Processing math: 100%


tex2html_wrap_inline125



SOLUTION 9:    If y=ln(cosx) for 0xπ/3, then dydx=1cosx(sinx)=sinxcosx=tanx so that ARC=π/301+(dydx)2 dx =π/301+(tanx)2 dx =π/301+tan2x dx =π/30sec2x dx (Recall that z2=|z|.) =π/30|secx| dx (The secx>0 for 0xπ/3.) =π/30secx dx =ln|secx+tanx| |π/30 =ln|sec(π/3)+tan(π/3)|ln|sec0+tan0| =ln|2+3|ln|1+0| =ln(2+3)0 =ln(2+3)

Click HERE to return to the list of problems.