SOLUTION 3: $ \ \ $ To integrate $ \displaystyle{ \int { 1 \over (1-x^2)^{3/2} } \ dx } $ use the trig substitution $$ x = \sin \theta $$ so that $$ dx = \cos \theta \ d \theta $$ Substitute into the original problem, replacing all forms of $ x $, getting $$ \displaystyle { \int \frac{1}{(1-x^{2})^{3/2}} \ dx = \int \frac{1}{(1-\sin^{2} \theta)^{3/2}} \ \cos \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{1}{(\cos^{2} \theta)^{3/2}} \ \cos \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{1}{\cos^{3} \theta} \ \cos \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{1}{\cos^{2} \theta} \ d \theta } $$ $$ = \displaystyle { \int \sec^{2} \theta \ d \theta } $$ $$ = \tan \theta + C $$ $\Big($ We need to write our final answer in terms of $x$.

tex2html_wrap_inline125


Since $ x = \sin \theta $ it follows that $$ \sin \theta = \displaystyle{ x \over 1 } = \displaystyle{ opposite \over hypotenuse } $$ and from the Pythagorean Theorem that $$ \displaystyle (adjacent)^2 + (opposite)^2 = (hypotenuse)^2 \ \ \longrightarrow $$ $$ (adjacent)^2 + (x)^2 = (1)^2 \ \ \longrightarrow \ \ \ adjacent = \sqrt{1-x^2} \ \ \longrightarrow $$ $$ \tan \theta = \displaystyle{ opposite \over adjacent }= \displaystyle{ x \over \sqrt{1-x^2} } . \Big) $$ $$ = \displaystyle{ x \over \sqrt{1-x^2} } + C $$

Click HERE to return to the list of problems.