Solution 8:  Consider the graph of $ \ y = \displaystyle{r \over h} x \ $ on the interval $ [0, h]$.  Form a cone of height $h$ and base radius $r$ by revolving this graph about the $x$-axis.  Now find its surface area. Here is a carefully labeled sketch of the graph with a radius $r$ marked together with $x$ on the $x$-axis. 
 
Thus the total Area of this Surface of Revolution is
	$$ Surface \ Area = 2 \pi \int_{0}^{h} (radius) \sqrt{ 1 + \Big({dy \over dx}\Big)^2  } \ dx $$
	$$ = 2 \pi \int_{0}^{h} \Big( {r \over h} x \Big) \sqrt{ 1 + \Big( { r \over h } \Big)^2 } \ dx  $$
	$$ = 2 \pi \int_{0}^{h} \Big( {r \over h} x \Big) \sqrt{ 1 + { r^2 \over h^2 } } \ dx  $$
	$$ = 2 \pi \int_{0}^{h} \Big( {r \over h} x \Big) \sqrt{ { h^2 \over h^2 }  + { r^2 \over h^2 } } \ dx  $$
	$$ = 2 \pi \int_{0}^{h} \Big( {r \over h} x \Big) \sqrt{  h^2 + r^2 \over h^2 }   \ dx  $$
	$$ = 2 \pi \int_{0}^{h} \Big( {r \over h} x \Big) {  \sqrt{  h^2 + r^2 }  \over \sqrt{h^2} }  \ dx  $$
	$$ = 2 \pi \int_{0}^{h} \Big( {r \over h} x \Big) {  \sqrt{  h^2 + r^2 }  \over h }  \ dx  $$
	$$ = 2 \pi {r \over h^2}  \int_{0}^{h}  x \cdot \sqrt{  h^2 + r^2 }    \ dx  $$
	$$ =  2\pi \cdot {r \over h^2} \cdot  \sqrt{  h^2 + r^2 } \cdot {1 \over 2} x^2 \Big|_{0}^{h}  $$
	$$ =  2\pi \cdot {r \over h^2} \cdot  \sqrt{  h^2 + r^2 } \cdot  {1 \over 2} ( (h)^2 - (0)^2 )  $$
	$$ =  \pi r \sqrt{  h^2 + r^2 }  $$
Click  HERE  to return to the list of problems.