Processing math: 100%
SOLUTION 2: If y=x3/2 for 0≤x≤4, then dydx=(3/2)x1/2
so that
ARC=∫40√1+(dydx)2 dx
=∫40√1+((3/2)x1/2)2 dx
=∫40√1+((3/2)2(x1/2)2 dx
=∫40√1+(9/4)x dx
(Now integrate using the method of u-substitution. Let u=1+(9/4)x ⟶ du=(9/4)dx ⟶ (4/9)du=dx\.)
=(4/9)∫x=4x=0√u du
=(4/9)(2/3)u3/2 |x=4x=0
=(8/27)(1+(9/4)x)3/2 |x=4x=0
=(8/27)(1+(9/4)(4))3/2−(8/27)(1+(9/4)(0))3/2
=(8/27)(10)3/2−(8/27)(1)3/2
=(8/27)103/2−8/27
=(8/27)(103/2−1)
Click HERE to return to the list of problems.