗2. This state space
has an operator X that switches the two factors:

X(|ψ1〉 ⊗ |ψ2〉) = |ψ2〉 ⊗ |ψ1〉.
Since X is a Hermitian involution, it has two
eigenspaces. The space S2H of symmetric tensors
has eigenvalue 1, while the space of antisymmetric
tensors Λ2H has eigenvalue −1. If the two particles
are identical, then X must fix the density operator
|ψ〉〈ψ|, but not necessarily the state vector |ψ〉 it-
self. Thus |ψ〉 can lie in either eigenspace of X , so
particles can be identical in two different ways. If

X |ψ〉 = |ψ〉,
then the particles are called bosons and obey Bose-
Einstein statistics. If

X |ψ〉 = −|ψ〉,
then the particles are called fermions and obey
Fermi-Dirac statistics. More generally, given n par-
ticles with the same state space H, if they are iden-
tical bosons, then their joint state space is the sym-
metric space

SnH ⊆ H⊗n.
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If they are identical fermions, then their joint state
space is the antisymmetric space

ΛnH ⊆ H⊗n.

Here is a completely explicit description in terms
of amplitudes. If n particles each have state space H
with a basis A, then a joint pure state can be written

|ψ〉 =
∑

αa1,a2,...,an
|a1, a2, . . . , an〉.

If the particles are identical bosons, then

αa1,a2,...,an
= αaσ(1),aσ(2),...,aσ(n)

for any permutation σ ∈ Sn. If they are identical
fermions, then

αa1,a2,...,an
= (−1)σαaσ(1),aσ(2),...,aσ(n)

.

In this case, any amplitude α with a repeated index
must vanish, so identical fermions cannot appear in
the same state. This conclusion is called the Pauli
exclusion principle.

Example 2.4.1. Let H = L2(S1) and let

ψ(θ1, θ2) =
sin(θ1 − θ2)√

2π

be a joint wave function for two particles on the
circle S1. It is antisymmetric and can describe iden-
tical fermions, by the natural continuous analogue
of amplitude antisymmetry. At the same time, the
state is invariant under rotation of the circle, so the
measured value of θ1 has the uniform distribution.

2.5. Atomic structure

In this section we will draw together the ideas of
Sections 2.1, 2.3, and 2.4 to analyze the hydrogen
atom. We will also qualitatively predict some of the
features of other atoms and molecules.

2.6. Quantum field theory

3. COMPUTATION

Quantum computation is a computational model
based on quantum probability as described in Chap-
ter 1. It was first proposed by Feynman [? ] that
artificial quantum systems — quantum computers
— could be used to simulate natural quantum sys-
tems (Chapter 2). A sequence of further ideas [? ?
? ] culminated in Shor’s discovery of polynomial-
time quantum to factor integers [? ]. It is now
reasonable to conjecture that quantum computation
is sometimes exponentially faster than determinis-
tic (or classically randomized) computation. This
possibility is as almost as surprising as quantum
probability itself, and it would give a new reason
that quantum probability does not reduce to classi-
cal probability (Section 1.6).

Quantum algorithms to simulate many natural
Hamiltonians [? ] close the circle with Feynman’s
proposal. They indicate that quantum probability,
and not any further features of quantum mechanics,
provides the likely acceleration of quantum comput-
ers. Indeed, since experimental quantum computa-
tion is very difficult in practice, we can say that the
realistic physics that we might exploit for quantum
computation is both a friend and a foe.

Since quantum computation depends on continu-
ous state, it is fair ask whether it unrealistically ex-
ploits analog precision. This is related to the prob-
lem that quantum computation is more fragile than
classical computation and must be protected from
decoherence. These issues are addressed by the the-
ory of quantum error correction and fault-tolerant
computation Section 3.6. Although theory leans to
the conclusion that quantum computation is possi-
ble, useful quantum computers have not yet been
built. There could conceivably be some unknown
practical barrier to quantum computation.

Quantum secrecy is a parallel development [? ]
which, unlike quantum computation, has been con-
vincingly demonstrated [? ]. The idea is to use
the violation of Bell’s inequalities and related phe-
nomena to detect eavesdropping in communication,
rather than to defy the eavesdropper’s computa-
tional power. Since quantum secrecy assumes that
eavesdroppers have unlimited computational power,
it is more trustworthy than classical cryptography,
but it is also more limited. Regardless, the first prac-
tical use of quantum computers could be as repeaters
for quantum secrecy protocols.

3.1. Computational models

To put quantum probability into a computational
form, we begin with the qubit, which has a 2-
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dimensional state space C2 with standard basis |0〉
and |1〉. The memory of a quantum computer could
consist of n qubits with state space H = C2n

. The
general pure state is given by a unit vector in H,
while the general state is a matrix in the Bloch re-
gion B2n ⊂ M2n . A computation could consist of
a sequence of 2-qubit, unitary gates applied to this
2n-dimensional state space C2n

, followed by a mea-
surement. By definition such a gate is a unitary
operator U : C4 → C4 applied to some pair of the
qubits. More generally, a (j, k)-qubit gate is a quan-
tum operation

E :M2j →M2k .

The general quantum circuit is a sequence of such
quantum operations applied to j-tuples of qubits in
a memory with n qubits. There is usually a uniform
bound on the gates such as j, k ≤ 2. If j 6= k,
then n changes by k− j as the operation is applied.
As in classical Boolean circuitry, a quantum circuit
is equivalent to an acyclic digraph with each node
labelled by a quantum operation.

Example 3.1.1.

Before considering quantum algorithms in this
model, we can compare qubits to randomized bits.
Since a state of n qubits is a quantum superposition
of the 2n basis states, or a mixture of these, quan-
tum computation is a form of parallel computation.
Since the coefficients are complex numbers, it is also
a form of analog computation. However, randomized
classical computation shares both of these features.
Indeed, the simplex ∆4n of states of 2n classical bits
has the same dimension as the Bloch region B2n of
n qubits. Qubits are more useful than randomized
bits because they allow more operations, not because
they carry more state. (But see Section 3.5.)

We can also place quantum computation in the
context of standard complexity classes. To review,
a complexity class is a set of computational deci-
sion problems (YES-NO-valued functions on the set
of finite bit strings) that can be answered with spe-
cific computational resources. The computational
resources defining a particular complexity class may
or may not be realistic. Here are some standard
complexity classes with the most natural quantum
class included:

1. P is the set of problems that can be solved in
deterministic polynomial time.

2. NP is problems that can be solved in non-
deterministic polynomial time. A non-
deterministic computer program is one with
blank conditionals. Its execution history is a
tree rather a sequence. A non-deterministic

program answers a question in NP if at least
one leaf of the computation tree says YES
when the true answer is YES, but all leaves
say NO when the true answer is NO, and if
the tree has polynomial depth.

3. BPP is probabilistic polynomial time with
bounded error. It can be defined using the
same non-deterministic model as NP, except
that each conditional is assigned a computed
probability. The program answers a question
in BPP if a random computation path provides
the true answer with probability at least 2

3 .

4. BQP is the quantum analogue of BPP. A prob-
lem is in BQP if it is solved by a polyno-
mial quantum circuit. As in other circuit
models, the circuit must be efficiently precom-
puted (say with a classical computer) using
the length of the input. The final stage is a
boolean-valued measurement, which must be
correct with probability 2

3 as in the definition
of BPP.

5. PSPACE is deterministic polynomial space
with no restriction on computation time. It is
equivalent to a non-deterministic polynomial-
time computation model in which each node of
the computation tree is assigned an arbitrary
binary function of its child nodes, and the fi-
nal answer is the boolean value assigned to the
root. It is also equivalent to polynomial-time
parallel computation with exponentially many
networked processors.

A complexity class can also be modified by an or-
acle, which is a black-box function that a program
can invoke in one step, or that can be used as a large
gate in a circuit.

The inclusions

BPP ⊆ BQP ⊆ PSPACE.

are elementary. BPP can also be defined by cir-
cuits of stochastic maps, which places it inside BQP.
For the other inclusion, any quantum or stochastic
circuit can be evaluated by path summation (Sec-
tion ??), which requires only as much memory as
the number of nodes in the circuit. In fact quan-
tum amplitudes can be estimated in a space-efficient
way with stochastic sampling. Thus quantum ran-
domness only saves time and not space over classical
randomness.

It is reasonable to conjecture that P = BPP,
that BQP is somewhat larger than BPP, and that
PSPACE is vastly larger than BQP. It is also rea-
sonable to conjecture that BQP does not contain
NP. For one reason, it is easy to find an oracle A
such that BQPA does not contain NPA.
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3.2. Low-level operations

A first step in constructing quantum algorithms
is to identify a convenient set of universal quantum
gates. At the unitary level, it is convenient to in-
clude multiplication by a global phase even though
it is irrelevant. The group of unitary operators on a
single qubit is then U(2). Some important examples
of single-qubit (or unary) gates are the NOT gate
X , the Hadamard gate H , and the phase rotation
Z(θ):

X =

(
0 1

1 0

)
H =

1√
2

(
1 1

−1 1

)

Z(θ) =

(
1 0

0 eiθ

)

The gate Z = Z(π) is a phase flip. The phase sub-
group {Z(θ)} and the Hadamard gate H generate
U(2).

If U ∈ U(2) is unitary, then there is a correspond-
ing coherently controlled extension C(U) of U to 2
qubits. It applies U to the right qubit when the left
qubit is in the state |1〉. As a matrix,

C(U) =

(
I 0

0 U

)
.

Coherently controlled unitaries applied to both
qubits generate the 2-qubit group U(4), and 2-qubit
unitaries applied to arbitrary pairs of qubits in an n-
qubit memory generate its full unitary group U(2n).

Strictly speaking the unitary group on n qubits
is not full quantum computation, because the lat-
ter also includes decoherent quantum operations.
By Theorem 1.5.1, unitary operators together with
qubit erasure (taking the marginal from n qubits to
n − 1) and qubit creation in the state |0〉 generate
the entire category of quantum operations.

Furthermore, any quantum computation can be
dilated to a unitary computation. If the output is
classical, the unitary part is followed by the mea-
surement of output qubits. Such a dilation changes
computation time by only a constant factor, but it
can be expensive in space. Nonetheless, many quan-
tum algorithms are unitary with classical pre- and
postprocessing. Decoherent operations often (but
not always) squander the quantum acceleration.

Quantum operations also need not be exact in or-
der to work. Given two states ρ and ρ′, the proba-
bility that two measurements might give a different
answer is bounded by the trace distance

d(ρ, ρ′) =
1

2
||ρ′ − ρ||1.

If F and F ′ are two quantum operations with the
same domain and target, their distance d(F ,F ′) is
defined as the Lipschitz constant of their difference
F ′ − F with respect to trace distance on states.
This distance behaves predictably with respect to
composition and tensor products. Its relevance is
that each step in a quantum algorithm only needs
to be approximated to within a tolerance. Among
other uses, approximate computation is needed for
the fault-tolerance problem in Section 3.6.

3.3. Dilations and Grover’s algorithm

It is useful to explicitly construct unitary dilations
of classical algorithms. Suppose for simplicity that
f is boolean-valued with classical input s and that it
is computed by a sequence of classical gates. Then
we can dilate the computation one gate at a time.
For example, the Toffoli gate is a (3, 3)-qubit gate
defined by

T |a, b, c〉 = |a, b, c+ ab〉

with a, b, c ∈ Z/2. Here and below we assume the
abbreviations

|a, b〉 = |a〉 ⊗ |b〉 |an〉 = |a〉⊗n.

The Toffoli is a unitary dilation of the classical AND
gate applied to a and b. In general a dilation Df of f
takes as input |s〉, n scratch qubits initialized to |0〉,
and a receiving qubit also initialized to |0〉. (Extra
qubits used in dilation are also called ancillas.) The
output can be written

Df |s, 0n+1〉 = |s, x(s), f(s)〉,

where |x(s)〉 is the scratch work.
Many quantum algorithms require a more conve-

nient dilation of f that we can call minimal unitary
form. It is a unitary operator Uf that preserves the
input and adds the output (in Z/2-arithmetic) to an
extra qubit:

Uf |s, b〉 = |s, b+ f(b)〉.

It is implemented as the conjugation

Uf = D−1
f ◦N ◦Df

where trivial tensor factors are suppressed and

N |f(s), b〉 = |f(s), f(s) + b〉.

is a controlled NOT. This trick is also called uncom-
puting the function f .
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A related construction is a phase rotation con-
trolled by f , denoted Zf(θ). It is defined as

Zf (θ) = D−1
f ◦ Z(θ) ◦Df ,

where the phase rotation Z(θ) acts on |f(s)〉. It is
also given by the formula

Zf (θ)|s〉 = eif(s)θ|s〉.

One significant use of these unitary tools is
Grover’s general quantum search algorithm. The
input to this algorithm is a black-box function, or
oracle,

f : S → {0, 1},

where S is some finite set. The function f comes
with the promise that f(s) = 1 for a single s ∈ S and
the task is to find the solution s. Clearly any clas-
sical algorithm must evaluate f at least N/2 times
on average in order to find s. But if the oracle is
available in minimal unitary form Uf , then Grover’s

algorithm can find s using O(
√
N) quantum queries.

For simplicity assume that S = [0, 2n) for some n.
Grover’s algorithm is a loop that alternates between
the standard qubit basis, {|0〉, |1〉}, and the basis
{|+〉, |−〉}. We can either implement this alternation
with Hadamard gates, or assume that quantum gates
are available in both bases. The algorithm requires
n qubits and is initialized in the state

|ψ〉 = |+n〉.

Relative to the standard basis, the qubits are then
in the constant pure state

|S〉 =
1

|S|
∑

s∈S

|s〉.

Note that |S〉 can be defined for any finite orthonor-
mal set of states of any quantum system.

Grover’s algorithm then consists of ⌊π
√

N
4 ⌋ itera-

tions of the following two steps, with |ψ〉 as the state
of the qubits at each step.

1. In the standard basis, apply the phase flip
Zf = Zf (π) controlled by f . This reflects the
vector |ψ〉 in the hyperplane perpendicular to
|s〉.

2. By a similar computation in the {|+〉, |−〉} ba-
sis, reflect |φ〉 through the hyperplane perpen-
dicular to |+n〉 and formally negate |ψ〉.

The effect of both reflections together is to rotate
|ψ〉 from |+n〉 to |s〉 by an angle θ given by

sin θ = 〈+n|s〉 =
1√
N
.

When N is large,

θ ≈ 4

π
√
N

and |+n〉 and |s〉 are nearly orthogonal. Thus the
full course of Grover’s algorithm brings |ψ〉 close to
the state |s〉.

3.4. Shor’s algorithm

Grover’s algorithm and its variations represent
one of two main families of existing quantum al-
gorithms. The other family consists of algorithms
related to Shor’s algorithm for finding the period of
a periodic function.

The input to Shor’s algorithm is a black-box func-
tion

f : Z→ S,

where S is some target set. It comes with the
promise that

f(x) = f(x+ p)

for some period p, and that otherwise f takes dis-
tinct values. The cost of computing f(x) is polyno-
mial in log x, and the task is to find the period p
in polynomial time in log p. Since f is given as an
oracle, this is classically impossible just from count-
ing necessary queries (exercise ??). But if the oracle
is available in minimal unitary form, then O(log p)
quantum queries suffice. (Technically O(log p) clas-
sical queries suffices, but they must be very large
queries.)

The main computational step of Shor’s algorithm
is the quantum Fourier transform on a cyclic group
Z/N . This is a unitary operator FN defined by

FN |x〉 =
1√
N

∑
ωxy|y〉

with x, y ∈ Z/N and

ω = e2πi/N .

This map has the same formula as the discrete
Fourier transform and the algorithm for it when
N = 2n is very similar to the classical FFT. But
the interpretation is very different, because the FFT
transforms a list of 2n stored numbers, while the
QFT transforms the amplitudes of n stored qubits.
(See Exercise ??.)

To compute F2n , first express the residue x as a
high bit plus a low remainder,

x = 2n−1xn−1 + x′,
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with 0 ≤ xn−1 ≤ 1 and 0 ≤ x′ < 2n−1. Second,
use the remainder x′ to control a unitary operator
applied to the high qubit |xq〉:

U(x′)|xn−1〉 =
1√
2

(
|0〉+ (−1)xn−1ωx′ |1〉

)

=
|0〉+ ωx|1〉√

2

This operator can be expressed as

U(x′) = Z(
xn−2π

2
)Z(

xn−3π

4
) . . . Z(

x0π

2n−1
)H,

where xk is the kth bit of x. In words, U(x′) is a
Hadamard gate followed by a sequence of phase rota-
tions controlled by each bit of x′ separately. To ob-
tain Fn, recursively apply the QFT operator Fn−1 to
|x′〉 and rechristen the high qubit with input |xn−1〉
as the low qubit with output |y0〉.

Shor’s algorithm is as follows. First, choose a
number N ... Prepare an integer in the constant
pure state |[0, N)〉, where

[0, N) = {0, . . . , N − 1}.

Second, supply this state to the minimal unitary
form Uf and discard the output. This step partially
measures the input according to the value of f(x),
which only depends on the residue of x mod p. The
result ρ is a mixture of the corresponding residue
classes within [0, N).

The final step of Shor’s algorithm is to reveal
the residual coherence of ρ with a quantum Fourier
transform on Z/N = [0, N). To understand its ef-
fect, first fictitiously suppose that p dividesN . (This
is of course infeasible given that p is not known.) In
this case

ρ =
1

p

p−1∑

k=0

|k + pZ/(N/p)〉〈k + pZ/(N/p)|

and

FN (ρ) =
1

p

p−1∑

k=0

|kN
p
〉〈kN

p
|.

The measurement of a few copies of this state in the
standard basis reveals N/p and therefore p.

To use Shor’s algorithm to factor a number M ,
define the periodic function

f(n) = an

for some prime residue a ∈ Z/M . It can be com-
puted quickly for any fixed n by repeated squaring.
Its period divides the exponent of (Z/M)× and once
this exponent is known it is easy to factor M .

3.5. Feasibility

Like a bit, a qubit can in principle be any 2-state
physical system. The operational difference is that
a randomized bit only needs to be suitably indepen-
dent from other memory bits, while a qubit state de-
coheres if it is leaked to any physical observer, even
an accidental one. A randomized computation can
proceed as intended even if its entire state is moni-
tored by the programmer; a quantum computation
can be ruined if one qubit is witnessed by a stray
atom.

3.6. Error correction

3.7. Quantum secrecy
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