Processing math: 100%


SOLUTION 11:    To integrate xx416 dx=x(x2)216 dx begin with the ordinary u-substitution u=x2 so that du=2x dx Substitute into the original problem, replacing all forms of x, getting xx416 dx=1/2u216 du Now use the trig substitution u=4secθ so that du=4secθtanθ dθ Substitute into the original problem, replacing all forms of u, getting =1/2(4secθ)216 du =1/216sec2θ164secθtanθ dθ =1/216(sec2θ1)4secθtanθ dθ =2secθtanθ16tan2θ dθ =2secθtanθ4tanθ dθ =12secθ dθ =12(ln|secθ+tanθ|+C) ( We need to write our final answer in terms of x.

tex2html_wrap_inline125


Since u=4secθ it follows that secθ=u4=hypotenuseadjacent and from the Pythagorean Theorem that (adjacent)2+(opposite)2=(hypotenuse)2   (4)2+(opposite)2=(u)2     opposite=u216   tanθ=oppositeadjacent=u2164.) =12(ln|u4+u2164|+C) (Now use the fact that u=x2.) =12(ln|x24+x4164|+C)

Click HERE to return to the list of problems.