Processing math: 100%
SOLUTION 8: To integrate ∫√x2+1x2 dx use the trig substitution
x=tanθ
so that
dx=sec2θ dθ
Substitute into the original problem, replacing all
forms of x, getting
∫√x2+1x2 dx=∫√tan2θ+1tan2θ⋅sec2θ dθ
=∫√sec2θtan2θ⋅sec2θ dθ
=∫secθtan2θ⋅sec2θ dθ
=∫secθtan2θ(1+tan2θ) dθ
=∫(secθtan2θ+secθ) dθ
=∫(1 /cosθsin2θ /cos2θ+secθ) dθ
=∫(1cosθcos2θsin2θ+secθ) dθ
(Recall that ∫secθ dθ=ln|secθ+tanθ|+C.)
=∫cosθsin2θ dθ+ln|secθ+tanθ|+C
=∫1sinθcosθsinθ dθ+ln|secθ+tanθ|+C
=∫cscθcotθ dθ+ln|secθ+tanθ|+C
(Recall that ∫cscθcotθ dθ=−cscθ+C .)
=−cscθ+ln|secθ+tanθ|+C
( We need to write our final answer in terms of x.
Since x=tanθ it follows that
tanθ=x1=oppositeadjacent
and from the Pythagorean Theorem that
(adjacent)2+(opposite)2=(hypotenuse)2 ⟶
(1)2+(x)2=(hypotenuse)2 ⟶ hypotenuse=√x2+1 ⟶
cscθ=hypotenuseopposite=√x2+1x
and
secθ=hypotenuseadjacent=√x2+11=√x2+1.)
=−√x2+1x+ln|√x2+1+x|+C
Click HERE to return to the list of problems.