Processing math: 100%
SOLUTION 9: If y=ln(cosx) for 0≤x≤π/3, then
dydx=1cosx(−sinx)=−sinxcosx=−tanx
so that
ARC=∫π/30√1+(dydx)2 dx
=∫π/30√1+(−tanx)2 dx
=∫π/30√1+tan2x dx
=∫π/30√sec2x dx
(Recall that √z2=|z|.)
=∫π/30|secx| dx
(The secx>0 for 0≤x≤π/3.)
=∫π/30secx dx
=ln|secx+tanx| |π/30
=ln|sec(π/3)+tan(π/3)|−ln|sec0+tan0|
=ln|2+√3|−ln|1+0|
=ln(2+√3)−0
=ln(2+√3)
Click HERE to return to the list of problems.