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1. Introduction

In this paper we address the following three basic problems in the theory of
algebraic groups. The statements of the first two problems and the description
of their solution set, the cone C(R), do not depend on the fundamental group
of the underlying group G. However, the third problem does depend on the
fundamental group of G. To pose it in its greatest generality we will assume that
G is centerless, see Remark 1.3 below.

Thus, we let G be a connected complex semisimple centerless algebraic group.
We fix a Borel subgroup B, a maximal torus T ⊂ B and a maximal compact
subgroup K. Let X = G/K be the associated symmetric space. Let b, h, k and
g be the Lie algebras of B, T,K and G respectively. Let g = k⊕ p be the Cartan
decomposition. We can and will assume that h satisfies h = h ∩ k ⊕ h ∩ p. Let a

be the second intersection h ∩ p (the Cartan subspace). Let A be the real split
subtorus of T corresponding to a and R ⊂ a∗ be the set of roots associated to
(G,T ). The choice of B determines the set R+ ⊂ R of positive roots and thus
the set Π = {α1, . . . , αl} ⊂ R+ of simple roots and also the fundamental weights
{ω1, . . . , ωl}, l being the rank of G. The cone generated by the positive roots
determines the dual cone ∆ ⊂ a, the (closed) Weyl chamber.

In Section 2 we will introduce the ∆-valued distance d∆ on the symmetric
space X. In what follows, by the words “triangle with vertices x1, x2, x3” we will
mean the union of the three (unique) oriented geodesic segments (edges) joining
each pair of vertices and oriented respectively from x1 to x2, x2 to x3 and x3 to
x1. We then have the following:

Problem 1. The triangle inequalities. Give conditions on a triple (h1, h2, h3) ∈
∆3 that are necessary and sufficient in order that there exists a triangle in X with
vertices x1, x2, x3 such that d∆(x1, x2) = h1, d∆(x2, x3) = h2 and d∆(x3, x1) = h3.

Our second problem is the generalization (to general G) of the problem of find-
ing the possible eigenvalues of a sum of Hermitian matrices given the eigenvalues
of the summands. To formulate this problem, define the map

π : p/K → ∆

by taking π(x) to be the unique point in the intersection of ∆ with the AdK-orbit
of x.
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Problem 2. The generalized eigenvalues of a sum problem. Determine the
subset C = C(R) ⊂ ∆3 consisting of triples (h1, h2, h3) ∈ ∆3 such that there
exists a triple (y1, y2, y3) ∈ p3 for which

y1 + y2 + y3 = 0

and π(y1) = h1, π(y2) = h2, π(y3) = h3.

It turns out that the sets of solutions to Problems 1 and 2 coincide, see [Kl2],
[AMW], [EL], [KLM1] and [KLM2]. The common solution set C is in fact a convex
homogeneous polyhedral cone C, [BS], see also [KLM1]. The set C is described
in [BS] with a refinement in [KLM1] by a certain system of homogeneous linear
inequalities, the triangle inequalities T̃ I(R), which is, in general, a redundant sys-
tem. A smaller system, the restricted triangle inequalities TI(R), was introduced
by Belkale and Kumar in [BK]. These two systems of inequalities are based on
the cup product, resp. the degenerated cup product, on the cohomology of the
generalized Grassmannians G/P , where P ⊂ G are maximal parabolic subgroups.

Belkale and Kumar posed the question if the system TI(R) is irredundant
(cf. [BK, Section 1.1]). Subsequent to our present work, it was proved in the
affirmative by Ressayre [R].

Remark 1.1. The two systems of inequalities T̃ I(R) and TI(R) coincide in the
case of type A root systems (cf. [BK, Lemma 19]). In this case irredundancy of
TI(R) was proven by Knutson, Tao and Woodward in [KTW].

In this paper we explicitly determine the system TI(R) for R = D4, that is for
groups with Lie algebra so(8).

Theorem 1.2. The system of restricted triangle inequalities TI(D4) is explicitly
given in Section 5 and consists of 294 inequalities. Moreover, by virtue of the
computer program CONVEX [F], the cone C has 306 facets including 12 facets of
∆3 ⊂ a3 (and 81 extremal rays). In particular, the system TI(R) is irredundant.

Our third problem concerns the decomposition of tensor products of finite-
dimensional irreducible representations of a connected complex semisimple group.
The first two problems for G are related to the tensor product decomposition
problem for the Langlands’ dual G∨ of G, see [Sp, pages 3-6] for the definition of
G∨. We now explain this change of groups.
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There is a natural correspondence of maximal tori T and T∨ for the two groups
G and G∨ such that the dominant coweights (the “integral points” in ∆) of G are
the dominant weights of G∨ whence the input data for Problem 3 for the case of
G∨ is a subset consisting of the “integral points” of the input data for Problems
1 and 2 for G.

Remark 1.3. Since the representation ring of the simply-connected form of a
group contains the representation rings of the other forms, it is natural to consider
the decomposition of tensor products problem for the simply-connected form of
the group. Under the Langlands’ duality the simply-connected group corresponds
to the centerless group. It is for this reason that we have assumed in the first
paragraph of this introduction that G is centerless.

Let P∨ be the weight lattice of G∨, i.e., P∨ is the character lattice of the
maximal torus T∨ ⊂ G∨. Then,

D = D(G∨) := P∨ ∩∆

is the set of dominant weights of G∨.

Definition 1.4. We define (D3)0 to be the subsemigroup of D3 consisting of those
triples of dominant weights whose sum is in the root lattice Q∨ of G∨.

Given λ ∈ D, let V (λ) denote the irreducible representation of G∨ with domi-
nant weight λ. We now state our third problem.

Problem 3. Determine the semigroup R = R(G∨) ⊂ D3 consisting of triples
of dominant weights (λ, µ, ν) such that

(V (λ)⊗ V (µ)⊗ V (ν))G∨ 6= 0.

Then, R ⊂ (D3)0. It is well known that Problems 2 and 3 are related, namely
that the semigroup C0 = C(G∨)0 := C(R) ∩ (D3)0 is the saturation of the semi-
group R(G∨) in the semigroup (D3)0. For a more detailed statement, see Theo-
rem 2.5. The following conjecture was made in [KM2]:

Conjecture 1.5 (Saturation conjecture for simply-laced semisimple groups).
Suppose that G∨ is a simply–laced simply–connected complex simple Lie group.
Then, the semigroup R = R(G∨) is saturated in (D3)0.
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In other words, for any (λ, µ, ν) ∈ (D3)0 and any positive integer N ,

(Nλ,Nµ, Nν) ∈ R ⇒ (λ, µ, ν) ∈ R,

i.e., R(G∨) = C(G∨)0. This conjecture is known in the case of type A root
systems, this is the saturation theorem of Knutson and Tao [KT], see also [B],
[DW], [KM1] for alternative proofs.

We now state our second main theorem.

Theorem 1.6. Let R = D4 so that G∨ = Spin(8). A triple (λ, µ, ν) ∈ (D3)0

satisfies (λ, µ, ν) ∈ R(Spin(8)) if and only if (λ, µ, ν) ∈ C(D4). Equivalently, the
semigroup R(Spin(8)) is saturated in the semigroup (D3)0.

In order to prove Theorem 1.6 we use the computer program 4ti2, [HHM],
to compute the Hilbert basis of the semigroup C(Spin(8))0. It turns out that
this basis consists of 82 elements (just one more than the number of extremal
rays). Moreover, modulo the permutations of the vectors λ, µ, ν and the action
of the automorphisms of the Dynkin diagram of D4, there are only 10 different
semigroup generators. For each of these generator (λi, µi, νi) we verify that

(λi, µi, νi) ∈ R
by applying the MAPLE package WEYL, [S]. Since R is a semigroup, it then
follows that C0 = R.

By [KLM3, Section 9.4], the previous theorem implies the following satu-
ration theorem for the structure constants of the spherical Hecke algebra of
G = PSO(8). Considering PSO(8) as a group scheme PSO(8) over Z, let G
be the group of its rational points in a nonarchimedean local field K. Let O
be the ring of integers (elements of multiplicative valuation ≤ 1) of K. We let
K be the group of O-rational points of PSO(8). Let HG denote the associated
spherical Hecke algebra. We recall that the set of dominant coweights D of G

parameterizes the K-double cosets in G and that the ring HG is free over Z with
basis the characteristic functions {fλ : λ ∈ D}. We let ∗ denote the (convolution)
product in HG . We have

Theorem 1.7. Let G = PSO(8). For λ, µ, ν ∈ D, the characteristic function of
the identity K-double coset occurs in the expansion of the product fλ ∗ fµ ∗ fν in
terms of the above basis if and only if the triple (λ, µ, ν) ∈ C and λ + µ + ν is in
the coroot lattice Q∨ of G.
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We conclude this introduction by noting that the triangle inequalities for the
rank two groups were explicitly computed in [KLM1] and the restricted triangle
inequalities for the rank three groups were computed in [KuLM]. The semigroups
of solutions of the tensor product problem for the rank two cases were computed
in [KM2]. There are many examples showing that in the nonsimply–laced case,
the semigroup R is not saturated in (D3)0. In particular, saturation fails for
all nonsimply-laced groups of rank ≤ 4. On the other hand, by the saturation
theorem of Knutson and Tao, Saturation Conjecture 1.5 holds for G∨ = SL(n,C).
Thus, the first new test case for Conjecture 1.5 is the case of G∨ = Spin(8)
considered in this paper.

Acknowledgement. We are grateful to the referee for useful remarks and
suggestions.

2. Further discussion of the three problems

In this section we give some more details about the three problems formulated
in the Introduction. We follow the same notation (as in the Introduction). In
particular, G is a connected complex semisimple adjoint (centerless) group (with
root system R) and G∨ is its Langlands’ dual, which is simply-connected (since
G is adjoint).

2.1. The distance d∆. We now define the ∆-valued distance d∆. Let A∆ be the
image of ∆ under the exponential map exp : g → G. We will need the following
basic theorem, the Cartan decomposition for the group G, see [He, Theorem 1.1,
pg. 402].

Theorem 2.1. We have
G = KA∆K.

Moreover, for any g ∈ G, the intersection of the double coset KgK with A∆

consists of a single point to be denoted a(g).

Let x1x2 be the oriented geodesic segment in X = G/K joining the point x1

to the point x2. Then, there exists an element g ∈ G which sends x1 to the
base point o = eK and x2 to y = exp(δ), where δ ∈ ∆. Note that the point δ

is uniquely determined by x1x2. We define a map σ from G-orbits of oriented
geodesic segments to ∆ by
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σ(x1x2) = δ.

Clearly we have the following consequence of the Cartan decomposition.

Lemma 2.2. The map σ gives rise to a one-to-one correspondence between the
G–orbits of oriented geodesic segments in X and the points of ∆.

In the rank 1 case σ(x1x2) is just the length of the geodesic segment x1x2.

Definition 2.3. We call σ(x1x2) the ∆–length of x1x2 or the ∆–distance between
x1 and x2. We write d∆(x1, x2) = σ(x1x2).

We note the formula

d∆(x1, x2) = log a(g−1
1 g2) where x1 = g1K, x2 = g2K.

Remark 2.4. The delta–distance is symmetric in the sense that

d∆(x1, x2) = −wod∆(x2, x1),

where wo is the unique longest element in the Weyl group. If wo = −1 (in
particular, in the case of the type D4 root system studied in this paper), then

d∆(x1, x2) = d∆(x2, x1).

2.2. The relations between Problems 1, 2 and 3. In this subsection we
expand the discussion in the Introduction concerning the relations between the
three problems. We first discuss the relation between Problems 2 and 3.

The (a)-part of the following theorem is standard, see for example the appendix
of [KLM3]. The (b)-part follows from Theorem 1.2 of [KLM1], see also Theorem
1.4 of [KLM2] and the paragraph following it. Of course, the (b)-part is clear for
the simply–laced groups. So, the only nontrivial case is essentially that of the
group G corresponding to the root systems of type Bl. In this case, Belkale and
Kumar have shown that the triangle inequalities themselves coincide under the
identification of a with a∗ (via any invariant form).

Theorem 2.5. (a) For any semisimple adjoint group G with root system R,
under the identification of a with a∗ (via any invariant form),

R(G∨) ⊂ C(R∨).
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Conversely, for any triple (λ, µ, ν) ∈ C(R∨) ∩ D3, there exists a positive integer
N such that (Nλ,Nµ, Nν) ∈ R(G∨).

(b) Under the identification of a∗ with a,

C(R) = C(R∨).

Thus, combining the two parts, we get the following intrinsic inclusion:

R(G∨) ⊂ C(R).

We recall the following standard definition. Suppose that S1 ⊂ S2 is an inclu-
sion of semigroups. Then, the saturation of S1 in S2 is the semigroup of elements
x ∈ S2 such that there exists n ∈ Z+ with nx ∈ S1.

Remark 2.6. As a consequence of the previous theorem, the semigroup C(G∨)0 :=
C(R) ∩ (D3)0 is the saturation of the semigroup R(G∨) in the semigroup (D3)0.

We conclude this section by briefly indicating why the solutions of Problems
1 and 2 coincide. First of all, Problem 2 (in the case of an n–fold sum) can be
reformulated geometrically as a problem of the existence of n-gons in p with given
∆–valued side-lengths. Both p and the symmetric space X admit compactifica-
tions by a “visual” sphere S which also has the structure of a spherical building
∂TitsX. The vertices of this building are points in the flag manifolds G/P (where
P ’s are the maximal parabolic subgroups in G).

Then, one can define the Gauss map Γ which sends the geodesic polygon
[x1, ..., xn] ⊂ X to the weighted configuration

Γ([x1, ..., xn]) = ((m1, ξ1), ..., (mn, ξn))

of points in S. Here mi := d(xi, xi+1) are the ordinary distances, which serve as
weights at the points ξi ∈ S (xn+1 := x1). The same definition also works for
X replaced by p. The Gauss map from quadrilaterals in the hyperbolic plane
to configurations of four points ξ1, ξ2, ξ3, ξ4 on the visual boundary (the circle)
is depicted in figure 1. The key problem then is to identify the images of Gauss
maps Γ for X and p. It turns out that both consist of “nice” semistable weighted
configurations on S, where the notion of stability is essentially the one introduced
by Mumford in Geometric Invariant Theory (in the case when the weights are
natural numbers). We refer the reader to Theorems 5.3 and 5.9 of [KLM1] for
the precise statements.
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Figure 1. Gauss map.

Therefore, Problems 1 and 2 are both equivalent to the existence problem
for semistable weighted configurations on S and hence Problems 1 and 2 are
equivalent.

3. The triangle inequalities

We need more notation. We let S = {s1, . . . , sl} be the set of (simple) reflec-
tions in the root hyperplanes defined by the simple roots and let W ⊂ Aut a be
the Weyl group generated by S. Then, W can be identified with N(T )/T , N(T )
being the normalizer of T in G.

Let {xi} be the basis of h dual to the basis Π, i.e., αi(xj) = δi,j . We let ` be
the length function on W . Let α∨i be the coroot corresponding to the root αi.
Also, for a standard parabolic subgroup P of G (i.e., P ⊃ B), we let WP ⊂ W

be the subgroup of elements with representatives in P and WP denote the set of
shortest length representatives for the cosets W/WP (we recall that each coset has
a unique shortest length representative). Let wP

o be the unique longest element
in WP and wo the longest element of W .
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3.1. The triangle inequalities. We now describe the solution of Problem 1
of the Introduction, that is the description of the inequalities determining the
∆-valued side-lengths of geodesic triangles in X.

3.1.1. The weak triangle inequalities. We first describe a natural subsystem of
the triangle inequalities. The naive triangle inequality

d∆(x1, x3) ≤∆ d∆(x1, x2) + d∆(x2, x3)

does not hold [KLM3]. Here the order ≤∆ is the one defined by the (acute) cone
∆. This can be remedied if we replace ∆ by the dual (obtuse) cone ∆∗ and let
≤∆∗ denote the associated order. Then, the analogue of the above inequality
holds and, in fact, for any element w of the Weyl group W , the inequality

w · d∆(x1, x3) ≤∆∗ w · d∆(x1, x2) + d∆(x2, x3)

holds. We call the resulting system of inequalities (as w varies) the weak triangle
inequalities to be denoted WTI(R).

For the root systems R of ranks one and two, the weak triangle inequalities
already give a solution to Problems 1 and 2 of the Introduction. However, they
are no longer sufficient in ranks three or more.

3.1.2. The triangle inequalities. We now describe a system of linear inequalities
on a3 which describes the cone C(R). However, this system is usually not irredun-
dant. These inequalities (based on the cup-product of Schubert classes) will be
called the triangle inequalities. The system of triangle inequalities is independent
of the choice of G corresponding to a fixed Lie algebra g, hence depends only
on the root system R associated to G. We denote this system of inequalities by
T̃ I(R) or just T̃ I when the reference to R is clear.

As a consequence of the Bruhat decomposition:

G =
⊔

w∈W P

BwP,

the generalized flag variety G/P is the disjoint union of the subsets

{CP
w := BwP/P}w∈W P .

The subset CP
w is biregular isomorphic to the affine space C`(w) and is called a

Schubert cell, where `(w) is the length of w. The closure XP
w of CP

w is called
a Schubert variety. We will use [XP

w ] to denote the integral homology class in
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H∗(G/P ) carried by XP
w . Then, the integral homology H∗(G/P ) is a free Z–

module with basis {[XP
w ] : w ∈ WP }.

Let {εP
w : w ∈ WP } denote the dual basis of H∗(G/P ) under the Kronecker

pairing 〈 , 〉 between homology and cohomology. Thus, we have for w, w′ ∈ WP ,

〈εP
w , [XP

w′ ]〉 = δw,w′ .

The system of triangle inequalities breaks up into rank(g) subsystems T̃ I
P
,

where P runs over standard maximal parabolic subgroups. The subsystem T̃ I
P

is controlled by the Schubert calculus in the generalized Grassmannian G/P

in the sense that there is one inequality TP
w for each triple of elements w =

(w1, w2, w3) ∈ WP such that

εP
w1
· εP

w2
· εP

w3
= εP

wP
o

in H∗(G/P ). To describe the inequality TP
w , let ωP = ωiP be the fundamental

weight corresponding to P , where siP is the unique simple reflection not in WP .
Then, the standard action of W on a∗ induces a one-to-one correspondence f :
WP → WωP given by f(w) = wωP . Thus, we may reparametrize the Schubert
classes in G/P by the elements of WP ωP ⊂ a∗. For w ∈ WP , let λw = λP

w denote
wωP ; this is called the maximally singular weight corresponding to w. Then, the
inequality TP

w is given by

λw1(−woh1) + λw2(−woh2) + λw3(−woh3) ≥ 0, (h1, h2, h3) ∈ ∆3.

3.2. The restricted triangle inequalities. As we have mentioned earlier, the
system of triangle inequalities is in general not an irredundant system. We now
describe a subsystem of these inequalities due to Belkale-Kumar.

To this end we recall the definition of the new product ¯0 in the cohomology
H∗(G/P ) introduced by Belkale-Kumar [BK, Sect. 6]. We only need to consider
the case when P is a standard maximal parabolic subgroup. In this case, we set
xP = xiP .

Write the cup product in H∗(G/P ) as follows:

εP
u · εP

v =
∑

w∈W P

dw
u,vε

P
w .
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Then, by definition,

εP
u ¯0 εP

v =
∑

w∈W P

dw
u,vδ

w
u,vε

P
w ,

where δw
u,v := 1 if (u−1ρ + v−1ρ − w−1ρ − ρ)(xP ) = 0 and δw

u,v := 0 otherwise,
where ρ is the (standard) half sum of positive roots of g.

Recall that π : p/K → ∆ is defined by intersecting an AdK-orbit with ∆.
Then, [BK, Theorem 28] gives the following solution of Problem 2 stated in the
Introduction:

Theorem 3.1. Let (h1, . . . , hn) ∈ ∆n. Then, the following are equivalent:

(a) There exists (y1, . . . , yn) ∈ pn such that
∑n

j=1 yj = 0 and π(yj) = hj for
all j = 1, . . . , n.

(b) For every standard maximal parabolic subgroup P in G and every choice of
n-tuple w = (w1, . . . , wn) ∈ (WP )n such that

εP
w1
¯0 · · · ¯0 εP

wn
= εP

wP
o
∈ (

H∗(G/P ),¯0

)
,

the following inequality holds:

(TP
w )

n∑

j=1

λP
wj

(−wohj) ≥ 0.

The collection of inequalities {TP
w}, such that w and P are as in (b), will be

referred to as the restricted triangle inequalities.

Remark 3.2. 1. As was the case for n = 3, the statement in (a) is equivalent
to the existence of a geodesic n-gon in X with ∆–side-lengths h1, h2, . . . , hn.

2. As it was noted earlier, for the type D4 root system studied in this paper,
wo = −1 and, hence, the inequalities (TP

w ) simplify to
n∑

j=1

λP
wj

(hj) ≥ 0.

4. Determination of the product ¯0 in H∗(G/P )

From now on, the group G will be taken to be the adjoint group of type D4,
i.e., G = PSO(8). Since G is simply–laced, the Langlands’ dual G∨ has the
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same root system as G. However, G being the adjoint group, G∨ is the simply-
connected cover of G, i.e., G∨ = Spin(8). We will only need to consider the
maximal parabolic subgroups. We will abbreviate the classes εP

w for w ∈ WP

by bj
i according to the following tables. Here the subscript i denotes half of the

cohomological degree of bj
i , i.e., bj

i ∈ H2i(G/P ), and j runs over the indexing
set with cardinality equal to the rank of H2i(G/P ). In the case that H2i(G/P )
is of rank one, we suppress the superscript j. Moreover, in the following tables,
we also list the maximally singular weight λw := wωP associated to the element
w ∈ WP as well as the value nw := (w−1ρ)(xP ). We express λw in terms of the
standard coordinates {εi}i=1,...,4 of h∗ as given in [Bo, Planche IV]. We follow the
following indexing convention as in loc cit.

2

4

3

1

Figure 2. Dynkin diagram for D4.

For any 1 ≤ i ≤ 4, let Pi be the maximal parabolic subgroup of G corresponding
to the i-th node of the Dynkin diagram, i.e., WPi is generated by the simple
reflections {sj ; j 6= i}.

To determine the cohomology H∗(G/Pi) under the product ¯0 for all the
maximal parabolic subgroups Pi, because of the Dynkin automorphisms, we only
need to determine it for i = 1, 2. Moreover, since P1 is a minuscule parabolic in
G, the product ¯0 coincides with the cup product by [BK, Lemma 19].

In what follows we will use the symbol F to denote the group of automorphisms
of the Dynkin diagram of D4, so F is isomorphic to the symmetric group S3 on
the labels {1, 3, 4} of the Dynkin diagram.
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4.1. Determination of (H∗(G/P1),¯0). The longest element wo of W is given
by

(1) wo = s4s2s1s4s2s4s3s2s4s1s2s3,

and it is central in W . Moreover, the longest element wo,P1 of WP1 is given by

(2) wo,P1 = s3s2s4s3s2s3.

Thus, the longest element wP1
o of WP1 is given by (cf. [KuLM, Proposition 2.6])

(3) wP1
o = wowo,P1 = s1s2s3s4s2s1.

From this and the fact that | WP1 |= 8, we see that the elements of WP1 are
enumerated as in the chart below. To calculate nw, use the general formula (cf.
[K, Corollary 1.3.22]) for any w ∈ W :

(4) ρ− w−1ρ =
∑

α∈R+∩w−1R−
α,

and for any parabolic subgroup P of G and any w ∈ WP ,

(5) R+ ∩ w−1R− ⊂ R+ \R+
P ,

where R− := −R+ and R+
P is the set of positive roots in the Levi component of

P . Since P1 is a minuscule maximal parabolic subgroup, for any w ∈ WP1 , by
(4) and (5) we get

(6) (ρ− w−1ρ)(xP1) = `(w).

From this, the value of nw given in the following chart can easily be verified since
ρ(xP1) = 3. The value of λw is obtained by explicit calculations.

εP1
w w λw nw

b0 = 1 e (1, 0, 0, 0) 3

b1 s1 (0, 1, 0, 0) 2

b2 s2s1 (0, 0, 1, 0) 1

b1
3 s3s2s1 (0, 0, 0, 1) 0

b2
3 s4s2s1 (0, 0, 0,−1) 0

b4 s3s4s2s1 (0, 0,−1, 0)−1

b5 s2s3s4s2s1 (0,−1, 0, 0)−2

b6 s1s2s3s4s2s1 (−1, 0, 0, 0)−3
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Using [KuLM, Lemma 2.9] and the Chevalley formula (cf. [K, Theorem 11.1.7(i)]),
all the products in the following table can be determined except the products of
b2 with b2 and b∗3. Since b1b1 = b2, using the Chevalley formula twice, we get
these products as well.

In the above we have used the symbol b∗3 to stand for either b1
3 or b2

3. In what
follows we will use the symbol b∗i to denote the class bi with a variable superscript.

Multiplication table for G/P1 under the product ¯0:

¯0 b1 b2 b1
3 b2

3

b1 b2

b2 b1
3 + b2

3 2b4

b1
3 b4 b5 0

b2
3 b4 b5 b6 0

b4 b5 b6 0 0

b5 b6 0 0 0

b6 0 0 0 0

4.2. Determination of (H∗(G/P2),¯0). For any parabolic subgroup P , let θP

be the involution of WP defined by

(7) θP w = wowwo,P .

Then, by [KuLM, Section 2.1], εP
w is Poincaré dual to εP

θP w
.

Using (1) and

(8) wo,P2 = s1s3s4,

we get

(9) wP2
o = s2s4s1s2s3s2s1s4s2.

The enumeration of WP2 as in the following table can be read off from (9) together
with the fact that | WP2 |= 24. The values of λw and nw are obtained by explicit
calculations. Observe that the following identities provide some simplification in
the calculations of λw and nw.
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For any w ∈ WP2 ,

(10) λθP (w) = −λw,

and

(11) nθP (w) = −nw.

In the following table, the two w’s appearing in the same row are θP –images
of each other, i.e., the corresponding classes εP2

w are Poincaré dual to each other.

εP2
w w λw nw εP2

w w λw nw

b0 = 1 e (1, 1, 0, 0) 5 b9 s2s4s1s2s3s2s1s4s2 (−1,−1, 0, 0)−5

b1 s2 (1, 0, 1, 0) 4 b8 s4s1s2s3s2s1s4s2 (−1, 0,−1, 0)−4

b1
2 s1s2 (0, 1, 1, 0) 3 b1

7 s4s2s3s2s1s4s2 (0,−1,−1, 0)−3
b2
2 s3s2 (1, 0, 0, 1) 3 b2

7 s4s2s1s2s3s4s2 (−1, 0, 0,−1)−3
b3
2 s4s2 (1, 0, 0,−1) 3 b3

7 s3s2s1s2s4s3s2 (−1, 0, 0, 1) −3

b1
3 s3s1s2 (0, 1, 0, 1) 2 b1

6 s4s2s3s1s4s2 (0,−1, 0,−1)−2
b2
3 s4s1s2 (0, 1, 0,−1) 2 b2

6 s3s2s4s1s3s2 (0,−1, 0, 1) −2
b3
3 s4s3s2 (1, 0,−1, 0) 2 b3

6 s1s2s3s4s1s2 (−1, 0, 1, 0) −2

b1
4 s2s3s1s2 (0, 0, 1, 1) 1 b1

5 s4s2s1s3s2 (0, 0,−1,−1)−1
b2
4 s4s3s1s2 (0, 1,−1, 0) 1 b2

5 s2s4s1s3s2 (0,−1, 1, 0) −1
b3
4 s2s4s1s2 (0, 0, 1,−1) 1 b3

5 s3s2s1s4s2 (0, 0,−1, 1) −1
b4
4 s2s4s3s2 (1,−1, 0, 0) 1 b4

5 s1s2s3s4s2 (−1, 1, 0, 0) −1

From the definition of ¯0 and the values of nw, we get the following.

Corollary 4.1. For u, v ∈ WP2, in (H∗(G/P2),¯0),

εP2
u ¯0 εP2

v = εP2
u · εP2

v , if `(u) + `(v) ≤ 4

= εP2
u · εP2

v , if `(u) + `(v) ≥ 5 and one of `(u) or `(v) ≥ 5

= 0, if `(u) + `(v) ≥ 5 and both of `(u) and `(v) ≤ 4.

For any i 6= j ∈ {1, 3, 4}, let σi,j be the involution of H∗(G/P2) induced
from the Dynkin diagram involution taking the i-th node to the j-th node and
fixing the other two nodes. Let F̂ be the group of automorphisms of H∗(G/P2)
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generated by σ1,3, σ1,4 and σ3,4. Then, F̂ is isomorphic with the symmetric group
S3.

Using [KuLM, Lemma 2.9], the Chevalley formula and Corollary 4.1, we only
need to calculate b·2b

∗
2, b

·
2b
∗
5, b

·
2b
∗
6 and b·3b

∗
5. Further, using the automorphism group

F̂ , it suffices to calculate b1
2b
∗
2, b

1
2b
∗
5, b

1
2b
∗
6 and b1

3b
∗
5. To calculate b1

2b
∗
6, write

b1
2b
∗
6 = db8, for some d.

Multiply this equation by b1 and use the known part of the multiplication table
to determine d. The calculation of b1

3b
∗
5 is exactly similar.

To calculate b1
2b

2
5, write

b1
2b

2
5 =

3∑

i=1

dib
i
7, for some di ∈ Z+.

Multiplying the above equation by b1, we get

b1
2b

2
5b1 =

3∑

i=1

dib8.

On the other hand,

b1
2b

2
5b1 =

3∑

i=1

b1
2b

i
6 = 2b8.

Thus, d1 + d2 + d3 = 2. Using the involution σ3,4 of H∗(G/P2), we are forced to
have

b1
2b

2
5 = b2

7 + b3
7 or b1

2b
2
5 = 2b1

7.

If b1
2b

2
5 = 2b1

7, then the coefficient of b2
4 in b1

2b
1
2 would be 2 (as can be seen

by multiplying with b2
5). Using the Chevalley formula, the coefficient of b2

4 in
b1
2εs1εs2 ∈ H∗(G/B) can be seen to be 0. On the other hand, εs1εs2 = b1

2 + εs2s1

and thus the coefficient of b2
4 in b1

2εs1εs2 would at least be 2. This is a contradiction
and hence we must have

b1
2b

2
5 = b2

7 + b3
7.

The calculation for b1
2b

4
5 is similar and yields 0. To calculate b1

2b
1
5, write

b1b1b
1
5 =

3∑

i=1

bi
2b

1
5.

But,
b3
2b

1
5 = σ1,4(b1

2b
4
5) = 0,
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and b2
2b

1
5 = σ1,3(b1

2b
1
5). On the other hand

b1b1b
1
5 = b1b

1
6 = b1

7 + b2
7.

Thus,

b1
2b

1
5 = b1

7 or b2
7.

If b1
2b

1
5 = b2

7, then

b1
2b

3
5 = σ3,4(b1

2b
1
5) = b3

7.

To calculate b1
2b
∗
2, write

b1
2b
∗
2 =

4∑

i=1

dib
i
4, for some di ∈ Z+.

Multiply this equation by bi
5 to get

b1
2b
∗
2b

i
5 = dib9.

From this we conclude that b1
2b

1
2 = 0. However, by considering the morphism

P4/B → PSO(8)/B, induced from the inclusion, we can easily see that b1
2b

1
2 6= 0.

This contradiction forces b1
2b

1
5 = b1

7. Using σ3,4 as above, we can calculate b1
2b

3
5

from b1
2b

1
5.

Now, from the known part of the multiplication table, b1
2b
∗
2 can be determined.

Multiplication table for G/P2 under the product ¯0:
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¯0 b1 b12 b22 b32 b13 b23 b33 b14 b24 b34 b44

b1 b12 + b22 + b32

b12 b13 + b23 b14 + b34
b22 b13 + b33 b24 b14 + b44
b32 b23 + b33 b24 b24 b34 + b44

b13 b14 + b24 0 0 0 0

b23 b24 + b34 0 0 0 0 0

b33 b24 + b44 0 0 0 0 0 0

b14 0 0 0 0 0 0 0 0

b24 0 0 0 0 0 0 0 0 0

b34 0 0 0 0 0 0 0 0 0 0

b44 0 0 0 0 0 0 0 0 0 0 0

b15 b16 b17 b27 0 b8 0 0 b9 0 0 0

b25 b16 + b26 + b36 b27 + b37 b17 + b37 b17 + b27 b8 b8 b8 0 b9 0 0

b35 b26 b17 0 b37 0 b8 0 0 0 b9 0

b45 b36 0 b27 b37 0 0 b8 0 0 0 b9

b16 b17 + b27 b8 b8 0 b9 0 0 0 0 0 0

b26 b17 + b37 b8 0 b8 0 b9 0 0 0 0 0

b36 b27 + b37 0 b8 b8 0 0 b9 0 0 0 0

b17 b8 b9 0 0 0 0 0 0 0 0 0

b27 b8 0 b9 0 0 0 0 0 0 0 0

b37 b8 0 0 b9 0 0 0 0 0 0 0

b8 b9 0 0 0 0 0 0 0 0 0 0

5. The restricted triangle inequalities for D4

Consider the basis {ε∗i }i=1,...,4 of h which is dual to the standard basis {εi}i=1,...,4

of h∗ as in [Bo, Planche IV]. Express any h ∈ a in this basis:

h = xε∗1 + yε∗2 + zε∗3 + wε∗4, x, y, z, w ∈ R.

Then,

h ∈ ∆ iff x ≥ y ≥ z ≥| w | .

5.1. The restricted triangle inequalities corresponding to the parabolic
subgroup P1. We give below the complete list (up to a permutation) of the
Schubert classes (bj1

i1
, bj2

i2
, bj3

i3
) = (εP1

w1
, εP1

w2
, εP1

w3
) such that

εP1
w1
¯0 εP1

w2
¯0 εP1

w3
= εP1

w
P1
o
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and write down the corresponding inequality TP1
w :

3∑

j=1

〈λP1
wj

, hj〉 ≥ 0.

We express hj = (xj , yj , zj , wj), j = 1, 2, 3 in the coordinates {ε∗i }i=1,...,4. We
divide the set of inequalities in two disjoint sets, one coming from the Schubert
classes (bj1

i1
, bj2

i2
, bj3

i3
) such that at least one of the cohomology classes is 1. It

can be seen that the corresponding inequalities are the weak triangle inequalities
WTI defined in Section 3.1.1. The remaining inequalities are called the essential
triangle inequalities ETI. We label the inequalities ETI corresponding to the
parabolic P1 by ETI(1) and similarly for WTI.

ETI(1):
(b1, b1, b4) : y1 + y2 − z3 ≥ 0 (3)
(b1, b2, b

1
3) : y1 + z2 + w3 ≥ 0 (6)

(b2, b
2
3, b1) : z1 − w2 + y3 ≥ 0 (6)

WTI(1):
(1, 1, b6) : x1 + x2 − x3 ≥ 0 (3)
(1, b1, b5) : x1 + y2 − y3 ≥ 0 (6)
(1, b2, b4) : x1 + z2 − z3 ≥ 0 (6)
(1, b1

3, b
2
3) : x1 + w2 − w3 ≥ 0 (6)

To get the full set of inequalities TP1
w for P1, we need to permute the above

collection of inequalities where the subscripts {1, 2, 3} are permuted arbitrarily.
The number at the end of each inequality denotes the number of inequalities
obtained by permuting that particular inequality. Thus, the total number of
inequalities TP1

w corresponding to P1 is 36.

5.2. The restricted triangle inequalities TP2
w corresponding to the par-

abolic subgroup P2. In each cohomological degree except for 8 and 10 there is
only one orbit of the Schubert classes under F̂ . In degree 8 there are two orbits
(of three classes in the orbit of b1

4 and one in the orbit of b2
4).

Of course, F̂ acts diagonally on the set of triples (bj1
i1

, bj2
i2

, bj3
i3

) such that bj1
i1
¯0

bj2
i2
¯0bj3

i3
= b9. Also, S3 acts on such triples via permutation and these two actions

commute. So, we get an action of the product group S3× F̂ on such triples. The
following is a complete list of such triples of Schubert classes in H∗(G/P2) up to
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the action of S3 × F̂ and the corresponding inequality TP2
w . The number at the

end of each inequality denotes the order of the corresponding S3 × F̂−orbit.

ETI(2):

(b1, b1, b
1
7) : x1 + z1 + x2 + z2 − y3 − z3 ≥ 0 (9)

(b1, b
1
2, b

1
6) : x1 + z1 + y2 + z2 − y3 − w3 ≥ 0 (36)

(b1, b
1
3, b

1
5) : x1 + z1 + y2 + w2 − z3 − w3 ≥ 0 (18)

(b1, b
1
3, b

2
5) : x1 + z1 + y2 + w2 − y3 + z3 ≥ 0 (18)

(b1
2, b

1
2, b

1
5) : y1 + z1 + y2 + z2 − z3 − w3 ≥ 0 (18)

(b1
2, b

2
2, b

2
5) : y1 + z1 + x2 + w2 − y3 + z3 ≥ 0 (18)

WTI(2):

(1, 1, b9) : x1 + y1 + x2 + y2 − x3 − y3 ≥ 0 (3)
(b1, 1, b8) : x1 + z1 + x2 + y2 − x3 − z3 ≥ 0 (6)
(b1

2, 1, b1
7) : y1 + z1 + x2 + y2 − y3 − z3 ≥ 0 (18)

(b1
3, 1, b1

6) : y1 + w1 + x2 + y2 − y3 − w3 ≥ 0 (18)
(b1

4, 1, b1
5) : z1 + w1 + x2 + y2 − z3 − w3 ≥ 0 (18)

(b2
4, 1, b2

5) : y1 − z1 + x2 + y2 − y3 + z3 ≥ 0 (6)

The group S3×F acts canonically on a3, where S3 acts by permutation of the
three factors and F acts via the corresponding Dynkin automorphism of a. To
get the full set of inequalities TP2

w for P2, we need to apply the group S3 × F to
the above collection of inequalities.

Thus, we get totally 186 inequalities corresponding to the maximal parabolic
P2.

The multiplication table for H∗(G/P3) (resp. H∗(G/P4)) can be obtained
from that of H∗(G/P1) by using the isomorphism of H∗(G/P1) with H∗(G/P3)
(resp. H∗(G/P4)) induced from the Dynkin automorphisms. Accordingly, the
inequalities corresponding to H∗(G/P3) and H∗(G/P4) are obtained from TP1

w

by applying the action of F . All in all, each system TP3
w and TP4

w consists of 36
inequalities.

Below are the explicit lists of inequalities.
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5.3. The restricted triangle inequalities corresponding to the parabolic
subgroup P3.

ETI(3):

x1 + y1 − z1 + w1 + x2 + y2 − z2 + w2 − x3 + y3 − z3 − w3 ≥ 0
x1 + y1 − z1 + w1 + x2 − y2 + z2 + w2 − x3 + y3 + z3 + w3 ≥ 0
x1 − y1 + z1 + w1 + x2 − y2 − z2 − w2 + x3 + y3 − z3 + w3 ≥ 0

WTI(3):

x1 + y1 + z1 − w1 + x2 + y2 + z2 − w2 − x3 − y3 − z3 + w3 ≥ 0
x1 + y1 + z1 − w1 + x2 + y2 − z2 + w2 − x3 − y3 + z3 − w3 ≥ 0
x1 + y1 + z1 − w1 + x2 − y2 + z2 + w2 − x3 + y3 − z3 − w3 ≥ 0
x1 + y1 + z1 − w1 − x2 + y2 + z2 + w2 + x3 − y3 − z3 − w3 ≥ 0

To get the full set of inequalities TP3
w for P3, we need to permute the above

collection of inequalities where the subscripts {1, 2, 3} are permuted arbitrarily.

5.4. The restricted triangle inequalities corresponding to the parabolic
subgroup P4.

ETI(4):

x1 + y1 − z1 − w1 + x2 + y2 − z2 − w2 − x3 + y3 − z3 + w3 ≥ 0
x1 + y1 − z1 − w1 + x2 − y2 + z2 − w2 + x3 − y3 − z3 + w3 ≥ 0
x1 − y1 + z1 − w1 − x2 + y2 + z2 − w2 + x3 + y3 − z3 − w3 ≥ 0

WTI(4):

x1 + y1 + z1 + w1 + x2 + y2 + z2 + w2 − x3 − y3 − z3 − w3 ≥ 0
x1 + y1 + z1 + w1 + x2 + y2 − z2 − w2 − x3 − y3 + z3 + w3 ≥ 0
x1 + y1 + z1 + w1 + x2 − y2 + z2 − w2 − x3 + y3 − z3 + w3 ≥ 0
x1 + y1 + z1 + w1 + x2 − y2 − z2 + w2 − x3 + y3 + z3 − w3 ≥ 0

To get the full set of inequalities TP4
w for P4, we need to permute the above

collection of inequalities where the subscripts {1, 2, 3} are permuted arbitrarily.
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5.5. The cone C. Thus, the total number of inequalities TPi
w defining the cone

C inside ∆3 is equal to 36 + 186 + 36 + 36 = 294. Since ∆3 ⊂ a3 is defined by 12
inequalities, we get altogether 306 inequalities defining the cone C inside a3. Let
Σ be the set of these 306 inequalities defining the cone C.

Theorem 5.1. The system Σ is irredundant.

Proof. In order to show the irredundancy of the system Σ, it suffices to show that
the cone C has 306 facets. It is done by applying the MAPLE package CONVEX
[F] to the above system (see [Ka1]). ¤

Remark 5.2. The same computation also shows that the cone C has 81 extremal
rays.

Our next goal is to verify the saturation conjecture (Conjecture 1.5) for the
group G∨ = Spin(8). Let P∨ ⊂ (h∨)∗ = h denote the weight lattice of G∨ and
Q∨ ⊂ P∨ denote the root lattice. Of course, Q = Q∨ since G is simply–laced.
Recall that in the Introduction we have defined the semigroups C0 and R of D3

with
R ⊂ C0.

Theorem 5.3 (Saturation theorem for Spin(8)).

R = C0.

Proof. In order to prove the inclusion C0 ⊂ R, it suffices to show that each
semigroup generator of C0 belongs to R. To find the minimal set of semigroup
generators (Hilbert basis) for C0 , we define a basis {ᾱi, ζj}1≤i≤4,1≤j≤8 of the
lattice φ−1(Q∨), where

φ : (P∨)3 → P∨, φ(λ, µ, ν) = λ + µ + ν.

Consider the splitting of the exact sequence (for K := Ker φ)

0 → K → (P∨)3
φ→ P∨ → 0

over Q∨ under the map ψ(αi) = (αi, 0, 0), i = 1, ..., 4.

Therefore, we can identify Q∨ with the subgroup ψ(Q∨) ⊂ (P∨)3 with basis

{ᾱi = ψ(αi)}1≤i≤4.
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Set

ζj = (−ωj , ωj , 0)

for 1 ≤ j ≤ 4 and

ζj = (−ωj−4, 0, ωj−4)

for 5 ≤ j ≤ 8, where {ωj} are the fundamental weights for Spin(8). Then, it is
clear that {ζj , j = 1, ..., 8} is a basis of K and

{ᾱi, ζj : i = 1, ..., 4, j = 1, ..., 8}
is a basis of φ−1(Q∨).

Thus, the semigroup C0 is precisely equal to the integral points of the cone C
with respect to the coordinates {ᾱi, ζj}.

Computation of the Hilbert basis H of C0 is done via the package HILBERT,
[HHM] (see [Ka2]). Observe that the action of the group S3 × F on a3 keeps C0

stable. Since the Hilbert basis is unique, it follows that H is invariant under the
action of S3 × F . Below is the list H ′ of elements of H modulo the action of
S3 × F :

(ω1, ω1, 0)
(ω2, ω2, 0)
(ω2, ω2, ω2)
(ω1, ω3, ω4)
(ω1, ω1, ω2)

(ω1, ω2, ω3 + ω4)
(2ω1, ω2, ω2)

(ω1 + ω2, ω2, ω3 + ω4)
(ω2, ω2, ω1 + ω3 + ω4)

(2ω2, ω2, ω1 + ω3 + ω4).

Since S3 × F also preserves the semigroup R, in order to prove Theorem 5.3,
it suffices to check that H ′ ⊂ R. This is done using MAPLE package WEYL
written by John Stembridge, see [S]. It is done in [Ka2].
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