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Noncoherence of some lattices in Isom.Hn/

MICHAEL KAPOVICH

LEONID POTYAGAILO

ERNEST VINBERG

We prove noncoherence of certain families of lattices in the isometry group of the
hyperbolic n–space for n greater than 3 . For instance, every nonuniform arithmetic
lattice in SO.n; 1/ is noncoherent, provided that n is at least 6 .
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To the memory of Heiner Zieschang

1 Introduction

The aim of this paper is to prove noncoherence of certain families of lattices in the
isometry group Isom.Hn/ of the hyperbolic n–space Hn (n > 3). We recall that
a group G is called coherent if every finitely generated subgroup of G is finitely
presented. It is well known that all lattices in Isom.H2/ and Isom.H3/ are coherent.
Indeed, it is easy to prove that every finitely generated Fuchsian group is finitely
presented. The coherence of 3–manifold groups was proved by P Scott [21]. First
examples of geometrically finite noncoherent discrete subgroups of Isom.H4/ were
constructed by the first and second author [10] and the second author [17; 18]. An
example of noncoherent uniform lattice in Isom.H4/ was given by Bowditch and
Mess [4].

In what follows we will identify Hn with a connected component of the hyperboloid

fx W f .x/D�1g �RnC1;

where f is a real quadratic form of signature .n; 1/ in nC1 variables. Then the group
Isom.Hn/ is identified with the index 2 subgroup O 0.f;R/�O.f;R/ preserving Hn .

Let f and g be quadratic forms on finite-dimensional vector spaces V and W over Q.
It is said that f represents g if the vector space V admits an orthogonal decomposition
(with respect to f )

V D V 0˚V 00
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so that f jV 0 is isometric to g . In other words, after a change of coordinates, the form
f can be written as

f .x1; :::;xn/D g.x1; :::;xk/C h.xkC1; :::;xn/

where n D dim.V / and k D dim.W /. Whenever f represents g , a finite index
subgroup of O.g;Z/ is naturally embedded into O.f;Z/.

The main result of this paper is:

Theorem A For every n� 4 and every rational quadratic form f of signature .n; 1/
which represents the form

q3 D�x2
0 Cx2

1 Cx2
2 Cx2

3 ;

the lattice O.f;Z/ is noncoherent.

Corollary 1.1 For every n � 4 there are infinitely many commensurability classes of
nonuniform noncoherent lattices in Isom.Hn/.

We refer the reader to Section 3 for the discussion of uniform lattices. By combining
Theorem A with some standard facts on rational quadratic forms, we prove:

Theorem B For n� 6 every nonuniform arithmetic lattice in Isom.Hn/ is noncoher-
ent.

As a by-product of the proof, in Section 2.2, we obtain a simple proof of the following
result of independent interest (which was proven by Agol, Long and Reid [1] in the case
nD 3). Recall that a subgroup of a group � is called separable if it can be represented
as the intersection of a family of finite index subgroups of � . For instance, separability
of the trivial subgroup is nothing else than residual finiteness of � .

Theorem C In every nonuniform arithmetic lattice in Isom.Hn/ (n � 5), every
geometrically finite subgroup is separable.

We refer the reader to Bowditch [3] for the definition of geometrically finite discrete
subgroups of Isom.Hn/. Recall only that every discrete group which admits a finitely-
sided convex fundamental polyhedron is geometrically finite.

In Section 4 we adopt the method of Gromov and Piatetski-Shapiro [8] to obtain
examples of nonarithmetic noncoherent lattices:
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Theorem D For each n � 4 there exist both uniform and nonuniform noncoherent
nonarithmetic lattices in Isom.Hn/.

The above results provide a strong evidence for the negative answer to the following
question in the case of nonuniform lattices:

Question 1.2 (D Wise) Does there exist a coherent lattice in Isom.Hn/ for any
n> 3?

In Section 5 we provide some tentative evidence for the negative answer to this question
in the uniform case as well.

Our proof of the noncoherence in the nonuniform case is different from the one by
Bowditch and Mess [4]: The finitely generated infinitely presented subgroup that we
construct is generated by four subgroups stabilizing 4 distinct hyperplanes in Hn , while
in the construction used in [4] two hyperplanes were enough. Direct repetition of the
arguments used in [4] does not seem to work in the nonuniform case.
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2 Preliminaries

We refer the reader to Kapovich [9] and Maskit [14] for the basics of discrete groups
of isometries of the hyperbolic spaces Hn .

Notation Given a convex polyhedron Q � Hn let G.Q/ denote the subgroup of
Isom.Hn/ generated by the reflections in the walls of Q.

We will frequently use the quadratic forms

qn D�x2
0 Cx2

1 C :::Cx2
n :
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Let f be a quadratic form
f D

X
i;j

aij xixj

defined over a number field K �R, and � be an embedding K!R. Then f � will
denote the form X

i;j

�.aij /xixj :

2.1 Arithmetic groups

Let f be a quadratic form of signature .n; 1/ in nC 1 variables with coefficients in a
totally real algebraic number field K �R satisfying the following condition:

(�)
For every nontrivial (ie, different from the identity) embedding � W K!R
the quadratic form f � is positive definite.

Below we discuss discrete subgroups of Isom.Hn/ defined using the form f . Let A

denote the ring of integers of K . We define the group � WD O.f;A/ consisting of
matrices with entries in A preserving the form f . Then � is a discrete subgroup of
O.f;R/. Moreover, it is a lattice, ie, its index 2 subgroup

� 0 DO 0.f;A/ WDO.f;A/\O 0.f;R/

acts on Hn so that Hn=� 0 has finite volume. Such groups � (and subgroups of
Isom.Hn/ commensurable to them) are called arithmetic subgroups of the simplest
type in O.n; 1/; see Vinberg and Shvartsman [24].

Remark 2.1 If � � Isom.Hn/ is an arithmetic lattice so that either � is nonuniform
or n is even, then it follows from the classification of rational structures on Isom.Hn/

that � is commensurable to an arithmetic lattice of the simplest type. For odd n there
is another family of arithmetic lattices given as the groups of units of appropriate
skew-Hermitian forms over quaternionic algebras. Yet other families of arithmetic
lattices exist for nD 3 and nD 7. See, for example, Vinberg and Shvartsman [24] or
Millson and Li [11].

A lattice � � Isom.Hn/ is called uniform if Hn=� is compact and nonuniform
otherwise. An arithmetic lattice O.f;A/ of the simplest type is nonuniform if and
only if K DQ and f is isotropic, ie, there exists a nonzero vector v 2QnC1 such
that f .v/D 0.

Meyer’s theorem (which follows from the Hasse–Minkowski principle; see [2, pp 61–
62] or [5, Corollary 1, p 75]) states that every indefinite rational quadratic form of
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rank � 5 is isotropic. Thus, for each rational quadratic form f of signature .n; 1/,
n � 4, the lattice O.f;Z/ is nonuniform. Conversely, every nonuniform arithmetic
lattice in Isom.Hn/ is commensurable to O.f;Z/, where f is a rational quadratic
form.

In particular, the groups O 0.qn;Z/ � Isom.Hn/ are nonuniform arithmetic lattices.
The group O 0.q3;Z/ coincides with the group G.�/, where ��H3 is the simplex
with the Coxeter diagram

1 2 3 4

(see [24, Chapter 6, 2.1] and references therein).

Lemma 2.2 The group G.�/ contains a finite index subgroup � such that H3=�

fibers over the circle.

Proof Let v4 2� denote the (finite) vertex of � disjoint from the 4–th face. Consider
the union O of the images of � under the stabilizer of v4 in G.�/. Then O is a regular
right-angled ideal hyperbolic octahedron in H3 [19; 24]. The group G.�/ contains
G.O/ as a finite index subgroup. It is well known that G.O/ is commensurable with
the fundamental group of the Borromean rings complement which fibers over the circle
[23]. The property of being the fundamental group of a surface bundle over the circle
is hereditary with respect to subgroups of finite index. Thus G.�/ contains a subgroup
� of finite index so that H3=� fibers over the circle.

2.2 Rational quadratic forms

The following proposition is well-known in the theory of rational quadratic forms; see
Cassels [5, Exercise 8, Page 101]. We present a proof for the sake of completeness.

Proposition 2.3 Let f and g be nonsingular rational quadratic forms having respec-
tively the signatures .r; s/ and .p; q/ such that r �p and s�q: If rank.f /�rank.g/�
3 then f represents g .

Proof Recall that a rational quadratic form f on a rational vector space V represents
b 2Q if there exists a vector v 2 V n f0g such that f .v/D b . We use the following
lemma.
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Lemma 2.4 Suppose that f is a nonsingular rational quadratic form in n� 4 variables
and b is an arbitrary nonzero rational number.

(a) If f is positive definite and b > 0 then f represents b .

(b) If f is indefinite then f represents b .

Proof The form

F.y1; :::;yn;ynC1/ WD f .y1; :::;yn/� by2
nC1

is an indefinite nonsingular form of rank � 5. By Meyer’s theorem the form F

represents 0. Hence by [2, Theorem 6, p 393], the form f represents b .

Let n WD r C s; k WD p C q be the ranks of f and g respectively. After changing
coordinates in Qk we may assume that g has the diagonal form

g D b1x2
1 C :::C bkx2

k ;

where bi 2QC , if i � p and bi 2Q� , if i > p .

The form f is isomorphic to b1y2
1
Cf1.y2; :::;yn/ since f represents b1 by Lemma

2.4. By applying the same procedure to f1 and arguing inductively we obtain, after k

steps,
f D b1y2

1 C :::C bky2
k Cfk

where fk is a form in n � k variables. Note that the argument works as long as
n� k � 3. Indeed, if nD kC 3 we will have

f D b1y2
1 C :::C bk�1y2

k�1Cfk�1.yk ;ykC1;ykC2;ykC3/

and therefore we can apply the above argument the last time to fk�1 .

We now use the above proposition to prove Theorem C stated in Section 1.

Proof We will use the following result proven by P Scott in [22] for the convex–
cocompact subgroups and by Agol, Long and Reid [1] for the geometrically finite
subgroups:

Suppose that P � Hn is a right-angled polyhedron of finite volume. Then every
geometrically finite subgroup of G.P / is separable.

Let � be a nonuniform arithmetic lattice in Isom.Hk/, k � 5. Then � is commen-
surable to O.g;Z/ where g is a nonsingular rational quadratic form of signature
.k; 1/.
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According to [19] there exists a right-angled noncompact convex polyhedron of finite
volume P8�H8 . Moreover, the group G.P8/ is a finite index subgroup in O 0.q8;Z/,
see [24]. Since rank.q8/�rank.g/� 3, it follows that q8 represents g , see Proposition
2.3. Hence we have a natural embedding of a finite index subgroup of � into G.P8/.
As P8 is right-angled, every geometrically finite subgroup of G.P8/ is separable.
Since subgroup separability is hereditary with respect to passing to a subgroup, we
conclude that every geometrically finite subgroup of � is separable.

2.3 Hyperplane separability

In Section 4 we will need the following variation on subgroup separability. Suppose
that � D O 0.f;Z/ is an arithmetic subgroup of Isom.Hn/, where f is a rational
quadratic form of signature .n; 1/. Let Vi �RnC1 , i D 0; 1; :::; k be rational vector
subspaces of codimension 1, so that Vi ˝R intersects Hn along the hyperplane Hi ,
i D 0; 1; :::; k . We assume that

(1) H0\Hi D∅; i D 1; :::; k:

The following proposition is a generalization of Long [12]; its proof follows the lines
of the proof of Margulis and Vinberg [13, Lemma 10].

Proposition 2.5 There exists a finite index subgroup � 0 � � so that for every  2 � 0

either  .H0/DH0 or

 .H0/\ .H0[H1[ :::[Hk/D∅:

Proof Let .�; �/ denote the symmetric bilinear form on RnC1 corresponding to f .
Suppose that V;V 0 �RnC1 are codimension 1 vector subspaces which intersect Hn

along hyperplanes H;H 0 . Let e; e0 2RnC1 be nonzero vectors orthogonal to V;V 0

respectively. Then H intersects H 0 transversally iff

j.e; e0/j<
p
.e; e/.e0; e0/:

For each Vi (i D 0; 1; :::; k ) choose an orthogonal primitive integer vector ei . Then
(1) implies that

j.ei ; e0/j �
p
.ei ; ei/.e0; e0/; i D 1; :::; k:

Choose a natural number N which is greater than

2 max
iD0;1;:::;k

j.e0; ei/j:

Let � 0 D �.N / denote the level N congruence subgroup in � , ie, the kernel of the
natural homomorphism

�!GL.nC 1;Z=N Z/:
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Then for every  2 � 0 , i D 0; 1; :::; k ,

. .ei/; e0/� .ei ; e0/ (mod N /

and therefore either

j. .ei/; e0/j D j.ei ; e0/j

j. .ei/; e0/j> j.ei ; e0/j �
p
.ei ; ei/.e0; e0/D

p
. .ei/;  .ei//.e0; e0/;or

hence either  .H0/DHi or  .H0/\Hi D∅.

Lastly, we have to ensure that  .e0/ ¤ ˙ei for i D 1; :::; k and all  2 � 0 . This is
achieved by taking N which does not divide some nonzero entries of e0C ei and of
e0� ei for all i D 1; :::; k .

2.4 A construction of noncoherent groups

Let L� Isom.H3/ be a subgroup commensurable to the reflection group G.�/ defined
in Section 2.1. We embed H3 in H4 as a hyperplane H and naturally extend the
action of L from H to H4 . Let p1;p2 2 @H be distinct parabolic points of L. Let
…1;…2 be perpendicular hyperplanes in H4 which are parallel to H and asymptotic
to p1;p2 , respectively. Let �i denote the (commuting) reflections in …i ; i D 1; 2. Set
�3 WD �1�2 . Let G denote the subgroup of Isom.H4/ generated by L; �1; �2 .

Theorem 2.6 [10] For every choice of the group L, hyperplane H , points p1;p2

and hyperplanes …1;…2 as above, the group G is noncoherent.

We will need the following:

Corollary 2.7 Suppose that L0;L1;L2;L3 are arbitrary finite index subgroups in

L; �1L�1; �2L�2; �3L�3; respectively:

Then the subgroup S of G generated by L0;L1;L2;L3 is noncoherent.

Proof The intersection

L0 WDL0\ �1L1�1\ �2L2�2\ �3L3�3

is a finite index subgroup in L. Let S 0 denote the subgroup of S generated by

(2) L0; �1L0�1; �2L0�2; �3L0�3:

It is clear that S 0 has index 4 in the group generated by L0; �1; �2 . Since the latter is
noncoherent by Theorem 2.6, it follows that S 0 , and thus S , is noncoherent as well.
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Remark 2.8 Note that the groups in (2) have the invariant hyperplanes H , �1.H /,
�2.H /, �3.H /, respectively. See Figure 1, where we use the projective model of H4 .

p2

…1

�2

p1

H

…2

�1

�2.H / �3.H /

H4

�1.H /

Figure 1

3 Construction of noncoherent arithmetic lattices

Proof of Theorem A Our strategy is to embed a noncoherent group G (of the type
described in Section 2.4) into the lattice O.f;Z/. Then it would follow that O.f;Z/
is noncoherent.

Let q3 be the quadratic form of rank 4 on the rational vector space U as in Section 2.
Then O 0.q3;Z/DG.�/, see Section 2.1. We can change the coordinates in U to yi

(i D 1; 2; 3; 4) so that q3 takes the form:

g D 2y1y2Cy2
3 Cy2

4 :

Let fe1; e2; e3; e4g be the corresponding basis of U . Note that the group O.g;Z/ is
commensurable to O.q3;Z/.
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Let .U;g/! .V; f / be a rational embedding. Pick a nonzero vector e5 2V orthogonal
to U . Then

a WD f .e5/ > 0:

Define a 5–dimensional vector space W spanned by the vector e5 and U . Let h

be the restriction of the form f to W ; hence we have .U;g/ � .W; h/ � .V; f /. It
therefore suffices to embed some noncoherent group G (as in Section 2.4) into the
group O 0.h;Z/.

We let .�; �/ denote the bilinear form on W corresponding to h. The space W splits as
the orthogonal direct sum U ˚Qe5 . We will consider H4 canonically embedded in
W ˝R and identify H3 with the hyperplane H WD U ˝R\H4 �H4 .

After replacing e2 with ae2 we obtain .e1; e2/D a. Set

u1 WD e1C e5;u2 WD �e2C e5:

Thus

.u1;u1/D .u2;u2/Da; .u1;u2/D .u1; e1/D .u2; e2/D0; .u1; e2/D�.u2; e1/Da:

Let Ui �W (i D 1; 2) be the 4–dimensional vector subspace orthogonal to ui . Since
a > 0, it follows that each Ui ˝R (i D 1; 2) intersects H4 along a hyperplane …i .
The reflection

�i W w 7! w� 2
.w;ui/

.ui ;ui/
ui

in the subspace Ui is represented by a matrix with integer coefficients in the basis
fe1; :::; e5g. Thus �i 2O 0.h;Z/, i D 1; 2.

Because g.ei/D 0, the vector ei corresponds to a parabolic point pi 2 @H4 of the
group O.g;Z/, i D 1; 2. Since .u1;u2/D 0, it follows that …1 is perpendicular to
…2 . Moreover, since ei 2 Ui , we conclude that @…i contains pi , i D 1; 2. Since

.ui ; e5/D
p
.ui ;ui/.e5; e5/;

the hyperplane …i is parallel to H ; see the proof of Proposition 2.5.

Let L be a finite index subgroup of O 0.g;Z/ contained in O 0.h;Z/. The group G ,
generated by L; �1; �2 , is contained in O 0.h;Z/. Theorem 2.6 then implies that the
lattice O 0.h;Z/ is noncoherent. Hence O.f;Z/ is noncoherent as well. Theorem A
follows.

Proof of Corollary 1.1 For any number a 2N consider the quadratic form

fa.x0;x1; :::;xn/D q3.x0;x1;x2;x3/C ax2
4 Cx2

5 C :::Cx2
n :
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Each fa defines a nonuniform arithmetic lattice O 0.fa;Z/ � Isom.Hn/. Moreover,
for infinitely many appropriately chosen primes a these lattices are not commensurable.
Since each form fa represents q3 , Corollary 1.1 follows from Theorem A.

Theorem 3.1 For each n � 4 there exist uniform noncoherent arithmetic lattices in
Isom.Hn/. Moreover, for each n � 5 there are infinitely many commensurability
classes of such lattices.

Proof The assertion is a rather direct corollary of the result of Bowditch and Mess
[4], but we present a proof for the sake of completeness. We start with a review of the
example of Bowditch and Mess [4] which is a noncoherent uniform arithmetic lattice
in Isom.H4/.

Consider the right-angled regular 120–cell D�H4 . It is a compact regular polyhedron;
see for instance Davis [7] or Vinberg and Shvartsman [24]. It appears that it was first
discovered by Schlegel in 1883 [20], who was interested in classifying honeycombs in
the spaces of constant curvature; see Coxeter [6].

Each facet of D is a right-angled regular dodecahedron. Let � DG.D/� Isom.H4/

be the reflection group determined by D . The group � is commensurable to O.q;A/,
where q.x0;x1;x2;x3;x4/ is the quadratic form given by the matrix

(3)

266664
1 � cos.�=5/ 0 0 0

� cos.�=5/ 1 �1=2 0 0

0 �1=2 1 �1=2 0

0 0 �1=2 1 � cos.�=5/
0 0 0 � cos.�=5/ 1

377775
and A is the ring of integers of the field KDQ.

p
5/. Thus � is a (uniform) arithmetic

lattice. Consider the facets F1;F2 of D which share a common 2–dimensional face F .
There is a canonical isomorphism 'W G.F1/!G.F2/ fixing G.F / elementwise. The
reflection group G.F1/ contains a finite index subgroup isomorphic to the fundamental
group of a hyperbolic 3–manifold M 3 which fibers over S1 ; see Thurston [23]. Let
N1 � �1.M

3/ be a normal surface subgroup and set N2 WD '.N1/ � G.F2/. In
particular, both N1;N2 are finitely generated. On the other hand, Ni \G.F / is a free
group E of infinite rank, i D 1; 2. One then verifies that the subgroup of � generated
by N1 and N2 is isomorphic to N1 �E N2 and therefore is not finitely presentable
[16]. Hence � is a noncoherent uniform arithmetic lattice in Isom.H4/.

In order to construct lattices in Isom.Hn/ consider the quadratic forms

fa.x0;x1; :::;xn/D q.x0;x1;x2;x3;x4/C ax2
5 Cx2

6 C :::Cx2
n ;
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where a 2 N are primes. Since q� is positive definite for the (unique) nontrivial
embedding � W K!R, it follows that each O.fa;A/ is a uniform arithmetic lattice in
O.fa;R/. As in the noncompact case, the groups O.fa;R/ are not commensurable
for infinitely many primes a. As O.q;A/�O.fa;A/, the assertion follows.

Remark 3.2 Clearly, the subgroup generated by any finite index subgroups of G.F1/

and G.F2/ is noncoherent as well.

Remark 3.3 The above construction produces only one commensurability class of
noncoherent lattices in Isom.H4/. Using noncommensurable arithmetic lattices in
Isom.H4/ containing G.F1/, one can construct infinitely many commensurability
classes of uniform noncoherent arithmetic lattices in Isom.H4/.

Proof of Theorem B Let � be a nonuniform arithmetic lattice in Isom.Hn/ where
n� 6. Then � is commensurable to O.f;Z/ for some rational form f of signature
.n; 1/. Since nC 1 � 7 and q3 has rank 4, it follows from Proposition 2.3 that f
represents q3 . Therefore, by Theorem A, the group O.f;Z/ is noncoherent. Thus �
is noncoherent as well.

4 Nonarithmetic noncoherent lattices

Proof of Theorem D We produce these noncoherent examples by using the construc-
tion of nonarithmetic lattices in Isom.Hn/ due to Gromov and Piatetski-Shapiro [8].
We begin with a review of their construction.

Let f be a quadratic form of signature .n� 1; 1/ in n variables with coefficients in
a totally real algebraic number field K �R. Let A denote the ring of integers of K .
We assume that f satisfies Condition (�) from Section 2.1.

We let KC denote the set of a 2K such that for each embedding � W K!R we have
�.a/ > 0. For a 2KC we consider the quadratic form

ha.x0;x1; :::;xn/D f .x0;x1; :::;xn�1/C ax2
n :

It has signature .n; 1/ and satisfies Condition (*). Then �a WDO 0.ha;A/ is a lattice in
Isom.Hn/. Similarly, �0 WDO 0.f;A/ is a lattice in Isom.Hn�1/.

In what follows we will consider pairs of groups �a; �1 , where a 2N . Observe that
both groups contain the subgroup �0 . Let � 0a � �a; �

0
1
� �1 be torsion-free finite

index subgroups such that
� 01\�0 D �

0
a\�0:
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We let � 0
0

denote this intersection and set M1 WDHn=� 0
1
;Ma WDHn=� 0a .

Without loss of generality (after passing to deeper finite index subgroups), we may
assume that Hn�1=� 0

0
isometrically embeds into M1 and Ma as a nonseparating

totally geodesic hypersurface; see Millson [15]. Cut M1 and Ma open along these hy-
persurfaces. The resulting manifolds MC

1
;MC

a both have totally geodesic boundaries
isometric to the disjoint union of two copies of M0 DHn�1=� 0

0
.

Let M be the connected hyperbolic manifold obtained by gluing MC

1
;MC

a via the
isometry of their boundaries. It is easy to see that M is complete. Then there exists
a lattice � � Isom.Hn/ such that M D Hn=� . Note that M is compact iff both
M1;Ma are. It is proven in [8] that

� is not arithmetic if and only if a is not a square in K .

Note that there exist infinitely numbers a which are not squares in K . Indeed, it is well
known that square roots of prime numbers are linearly independent over Q. Therefore
only finitely many of them belong to K .

We now prove Theorem D by working with specific examples.

(1) Compact case For n� 5 take K DQ.
p

5/ and consider the quadratic form

f D q.x0;x1;x2;x3;x4/Cx2
5 C :::Cx2

n�1;

where the form q is given by the matrix (3). The quadratic form q yields a uniform
arithmetic lattice O 0.q;A/ in Isom.H4/ which is commensurable to the reflection
group G.D/ defined in the proof of Theorem 3.1. The group O 0.q;A/ is noncoherent
according to Theorem 3.1. On the other hand, by applying the Gromov–Piatetski-
Shapiro construction to f and taking any prime number a¤ 5, we obtain a uniform
nonarithmetic lattice in Isom.Hn/ which contains O 0.q;A/ and, hence, is noncoherent.

It remains to analyze the case nD 4. Take facets F1;F2;F3 of D so that F1 and F2

intersect along a 2–dimensional face and

F3\F1 D F3\F2 D∅:

Then the group generated by the reflections in the facets of F1 and F2 is noncoherent;
see the proof of Theorem 3.1.

By taking an appropriate finite index subgroup �1 � G.D/, we obtain a hyperbolic
4–manifold M1 DH4=�1 which contains embedded totally geodesic hypersurfaces
Si corresponding to the facets Fi , i D 1; 2; 3, so that

S3\S1 D S3\S2 D∅; S1\S2 ¤∅:
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Now cut M1 open along S3 and apply the gluing construction of Gromov and Piatetski–
Shapiro. In this way one can obtain a nonarithmetic compact hyperbolic manifold M

whose fundamental group contains the subgroup of �1 generated by some finite index
subgroups of G.F1/ and G.F2/ and, hence, is noncoherent (see Remark 3.2).

(2) Noncompact case For n � 5 take K D Q and consider the quadratic form
f D qn�1 . Taking any prime number for a, apply the same argument as in the compact
case.

Consider n D 4. We will imitate the proof in the compact case. However we will
appeal to the results of Section 2.3 instead of using a particular fundamental domain.

Let � WD O 0.q4;Z/. Clearly, q4 represents the form q3 . Set L WD O 0.q3;Z/ � � ,
and let �1; �2 2 O 0.q4;Z/ be the commuting reflections constructed in the proof of
Theorem A. Set �3 WD �1�2 and L0 WDL;Li WD �iL�i , i D 1; 2; 3.

By passing to any finite index subgroups L0i �Li , we obtain a noncoherent subgroup
G0 in � generated by L0i ; i D 0; 1; 2; 3; see Corollary 2.7. Since � is a linear group,
we can assume without loss of generality that � is torsion-free. Let H0 DH �H4

be the L–invariant hyperplane. Then Hi WD �i.H / (i D 1; 2; 3) is the Li –invariant
hyperplane.

Lemma 4.1 There exists a finite index subgroup � 0 � � so that for the groups
L0i WDLi \�

0 we have:

(1) H0=L
0
0

embeds as a hypersurface S0 into H4=� 0 .

(2) Let MC denote the manifold obtained by cutting H4=� 0 along S0 . Then G0

embeds into �1.M
C/.

Proof We have to find a subgroup � 0 so that:

(a) For all  2 � 0 either  .H0/DH0 or

 .H0/\ .H0[H1[H2[H3/D∅:

(b) For all  2 � 0 , the hyperplane  .H0/ does not separate the above hyperplanes
from each other.

This is achieved by applying Proposition 2.5 to the hyperplanes H0;H1;H2;H3 and
H4 WD…1 , H5 WD…2 .
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We now glue an appropriately chosen manifold MC
a along the boundary of MC . Let

M be the resulting complete hyperbolic manifold. Then, as in the case n � 5, the
fundamental group of M is nonarithmetic. On the other hand,

G0 � �1.M
C/� �1.M /:

Therefore �1.M / is noncoherent.

5 Noncoherence and Thurston’s conjecture

We recall the following conjecture:

Conjecture 5.1 (Thurston’s virtual fibration conjecture) Suppose that M is a hy-
perbolic 3–manifold of finite volume. Then there exists a finite cover over M which
fibers over the circle.

We expect that all lattices in Isom.Hn/ are noncoherent for n � 4. Proving this for
nonarithmetic lattices is clearly beyond our reach. Therefore we restrict to the arithmetic
case. Even in this case our discussion will be rather speculative. We restrict to the
arithmetic groups of the simplest type � D O.f;A/, where f is a quadratic form
on V DKnC1 and K � R is a totally real algebraic number field (see Section 2.1).
Choose a basis fe0; e1; :::; eng in which the form f is diagonal:

f D a0x2
0 C a1x2

1 C :::C anx2
n :

Here a0 < 0, a1; :::; an > 0 and for all nontrivial embeddings � W K ! R we have
�.ai/ > 0, for all i D 0; 1; :::; n. To simplify the discussion, we will assume that � is
uniform (the nonuniform lattices were discussed in Theorems and ).

For a 4–element subset I D f0; i; j ; kg � f0; 1; :::; ng let VI � V denote the linear
span of the basis vectors el ; l 2 I . Set HI WD VI ˝R\Hn . Then f jVI determines a
lattice �I in Isom.HI /, which is naturally embedded into � . Assuming Thurston’s
conjecture, up to taking finite index subgroups, each �I contains an (infinite) normal
finitely generated surface subgroup NI . Moreover, by taking I and J such that I \J

consists of 3 elements, we obtain subgroups �I ; �J whose intersection is a Fuchsian
group F . It now follows from the separability of F in � (see Bowditch and Mess [4],
Long [12] or Proposition 2.5 of this paper) that, after passing to certain finite index
subgroups � 0

I
� �I ; �

0
J
� �J , we get the inclusion

(4) � 0I �F �
0
J � �:
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Set N 0
I
WD � 0

I
\NI ;N

0
J
WD � 0

J
\NJ . Then E WDN 0

I
\N 0

J
is a free group of infinite

rank. Now (4) implies that � is noncoherent since the subgroup

N 0I �E N 0J � �

is finitely generated but not finitely presented [16]. Therefore we obtain:

Suppose that Thurston’s conjecture holds for all compact arithmetic 3–manifolds. Then
all uniform arithmetic lattices of the simplest type in Isom.Hn/, n� 4, are noncoherent.

Thus we expect the negative answer to Question 1.2 asked by Dani Wise.
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Birkhäuser, Boston (2001) MR1792613

[10] M Kapovich, L Potyagailo, On the absence of Ahlfors’ finiteness theorem for Kleinian
groups in dimension three, Topology Appl. 40 (1991) 83–91 MR1114093

[11] J-S Li, J J Millson, On the first Betti number of a hyperbolic manifold with an arith-
metic fundamental group, Duke Math. J. 71 (1993) 365–401 MR1233441

Geometry & Topology Monographs, Volume 14 (2008)

http://dx.doi.org/10.2307/2661363
http://dx.doi.org/10.2307/2661363
http://www.ams.org/mathscinet-getitem?mr=1836283
http://www.ams.org/mathscinet-getitem?mr=0195803
http://dx.doi.org/10.1006/jfan.1993.1052
http://www.ams.org/mathscinet-getitem?mr=1218098
http://dx.doi.org/10.2307/2154722
http://www.ams.org/mathscinet-getitem?mr=1240944
http://www.ams.org/mathscinet-getitem?mr=522835
http://www.ams.org/mathscinet-getitem?mr=0087114
http://dx.doi.org/10.2307/2044771
http://www.ams.org/mathscinet-getitem?mr=770546
http://www.ams.org/mathscinet-getitem?mr=932135
http://www.ams.org/mathscinet-getitem?mr=1792613
http://dx.doi.org/10.1016/0166-8641(91)90060-Y
http://dx.doi.org/10.1016/0166-8641(91)90060-Y
http://www.ams.org/mathscinet-getitem?mr=1114093
http://dx.doi.org/10.1215/S0012-7094-93-07115-3
http://dx.doi.org/10.1215/S0012-7094-93-07115-3
http://www.ams.org/mathscinet-getitem?mr=1233441


Noncoherence of some lattices in Isom.Hn/ 351

[12] D D Long, Immersions and embeddings of totally geodesic surfaces, Bull. London
Math. Soc. 19 (1987) 481–484 MR898729

[13] G A Margulis, E B Vinberg, Some linear groups virtually having a free quotient, J.
Lie Theory 10 (2000) 171–180 MR1748082

[14] B Maskit, Kleinian groups, Grundlehren series 287, Springer, Berlin (1988)
MR959135

[15] J J Millson, On the first Betti number of a constant negatively curved manifold, Ann.
of Math. .2/ 104 (1976) 235–247 MR0422501

[16] B Neumann, Some remarks on infinite groups, J. Lond. Math. Soc. 12 (1937) 120–127

[17] L Potyagailo, The problem of finiteness for Kleinian groups in 3–space, from: “Knots
90 (Osaka, 1990)”, de Gruyter, Berlin (1992) 619–623 MR1177449

[18] L Potyagailo, Finitely generated Kleinian groups in 3–space and 3–manifolds of
infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994) 57–77 MR1250823

[19] L Potyagailo, E Vinberg, On right-angled reflection groups in hyperbolic spaces,
Comment. Math. Helv. 80 (2005) 63–73 MR2130566

[20] V Schlegel, Theorie der homogen zusammengesetzten Raumgebilde, Nova Acta Acad.
Leop. Carol. 44 (1883) 343–459

[21] G P Scott, Finitely generated 3–manifold groups are finitely presented, J. London Math.
Soc. .2/ 6 (1973) 437–440 MR0380763

[22] P Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. .2/
17 (1978) 555–565 MR0494062

[23] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math.
Dept. Lecture Notes (1979)

[24] E B Vinberg, O V Shvartsman, Discrete groups of motions of spaces of constant
curvature, from: “Geometry, II”, Encyclopaedia Math. Sci. 29, Springer, Berlin (1993)
139–248 MR1254933

Department of Mathematics, University of California, Davis
1 Shields Ave, CA 95616, USA

UFR de Mathématiques, Université de Lille 1
59655 Villeneuve d’Ascq cedex, France

Department of Mechanics and Mathematics, Lomonosov Moscow State University
Vorob’evy Gory, Moscow 119992, GSP-2, Russia

kapovich@math.ucdavis.edu, potyag@math.univ-lille1.fr,
vinberg@zebra.ru

Received: 14 August 2006

Geometry & Topology Monographs, Volume 14 (2008)

http://dx.doi.org/10.1112/blms/19.5.481
http://www.ams.org/mathscinet-getitem?mr=898729
http://www.ams.org/mathscinet-getitem?mr=1748082
http://www.ams.org/mathscinet-getitem?mr=959135
http://dx.doi.org/10.2307/1971046
http://www.ams.org/mathscinet-getitem?mr=0422501
http://www.ams.org/mathscinet-getitem?mr=1177449
http://dx.doi.org/10.2307/2154708
http://dx.doi.org/10.2307/2154708
http://www.ams.org/mathscinet-getitem?mr=1250823
http://www.ams.org/mathscinet-getitem?mr=2130566
http://www.ams.org/mathscinet-getitem?mr=0380763
http://www.ams.org/mathscinet-getitem?mr=0494062
http://www.ams.org/mathscinet-getitem?mr=1254933
mailto:kapovich@math.ucdavis.edu
mailto:potyag@math.univ-lille1.fr
mailto:vinberg@zebra.ru

	1. Introduction
	2. Preliminaries
	2.1. Arithmetic groups
	2.2. Rational quadratic forms
	2.3. Hyperplane separability
	2.4. A construction of noncoherent groups

	3. Construction of noncoherent arithmetic lattices
	4. Nonarithmetic noncoherent lattices
	5. Noncoherence and Thurston's conjecture
	References

