Processing math: 100%


SOLUTION 8:    To integrate x2+1x2 dx use the trig substitution x=tanθ so that dx=sec2θ dθ Substitute into the original problem, replacing all forms of x, getting x2+1x2 dx=tan2θ+1tan2θsec2θ dθ =sec2θtan2θsec2θ dθ =secθtan2θsec2θ dθ =secθtan2θ(1+tan2θ) dθ =(secθtan2θ+secθ) dθ =(1 /cosθsin2θ /cos2θ+secθ) dθ =(1cosθcos2θsin2θ+secθ) dθ (Recall that secθ dθ=ln|secθ+tanθ|+C.) =cosθsin2θ dθ+ln|secθ+tanθ|+C =1sinθcosθsinθ dθ+ln|secθ+tanθ|+C =cscθcotθ dθ+ln|secθ+tanθ|+C (Recall that cscθcotθ dθ=cscθ+C .) =cscθ+ln|secθ+tanθ|+C ( We need to write our final answer in terms of x.

tex2html_wrap_inline125


Since x=tanθ it follows that tanθ=x1=oppositeadjacent and from the Pythagorean Theorem that (adjacent)2+(opposite)2=(hypotenuse)2   (1)2+(x)2=(hypotenuse)2     hypotenuse=x2+1   cscθ=hypotenuseopposite=x2+1x and secθ=hypotenuseadjacent=x2+11=x2+1.) =x2+1x+ln|x2+1+x|+C

Click HERE to return to the list of problems.