SOLUTION 6: $ \ \ $ Integrate $ \displaystyle{ \int { \sqrt{1-x^2} \over x } \ dx } $. Use the trig substitution $$ x = \sin \theta $$ so that $$ dx = \cos \theta \ d \theta $$ Substitute into the original problem, replacing all forms of $ x $, getting $$ \displaystyle { \int \frac{\sqrt{1-x^{2}}}{x} \ dx = \int \frac{\sqrt {1-\sin^{2} \theta}}{\sin \theta} \ \cos \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{\sqrt{\cos^{2} \theta}}{\sin \theta} \ \cos \ d \theta } $$ $$ = \displaystyle { \int \frac{\cos \theta}{\sin \theta} \cos \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{\cos^{2} \theta}{\sin \theta} \ d \theta } $$ $$ = \displaystyle { \int \frac{1-\sin^{2}\theta}{\sin \theta} \ d \theta } $$ $$ = \displaystyle { \int (\frac{1}{\sin \theta} -\sin \theta) \ d \theta } $$ $$ = \displaystyle { \int \Big(\csc \theta - \sin \theta \Big) \ d \theta } $$ (Recall that $ \displaystyle { \int \csc \theta \ d \theta = \ln \Big|\csc \theta - \cot \theta \Big| + C } $) $$ = \displaystyle { \ln \Big|\csc \theta - \cot \theta \Big| + \cos \theta + C } $$ $\Big($ We need to write our final answer in terms of $x$.

tex2html_wrap_inline125


Since $ x = \sin \theta $ it follows that $$ \sin \theta = \displaystyle{ x \over 1 } = \displaystyle{ opposite \over hypotenuse } $$ and from the Pythagorean Theorem that $$ \displaystyle (adjacent)^2 + (opposite)^2 = (hypotenuse)^2 \ \ \longrightarrow $$ $$ (adjacent)^2 + (x)^2 = (1)^2 \ \ \longrightarrow \ \ \ adjacent = \sqrt{1-x^2} \ \ \longrightarrow $$ $$ \cos \theta = \displaystyle{ adjacent \over hypotenuse }= \displaystyle{ \sqrt{1-x^2} \over 1 } $$ $$ \cot \theta = \displaystyle{ adjacent \over opposite }= \displaystyle{ \sqrt{1-x^2} \over x } $$ and $$ \csc \theta = \displaystyle{ hypotenuse \over opposite }= \displaystyle{ 1 \over x } . \Big) $$ $$ = \displaystyle { \ln \Big|\frac{1}{x} - \frac{\sqrt{1-x^{2}}}{x} \Big| + \sqrt{1-x^{2}} + C } $$

Click HERE to return to the list of problems.