SOLUTION 2: $$ \displaystyle{ \lim_{x \rightarrow 4} \frac{ x-4 }{ \sqrt{x}-2 } } =
\displaystyle{ \frac{ (4)-4 }{ \sqrt{4}-2 } } = \frac{"0"}{0} $$
(Apply Theorem 1 for l'Hopital's Rule. Differentiate top and bottom separately.)
$$ = \displaystyle{ \lim_{x \rightarrow 4} \frac{ 1-0 }{ 1/2\sqrt{x}-0 } } $$
$$ = \displaystyle{ \lim_{x \rightarrow 4} 2\sqrt{x} } $$
$$ = \displaystyle{ 2 \sqrt{4} } $$
$$ = \displaystyle{ 2 (2) } $$
$$ = \displaystyle{ 4 } $$
Click HERE to return to the list of problems.