SOLUTIONS TO GRAPHINGOF FUNCTIONS USING THE FIRST AND SECOND DERIVATIVES


SOLUTION 7 : The domain of f is all x-values. Now determine a sign chart for the first derivative, f' . Then

f'(x) = 1 - 3 (1/3) x1/3-1

= 1 - x-2/3

$ = 1 - \displaystyle{ 1 \over x^{2/3} } $

$ = \displaystyle{ x^{2/3} \over x^{2/3} }- \displaystyle{ 1 \over x^{2/3} } $

$ = \displaystyle{ x^{2/3} - 1 \over x^{2/3} } $

= 0

when x2/3 - 1 = 0 . Thus, x2/3 = 1 so that $ x^2 = \big( x^{2/3} \big)^3 = 1^3 = 1 $ and x = 1 or x = -1 . In addition, note that f' is NOT DEFINED at x=0 . To avoid using a calculator, it is convenient to use numbers like x= -8, -1/8, 1/8, and 8 as "test points" to construct the adjoining sign chart for the first derivative, f' .



Now determine a sign chart for the second derivative, f'' . Beginning with

f'(x)= 1 - x-2/3 ,

we get

f''(x)= 0 - (-2/3) x-2/3 - 1

= (2/3) x-5/3

$ = \displaystyle{ 2 \over 3 x^{5/3} } $

= 0

for NO x-values . However, note that f'' is NOT DEFINED at x=0 . To avoid using a calculator, it is convenient to use numbers like x= -1 and x=1 as "test points" to construct the adjoining sign chart for the second derivative, f'' .



Now summarize the information from each sign chart.

FROM f' :

f is ($ \uparrow $) for x<-1 and x>1 ;

f is ( $ \downarrow $) for -1<x<0 and 0<x<1 ;

f has a relative maximum at x=-1 , y=2 ;

f has a relative minimum at x=1 , y=-2 .

FROM f'' :

f is ($ \cup $) for x>0 ;

f is ($ \cap $) for x<0 ;

f has an inflection point at x=0 , y=0 .

OTHER INFORMATION ABOUT f :

If x=0 , then y=0 so that y=0 is the y-intercept. If y=0 , then x - 3x1/3 = x1/3 ( x2/3 - 3 ) = 0 so that x1/3=0 or x2/3 = 3 . Thus, $x= \big( x^{1/3} \big)^3 = (0)^3 = 0 $ or $ x^2 = \big( x^{2/3} \big)^{3} = (3)^3 = 27 $ , so that $ x= \pm \sqrt{27} = \pm 3\sqrt{3} \approx \pm 5.20 $ and x=0 are the x-intercepts. There are no horizontal or vertical asymptotes. See the adjoining detailed graph of f .



Click HERE to return to the list of problems.



SOLUTION 8 : The domain of f is all x-values. Now determine a sign chart for the first derivative, f' . Beginning with

$ f(x) = x^{2/3} \Big( 5/2 - x \Big) $

= (5/2)x2/3 - x2/3 x1

= (5/2)x2/3 - x2/3+1

= (5/2)x2/3 - x5/3

we get

f'(x) = (5/2)(2/3)x2/3-1 - (5/3)x5/3-1

= (5/3) x-1/3 - (5/3)x2/3

$ = \displaystyle{ 5 \over 3 x^{1/3} } - \displaystyle{ 5 x^{2/3} \over 3 } $

$ = \displaystyle{ 5 \over 3 x^{1/3} } - \displaystyle{ 5 x^{2/3} \over 3 } \displaystyle{ x^{1/3} \over x^{1/3} } $

$ = \displaystyle{ 5 \over 3 x^{1/3} } - \displaystyle{ 5 x^{2/3+1/3} \over 3x^{1/3} } $

$ = \displaystyle{ 5 - 5x \over 3 x^{1/3} } $

$ = \displaystyle{ 5(1- x) \over 3 x^{1/3} } $

= 0

when x=1 . In addition, note that f' is NOT DEFINED at x=0 . See the adjoining sign chart for the first derivative, f' .



Now determine a sign chart for the second derivative, f'' . Beginning with

f'(x)= (5/3)x-1/3 - (5/3) x2/3 ,

we get

f''(x)= (5/3)(-1/3) x-1/3-1 - (5/3)(2/3) x2/3-1

= (-5/9) x-4/3 - (10/9) x-1/3

$ = \displaystyle{ -5 \over 9 x^{4/3} } - \displaystyle{ 10 \over 9 x^{1/3} } $

$ = \displaystyle{ -5 \over 9 x^{4/3} } - \displaystyle{ 10 \over 9 x^{1/3} } \displaystyle{ x \over x } $

$ = \displaystyle{ -5 \over 9 x^{4/3} } - \displaystyle{ 10x \over 9 x^{1/3} x^1 } $

$ = \displaystyle{ -5 \over 9 x^{4/3} } - \displaystyle{ 10x \over 9 x^{1/3+1} } $

$ = \displaystyle{ -5 \over 9 x^{4/3} } - \displaystyle{ 10x \over 9 x^{4/3} } $

$ = \displaystyle{ -5 -10x \over 9 x^{4/3} } $

$ = \displaystyle{ -5(1+2x) \over 9 x^{4/3} } $

= 0

when 1+2x=0 or x= -1/2 . In addition, note that f'' is NOT DEFINED at x=0 . See the adjoining sign chart for the second derivative, f'' .



Now summarize the information from each sign chart.

FROM f' :

f is ($ \uparrow $) for 0<x<1 ;

f is ( $ \downarrow $) for x<0 and x>1 ;

f has a relative maximum at x=1 , y= 3/2 ;

f has a relative minimum at x=0 , y=0 .

FROM f'' :

f is ($ \cup $) for x< -1/2 ;

f is ($ \cap $) for -1/2<x<0 and x>0 ;

f has an inflection point at x=-1/2 , $ y=3(1/2)^{2/3} \approx 1.89 $ .

OTHER INFORMATION ABOUT f :

If x=0 , then y=0 so that y=0 is the y-intercept. If y=0 , then x2/3 ( 5/2 - x ) = 0 so that x2/3=0 or 5/2 - x = 0 . Thus, x=0 and x = 5/2 are the x-intercepts. There are no horizontal or vertical asymptotes. See the adjoining detailed graph of f .



Click HERE to return to the list of problems.



SOLUTION 9 : The domain of f is artificially restricted to be $ 0 \le x \le 2\pi $ . Now determine a sign chart for the first derivative, f' . Begin with

$ f'(x) = \cos x - \sqrt{3} (-\sin x) $

$ = \cos x + \sqrt{3} \sin x $

= 0 .

Then

$ \sqrt{3} \sin x = -\cos x $

so that

$ \displaystyle{ \sin x \over \cos x } = \displaystyle{ -1 \over \sqrt{3} }
= \displaystyle{ -1/2 \over \sqrt{3}/2 } $

or

$ \displaystyle{ \sin x \over \cos x } = \displaystyle{ -1 \over \sqrt{3} }
= \displaystyle{ 1/2 \over -\sqrt{3}/2 } $ .

A well-known angle x in the second quadrant with

$ \cos x = -\sqrt{3}/2 $ and $ \sin x = 1/2 $

is $ x= 5\pi/6 $ . A well-known angle x in the fourth quadrant with

$ \cos x = \sqrt{3}/2 $ and $ \sin x = -1/2 $

is $ x= 11\pi/6 $ . It is convenient to use $ x=0, \pi , $ and $ 2\pi $ as test points in the first derivative $ f'(x) = \cos x + \sqrt{3} \sin x $ when constructing the adjoining sign chart for the first derivative, f' .



Now determine a sign chart for the second derivative, f'' . Begin with

$ f''(x) = -\sin x + \sqrt{3} \cos x $

= 0 .

Then

$ \sin x = \sqrt{3} \cos x $

so that

$ \displaystyle{ \sin x \over \cos x } = \sqrt{3} = \displaystyle{ \sqrt{3}/2 \over 1/2 } $

or

$ \displaystyle{ \sin x \over \cos x } = \sqrt{3} = \displaystyle{ -\sqrt{3}/2 \over -1/2 } $ .

A well-known angle x in the first quadrant with

$ \cos x = 1/2 $ and $ \sin x = \sqrt{3}/2 $

is $ x= \pi/3 $ . A well-known angle x in the third quadrant with

$ \cos x = -1/2 $ and $ \sin x = -\sqrt{3}/2 $

is $ x= 4\pi/3 $ . It is convenient to use $ x=0, \pi , $ and $ 2\pi $ as test points in the second derivative $ f''(x) = -\sin x + \sqrt{3} \cos x $ when constructing the adjoining sign chart for the second derivative, f'' .



Now summarize the information from each sign chart.

FROM f' :

f is ($ \uparrow $) for $ 0<x<5\pi/6 $ and $ 11\pi/6<x<2\pi $ ;

f is ( $ \downarrow $) for $ 5\pi/6<x<11\pi/6 $ ;

f has a relative maximum at $ x=2\pi $ , $ y= -\sqrt{3} $ ;

f has an absolute maximum at $ x= 5\pi/6 $ , y= 2 ;

f has a relative minimum at x=0 , $ y= -\sqrt{3} $

f has an absolute minimum at $ x= 11\pi/6 $ , y=-2 .

FROM f'' :

f is ($ \cup $) for $ 0<x<\pi/3 $ and $ 4\pi/3<x<2\pi $ ;

f is ($ \cap $) for $ \pi/3<x<4\pi/3 $ ;

f has inflection points at $ x= \pi/3 $ , y=0 and $ x= 4\pi/3 $ , y=0 .

OTHER INFORMATION ABOUT f :

If x=0 , then $ y= -\sqrt{3} $ , so that $ y= -\sqrt{3} $ is the y-intercept. If y=0 , then $ \sin x - \sqrt{ 3 } \cos x=0 $ and $ \sin x = \sqrt{3} \cos x $ (This is the same equation used to solve f''(x)=0 .) so that $ x= \pi/3 $ and $ x= 4\pi/3 $ are the y-intercepts. There are no horizontal or vertical asymptotes. See the adjoining detailed graph of f .



Click HERE to return to the list of problems.



SOLUTION 10 : Since $ f(x) = x \sqrt{ 4 - x^2 } = x \sqrt{ (2-x)(2+x) } $ the domain of f is $ -2 \le x \le 2 $ in order to insure that we not take the square root of a negative number . Now determine a sign chart for the first derivative, f' . Using the product rule, we get

$ f'(x) = \displaystyle{ x (1/2) (4-x^2)^{-1/2} (-2x) + (1) \sqrt{4-x^2} } $

$ = \displaystyle{ {-x^2 \over \sqrt{4-x^2} } + { \sqrt{4-x^2} \over 1 } } $

$ = \displaystyle{ {-x^2 \over \sqrt{4-x^2} } + { \sqrt{4-x^2} \over 1 } { \sqrt{4-x^2} \over \sqrt{4-x^2} } } $

$ = \displaystyle{ -x^2 + (4-x^2) \over \sqrt{4-x^2} } $

$ = \displaystyle{ 4-2x^2 \over \sqrt{4-x^2} } $

$ = \displaystyle{ 2 (2-x^2) \over \sqrt{4-x^2} } $

$ = \displaystyle{ 2 (\sqrt{2} - x)(\sqrt{2} + x) \over \sqrt{4-x^2} } $

= 0

for x= 0 , $ x = \sqrt{2} $ ,and $ x=-\sqrt{2} $ . In addition, note that f' is NOT DEFINED at x=2 and x=-2 since these numbers lead to division by zero. See the adjoining sign chart for the first derivative, f' .



Now determine a sign chart for the second derivative, f'' . Beginning with

$ f'(x)= \displaystyle{ 4-2x^2 \over \sqrt{4-x^2} } $

and using the quotient rule, we get

$ f''(x) = \displaystyle{ \sqrt{4-x^2} (-4x) - (4-2x^2) (1/2)(4-x^2)^{-1/2} (-2x) \over (\sqrt{4-x^2})^2 } $

$ = \displaystyle{ { \displaystyle{ -4x \sqrt{4-x^2} \over 1 } + \displaystyle{ x(4-2x^2) \over \sqrt{4-x^2} } } \over 4-x^2 } $

$ = { { \displaystyle{ -4x \sqrt{4-x^2} \over 1 } \displaystyle{ \sqrt{4-x^2} \o...
...style{ x(4-2x^2) \over \sqrt{4-x^2} } } \over \displaystyle{ 4-x^2 \over 1 } } $

$ = { \Big\{ \displaystyle{ -4x(4-x^2) \over \sqrt{4-x^2} }
+ \displaystyle{ 2x(2-x^2) \over \sqrt{4-x^2} } \Big\} } \displaystyle{ 1 \over 4-x^2 } $

(Factor out 2x .)

$ = \displaystyle{ 2x \over 4-x^2 } \displaystyle{ -2(4-x^2) + (2-x^2) \over \sqrt{4-x^2} } $

$ = \displaystyle{ 2x \over (4-x^2)^1 } \displaystyle{ -8+2x^2 + 2-x^2 \over (4-x^2)^{1/2} } $

$ = \displaystyle{ 2x(x^2-6) \over (4-x^2)^{1+1/2} } $

$ = \displaystyle{ 2x(x-\sqrt{6})(x+\sqrt{6}) \over (4-x^2)^{3/2} } $

= 0 .

Then $ 2x(x-\sqrt{6})(x+\sqrt{6})=0 $ so that x= 0 , $ x= \sqrt{6} $ , or $ x=-\sqrt{6} $ . HOWEVER, $ x= \sqrt{6} $ and $ x=-\sqrt{6} $ are not in the domain of function f so only x=0 solves f'(x)=0 . In addition, note that f'' is NOT DEFINED at x=2 and x=-2 . See the adjoining sign chart for the second derivative, f'' .



Now summarize the information from each sign chart.

FROM f' :

f is ($ \uparrow $) for $ -\sqrt{2}<x<\sqrt{2} $ ;

f is ( $ \downarrow $) for $ -2<x<-\sqrt{2} $ and $ \sqrt{2}<x<2 $ ;

f has an absolute maximum at $ x = \sqrt{2} $ , $y=2\sqrt{2} $ ;

f has a relative maximum at x=-2 , y=0 ;

f has an absolute minimum at $ x=-\sqrt{2} $ , $y=-2\sqrt{2} $ ;

f has a relative minimum at x=2 , y=0 .

FROM f'' :

f is ($ \cup $) for -2<x<0 ;

f is ($ \cap $) for 0<x<2 ;

f has an inflection point at x=0 , y=0 .

OTHER INFORMATION ABOUT f :

If x=0 , then y=0 , so that y=0 is the y-intercept. If y=0 , then $ x \sqrt{ 4 - x^2 } = x \sqrt{ (2-x)(2+x) }=0 $ so that x=0 , x=2 , and x=-2 are the y-intercepts. There are no horizontal or vertical asymptotes. See the adjoining detailed graph of f .



Click HERE to return to the list of problems.



SOLUTION 11 : First note that y = A x3 + 6x2 - Bx is a polynomial so that it is infinitely-differentiable. The first derivative is

y'= 3Ax2 + 12x - B ,

and the second derivative is

y''= 6Ax + 12 .

If the graph of y has a maximum value at x= -1, then y'(1)=0 so that 3A(-1)2 + 12(-1) - B = 0 or

(Equation 1)

3A - B = 12 .

If the graph of y has an inflection point at x=1, then y''(1)=0 so that 6A(1) + 12 = 0 or

A = -2 .

Substituting this value for A into Equation 1, we get 3(-2) - B = 12 or

B = -18 .

Thus, assuming that y'(-1)=0 and y''(1)=0 , the polynomial must be of the form

y = -2x3 + 6x2 + 18x

with first derivative

y' = -6x2 + 12x + 18

and second derivative

y'' = -12x + 12 .

Check to see if x=-1 determines a maximum value for y . Using the Second Derivative Test for Extrema, we have that y'(-1)=0 and y''(-1) = -12(-1) + 12 = 24 > 0 ! Thus, x=-1 determines a MINIMUM value for y , NOT a maximum value . This problem has NO SOLUTION.

Click HERE to return to the list of problems.





 

Duane Kouba
1998-06-03