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TRANSPORT MULTI-PATHS WITH CAPACITY CONSTRAINTS

QINGLAN XIA, HAOTIAN SUN

Abstract. This article generalizes the study of branched/ramified optimal
transportation to those with capacity constraints. Each admissible transport
network studied here is represented by a transport multi-path between mea-
sures, with a capacity constraint on each of its components. The associated
transport cost is given by the sum of the Mα-cost of each component. Us-
ing this new formulation, we prove the existence of an optimal solution and
provide an upper bound on the number of components for the solution. Ad-
ditionally, we conduct analytical examinations of the properties (e.g. “map-
compatibility”, and “simple common-source property”) of each solution com-
ponent and explore the interplay among components, particularly in the dis-
crete case.

1. Introduction

The optimal mass transportation problem aims to find an efficient transport sys-
tem between sources and targets. The well-known Monge-Kantorovich transport
problem has been extensively analyzed in recent years and found applications in
many fields. Classical references can be found for instance in the books [15, 16]
by Villani, [12] by Santambrogio, and the user’s guide [2] by Ambrosio and Gigli.
A variant of Monge-Kantorovich problem is the ramified optimal transportation
(ROT) (also called branched transportation) problem which studies efficient trans-
port systems with branching structures. The Eulerian formulation of the ROT
problem was proposed by the first author in [17], with related motivations, frame-
works, and applications surveyed in [19]. An equivalent Lagrangian formulation of
the problem was established by Maddalena, Morel, and Solimini in [8]. One may
refer to [3] for detailed discussions of the research in this direction. Some interesting
recent developments on ROT can be found for example in [4, 6, 10, 14].

In contrast to the Monge-Kantorovich problem where the transportation cost is
solely determined by a transport map or a transport plan, the cost in the ramified
transport problem is determined by the actual transport path. As illustrated in
[17], transport paths in ramified transportation between atomic measures can be
viewed as weighted directed graphs. More precisely, let X be a convex compact
subset in an Euclidean space R

m. An atomic measure on X is in the form of
∑k

i=1 miδxi
with distinct points xi ∈ X , and mi > 0 for each i = 1, · · · , k. For two
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atomic measures

(1.1) a =

k
∑

i=1

miδxi
, b =

ℓ
∑

j=1

njδyj

on X of equal mass, a transport path from a to b is a weighted directed graph
G = [V (G), E(G), w] consisting of a vertex set V (G), a directed edge set E(G) and a
weight function w : E(G) → (0,+∞) such that {x1, x2, · · · , xk}∪{y1, y2, · · · , yℓ} ⊆
V (G) and for any vertex v ∈ V (G), there is a balance equation:

(1.2)
∑

e∈E(G)

e−=v

w(e) =
∑

e∈E(G)

e+=v

w(e) +







mi if v = xi for some i = 1, · · · , k
−nj if v = yj for some j = 1, · · · , ℓ
0 otherwise

where e− and e+ denote the starting and ending point of the edge e ∈ E(G). Note
that the condition (1.2) is equivalent to Kirchhoff’s circuit law, or the requirement
that mass is conserved at every interior vertex.

For any real number α ∈ [0, 1], the Mα cost of G = [V (G), E(G), w] is defined
by

(1.3) Mα(G) :=
∑

e∈E(G)

(w(e))α H1(e),

where H1(e) is the 1-dimensional Hausdorff measure or length of the edge e.
As an extension to a more general setting, a transport path between two Radon

measures µ± of equal mass can be viewed as a rectifiable 1-current T with ∂T =
µ+ − µ−, which will be discussed in detail in the preliminary section. The cor-
responding transport cost on T is its α-mass Mα(T ). Under these notations, the
ramified optimal transport problem is:

(ROT) Minimize Mα(T ) among all T ∈ Path(µ−, µ+),

where Path(µ−, µ+) is the collection of all transport paths from µ− to µ+. An
Mα-minimizer in Path(µ−, µ+) is called an α-optimal transport path from µ− to
µ+.

This article aims to study the impact of capacity constraints on optimal trans-
port paths. Regardless of whether in atomic case or general case, the amount of
mass that can be transported via an admissible transport path has no restrictions.
Hence, the phenomenon of first aggregating the total mass from the source into one
place and then transporting it through a single curve is permitted and prevalent in
ramified transport paths.

As opposed to the theoretically permitted unlimited aggregation of mass, trans-
portation in reality often takes place through various kinds of mediums, which
have transport capacity limiting the maximum amount of mass they can carry all
at once. For instance, roads have limited number of lanes for cars, and cars have
limited seats for passengers. This brings naturally the question of ramified trans-
port paths with capacity constraints, which can be roughly described by imposing
an upper bound (called the capacity) on the weight function of a weighted directed
graph or on the density function of a rectifiable 1-current. This motivates us to
consider the following ramified transport problem in the discrete case: Given two
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atomic measures a, b on X with equal mass, and capacity c > 0,
(Problem 0)

minimize Mα(G) among all G ∈ Path(a,b) with w(e) ≤ c, for all e ∈ E(G).

From the description of this problem, if we assume the total mass ‖a‖ = ‖b‖ ≤
c, this is equivalent to imposing no restriction on the transport capacity of G.
Note that after imposing the capacity constraint, one obvious observation is that
a previously well-defined transport path G ∈ Path(a,b), which has no capacity
constraints, is not necessarily an admissible transport path anymore. This can be
demonstrated in the following example:

x3

x1 x2

x4

1
2

1
2

1

(a) Y-shaped

x3

x1 x2

x5

1
2

1
6

1
3

2
3

(b) Mixture of Y-shaped and V-shaped

Figure 1. Y-shaped & Mixture of Y-shaped and V-shaped.

Example 1.1. As shown in Figure 1, suppose we want to transport mass from

a =
1

2
δx1

+
1

2
δx2

to b = δx3
,

with an upper bound c = 2
3 imposed on weight functions. In this case, a “Y-

shaped” transport path no longer satisfies the restriction on weight functions, since
after merging at x4 the mass will reach 1. Changing to another kind of branching
structure which is a mixture of “V-shaped” and “Y-shaped” will resolve this issue.
One of the possible cases is merging 1

2 from x1 and 1
6 from x2, and let the remaining

1
3 from x2 transport directly through the dash line.

Another observation is about the non-compactness of the family of admissible
transport paths in Problem 0, due to the “merging” effect shown in Example 1.2.
As a result, Problem 0 may fail to have a solution.

Example 1.2. Let a = δx, b = δy for some x, y ∈ R
2, and suppose the transport

capacity c = 1/n for some integer n ≥ 2. As shown in Figure 2, we may construct
a sequence of transport paths in Path(a, b) satisfying the capacity constraint, that
converges to the straight line segment Jx, yK with weight 1, which does not satisfy
the capacity constraint anymore.

To overcome this non-compactness issue, in the following, we modify Problem 0

by expressing each transport network as a transport “multi-path” ~T = (T1, T2, · · · , Tk, · · · )
such that each component Tk satisfies the given capacity constraints.
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Figure 2. The above pictures give an illustration of “conver-
gence” when n = 5.

Problem 1 (Ramified transportation with capacity). Let µ−, µ+ be two
Radon measures on R

m with equal mass, supported on compact sets, α ∈ (0, 1), and
c > 0. Minimize

Mα(~T ) :=

∞
∑

k=1

Mα(Tk)

among all ~T = (T1, T2, · · · , Tk, · · · ) such that for each k,

(1.4) Tk ∈ Path(µ−
k , µ

+
k ),

∞
∑

k=1

µ−
k = µ−,

∞
∑

k=1

µ+
k = µ+, and 0 < ‖µ−

k ‖ = ‖µ+
k ‖ ≤ c.

Each ~T = (T1, T2, · · · , Tk, · · · ) satisfying (1.4) is called a transport multi-path
from µ− to µ+ with capacity c. The family of all such transport multi-paths is
denoted by Pathc(µ

−, µ+).
The article is organized as follows. We first review in §2 some related con-

cepts in geometric measure theory and optimal transportation. In particular, the
good decomposition of normal 1-currents and the map-compatibility of transport
paths. In §3, we show in Theorem 3.3 that Problem 1 indeed has a solution
~T ∗ = (T1, T2, · · · , TN), and the number of its components N is bounded above
by 2‖µ−‖/c+ 1.

After achieving the existence result, we also study properties of the optimal
multi-path T ∗ in §4. Note that each component Tk of T ∗ is automatically an
optimal transport path from µ−

k to µ+
k . Previously, in [19, Section 2.1], we listed

some basic properties of an optimal transport path such as the acyclic property,
balance equations at each interior vertices, uniform upper bounds on the degree of
vertices, and uniform lower bounds on angles between edges. Moreover, in [20], we
showed that each optimal transport path has a “simple common-source” property.1

All these properties now automatically hold for each component Tk.
To get a better description of the optimal multi-path T ∗, we study some other

properties of its components Tk in §4, that do not hold for a general optimal trans-
port path. When both µ− and µ+ are atomic measures, we first show in Theorem
4.3 that each Tk is a map-compatible transport path with at most N2−1 exceptions,
where N2 is the cardinality of the target measure µ+. Moreover, in Theorem 4.4,

1A transport path T satisfies the “simple common-source” property if there exists a “good
decomposition” η of T such that the pairwise intersection of preimages of the target points under
η contains at most one point.
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we further generalize the simple common-source property of an optimal transport
path to an analogous result for components of an optimal multi-path. In the end,
we provide a detailed analysis of the single target case in §5.

2. Preliminaries

We first recall some related terminologies from geometric measure theory and
optimal transportation theory.

2.1. Concepts in geometric measure theory.

2.1.1. Currents (See [7, 11]). For any an open set U in R
m and k ≤ m, let Dk(U)

be the set of all C∞ k-forms in U with compact supports. The space Dk(U) of
k-currents is the dual space of Dk(U).

For any current T ∈ Dk(U), the mass of T is defined by

M(T ) = sup{T (ω) : ‖ω‖ ≤ 1, ω ∈ Dk(U)},

where

‖ω‖ := sup
x∈U

√

ω(x) · ω(x), ∀ω ∈ Dk(U).

Also, its boundary ∂T ∈ Dk−1(U) is defined by

∂T (ω) := T (dω), ∀ω ∈ Dk−1(U), when k ≥ 1,

and ∂T := 0 when k = 0.
A set M ⊂ R

m is said to be countably k-rectifiable if

M ⊆ M0 ∪





∞
⋃

j=1

Fj(R
k)



 ,

where Hk(M0) = 0 under the k-dimensional Hausdorff measure Hk, and Fj : R
k →

R
m are Lipschitz functions for j = 1, 2, · · · . For any k-current T ∈ Dk(U), we say

that T is rectifiable if for each ω ∈ Dk(U),

T (ω) =

∫

M

〈ω(x), ξ(x)〉θ(x) dHk (x),

where M is an Hk-measurable countably k-rectifiable subset of U , θ(x) is a locally
Hk-integrable positive function, called multiplicity, and ξ is an orientation of M in
the sense that ξ(x) is a simple unit k-vector that spans the approximate tangent
space TxM for Hk-almost every x ∈ M . We will denote such a T by τ (M, θ, ξ).

When T = τ (M, θ, ξ) is a rectifiable k-current, its mass

M(T ) =

∫

M

θ(x) dHk(x).

A current T ∈ Dk(U) is said to be normal if M(T )+M(∂T ) < ∞. In [9], Paolini
and Stepanov introduced the concept of subcurrents: For any T, S ∈ Dk(U), S is
called a subcurrent of T if

M(T − S) +M(S) = M(T ).

A normal current T ∈ Dk(R
m) is acyclic if there is no non-trivial subcurrent S of

T such that ∂S = 0.
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2.1.2. Good decomposition. In [13], Smirnov showed that every acyclic normal 1-
current can be written as the weighted average of simple Lipschitz curves in the
following sense.

Let Γ be the space of 1-Lipschitz curves γ : [0,∞) → R
m, which are eventually

constant. For γ ∈ Γ, we denote

t0(γ) := sup{t : γ is constant on [0, t]}, t∞(γ) := inf{t : γ is constant on [t,∞)},

and p0(γ) := γ(0), p∞(γ) := γ(∞) = limt→∞ γ(t). A curve γ ∈ Γ is simple if
γ(s) 6= γ(t) for every t0(γ) ≤ s < t ≤ t∞(γ). Also, let Im(γ) denote the image of γ
in R

m. In the following contexts, we adopt the notations: for any points x, y ∈ R
m

and subset A ⊆ R
m, denote

Γx = {γ ∈ Γ : x ∈ Im(γ)},(2.1)

Γx,y = {γ ∈ Γ : p0(γ) = x, p∞(γ) = y},(2.2)

ΓA,y = {γ ∈ Γ : p0(γ) ∈ A, p∞(γ) = y}.(2.3)

For each simple curve γ ∈ Γ, we may associate it with the following rectifiable
1-current,

(2.4) Iγ := τ

(

Im(γ),
γ′

|γ′|
, 1

)

.

Definition 2.1. (see [5], [6], [13]) Let T be a normal 1-current in R
m and let η be

a finite positive measure on Γ such that

(2.5) T =

∫

Γ

Iγ dη(γ)

in the sense that

(2.6) T (ω) =

∫

Γ

Iγ(ω) dη(γ), ∀ω ∈ D1(Rm).

We say that η is a good decomposition of T if η is supported on non-constant,
simple curves and satisfies the following equalities:

(a) M(T ) =
∫

Γ M(Iγ)dη(γ) =
∫

Γ H
1(Im(γ))dη(γ);

(b) M(∂T ) =
∫

Γ
M(∂Iγ)dη(γ) = 2η(Γ).

Due to [13] and [9, Theorem 5.1], it turns out that every acyclic normal 1-current
T has a good decomposition. When η is a good decomposition of T , as collected in
[5, Proposition 3.6], it follows that

(a)

(2.7) µ− =

∫

Γ

δγ(0) dη(γ), µ+ =

∫

Γ

δγ(∞) dη(γ).

(b) If T = τ (M, θ, ξ) is rectifiable, then

(2.8) θ(x) = η({γ ∈ Γ : x ∈ Im(γ)})

for H1-a.e. x ∈ M.
(c) For every η̃ ≤ η, the representation

T̃ =

∫

Γ

Iγdη̃(γ)
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is a good decomposition of T̃ . Moreover, if T = τ (M, θ, ξ) is rectifiable,

then T̃ can be written as T̃ = τ (M, θ̃, ξ) with

(2.9) θ̃(x) ≤ min{θ(x), η̃(Γ)}

for H1-a.e. x ∈ M .

2.2. Concepts in optimal transportation theory. Now, we recall some related
concepts from Monge-Kantorovich transportation ([1]), and the ramified trans-
portation ([17, 19]).

2.2.1. Optimal transportation problems. Let X be a convex compact subset of Rm,
and let µ− (source) and µ+ (target) be two Radon measures supported on X of
equal mass.

(a) In the Monge formulation of transportation, a transport map from µ− to
µ+ is a Borel map ϕ : X → X with ϕ#µ

− = µ+. Denote

Map(µ−, µ+)

as the set of transport maps from µ− to µ+. Given a non-negative Borel
function c(x, y) on X ×X , the Monge optimal transport problem is: Mini-
mize

Ic(ϕ) :=

∫

X

c(x, ϕ(x)) dµ−

among all ϕ ∈ Map(µ−, µ+).
(b) In the Kantorovich formulation of transportation, a transport plan from

µ− to µ+ is a measure π on the product space X ×X with marginals µ−

and µ+. Denote

Plan(µ−, µ+)

as the set of transport plans from µ− to µ+. Given a cost function c(x, y)
on X ×X , the Kantorovich optimal transport problem is: Minimize

Jc(π) :=

∫

X×X

c(x, y) dπ(x, y)

among all π ∈ Plan(µ−, µ+).
(c) In the ramified transportation, a transport path from µ− to µ+ is a recti-

fiable 1-current T such that ∂T = µ+ − µ−. Denote

Path(µ−, µ+)

as the set of all transport paths from µ− to µ+. Given α ∈ [0, 1), the
ramified optimal transport problem is: Minimize

Mα(T ) :=

∫

M

θ(x)α dH1

among all T = τ (M, θ, ξ) ∈ Path(µ−, µ+).
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2.2.2. Compatibility and the simple common-source property. In [17, 20], we studied
a special kind of transport paths that are compatible with a transport map (or a
transport plan).

Definition 2.2. ([20, Definition 5.3]) Let µ and ν be two Radon measures on X
of equal mass and T ∈ Path(µ, ν).

(a) For any π ∈ Plan(µ, ν), if there exists a finite Borel measure η on Γ such
that

T =

∫

Γ

Iγdη, and π =

∫

Γ

δ(p0(γ),p∞(γ))dη,

then we say the pair (T, π) is compatible (with respect to η).
(b) For any ϕ ∈ Map(µ, ν), we say the pair (T, ϕ) is compatible if (T, πϕ) is

compatible, where πϕ = (id× ϕ)#µ.
(c) T ∈ Path(µ, ν) is called map-compatible if there exists a map ϕ ∈ Map(µ, ν)

such that (T, ϕ) is compatible.

We now characterize map-compatible transport paths in the case of atomic mea-
sures. Let

(2.10) µ− =

N1
∑

i=1

m′
iδxi

and µ+ =

N2
∑

j=1

mjδyj
with

N1
∑

i=1

m′
i =

N2
∑

j=1

mj < ∞

be two atomic measures on X with N1, N2 ∈ N ∪ {∞}. For each i = 1, 2, · · · , N1,
j = 1, 2, · · · , N2, as given in (2.10), let Γxi,yj

denote the set of all 1-Lipschitz
curves in Γ from xi to yj. For any finite Borel measure η of T , and each yj ∈
{y1, y2, · · · , yN2

}, denote

(2.11) Xj(η) := {xi ∈ X : η(Γxi,yj
) > 0}.

Using this notation, we now characterize map-compatible transport paths in
Path(µ−, µ+) as follows:

Proposition 2.3. Let µ− and µ+ be two atomic measures of equal mass as given
in (2.10), and T ∈ Path(µ−, µ+).

(1) If T is map-compatible with respect to a finite Borel measure η, then

|Xj1(η) ∩Xj2(η)| = 0 for any 1 ≤ j1 < j2 ≤ N2.

(2) If T has a good decomposition η such that |Xj1(η) ∩ Xj2(η)| = 0 for any
1 ≤ j1 < j2 ≤ N2, then T is map-compatible.

Proof. (1) Suppose ϕ ∈ Map(µ−, µ+) and (T, ϕ) is compatible. By Definition 2.2,
there exists a finite Borel measure η on Γ such that

T =

∫

Γ

Iγdη, πϕ =

∫

Γ

δ(p0(γ),p∞(γ))dη,

where πϕ = (id× ϕ)#µ
−.

Since µ−, µ+ are atomic measures as stated in (2.10), by using the proof given
in [20, Proposition 5.4], it follows that

(2.12) πϕ =
∑

i,j

η(Γxi,yj
)δ(xi,yj).

Also, direct calculation gives

πϕ({xi} × {yj}) = (id× ϕ)#µ−({xi} × {yj}) = µ−({xi} ∩ ϕ−1({yj})),
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so that πϕ({xi} × {yj}) = µ−(∅) = 0 when ϕ(xi) 6= yj , and πϕ({xi} × {yj}) =
µ−({xi}) > 0 when ϕ(xi) = yj. Using equation (2.12), we have

η(Γxi,yj
) = 0 when ϕ(xi) 6= yj, and η(Γxi,yj

) > 0 when ϕ(xi) = yj .

Hence, for each 1 ≤ j ≤ N2,

Xj(η) := {xi ∈ X : η(Γxi,yj
) > 0} = {xi ∈ X : ϕ(xi) = yj} = ϕ−1({yj}).

Since ϕ is a map from {x1, x2, · · · , xN1
} to {y1, y2, · · · , yN2

}, for 1 ≤ j1 < j2 ≤ N2

we have

Xj1(η) ∩Xj2(η) = ϕ−1({yj1}) ∩ ϕ−1({yj2}) = ∅.

(2) Now, suppose there exists a good decomposition η of T such that |Xj1(η) ∩
Xj2(η)| = 0 for any 1 ≤ j1 < j2 ≤ N2. In particular,

(2.13) T =

∫

Γ

Iγdη.

In this case, we may define

ϕ :

N2
⋃

j=1

Xj(η) = {x1, x2, · · · , xN1
} → {y1, y2, · · · , yN2

},

by setting ϕ(x) := yj for x ∈ Xj(η). Note that ϕ#µ
− = µ+ because by direct

calculation,

ϕ#µ
−({yj}) = µ−(Xj(η)) =

N1
∑

i=1

η(Γxi,yj
) = µ+({yj}),

for each j = 1, 2, · · · , N2. Moreover,

(id× ϕ)#µ
− = (id× ϕ)#





N1
∑

i=1





N2
∑

j=1

η(Γxi,yj
)



 δxi





=

N1
∑

i=1

N2
∑

j=1

η(Γxi,yj
)(id× ϕ)#δxi

=

N2
∑

j=1

(

N1
∑

i=1

η(Γxi,yj
)(id× ϕ)#δxi

)

=

N2
∑

j=1





∑

xi∈Xj(η)

η(Γxi,yj
)δ(xi,yj)





=

N2
∑

j=1





∑

xi∈Xj(η)

∫

Γxi,yj

δ(p0(γ),p∞(γ)) dη





=

N2
∑

j=1

N1
∑

i=1

∫

Γxi,yj

δ(p0(γ),p∞(γ)) dη =

∫

Γ

δ(p0(γ),p∞(γ)) dη,

which implies (T, ϕ) is compatible by (2.13).
�
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Motivated by Proposition 2.3, we are also interested in transport path T that
has a good decomposition η such that

(2.14) |Xj1(η) ∩Xj2(η)| ≤ 1, for each pair 1 ≤ j1 < j2 ≤ N.

The inequality (2.14) says that the intersection Xj1(η) ∩Xj2(η) is either empty or
a singleton. In other words, every two target points can have at most one common
source point.

A transport path T is said to have the simple common-source property if there
exists a good decomposition η of T that satisfies the inequality (2.14). We claim
that each optimal transport path has this property. To see this, we first recall the
definition of cycle-free paths:

Definition 2.4. ([20, Definition 4.2]) Let T = τ(M, θ, ξ) and S = τ(N,φ, ζ) be
two real rectifiable k-currents.

(a) We say S is on T if Hk(N \M) = 0, and φ(x) ≤ θ(x) for Hk almost every
x ∈ N .

(b) S is called a cycle on T if S is on T and ∂S = 0.
(c) T is called cycle-free if except for the zero current, there is no other cycle

on T .

As stated in [20, Remark 4.3], the concept of “cycle-free” is different from
“acyclic”. A cycle-free current is automatically acyclic, but not vice versa. Also,
by [20, Corollary 4.5], each optimal transport path is automatically cycle-free.

In [20, Propositions 4.6–4.7], we showed that

Proposition 2.5. Each cycle-free transport path T ∈ Path(µ−, µ+) has a good
decomposition η that satisfies (2.14).

As a result, each cycle-free transport path, in particular each optimal transport
path, has the simple common-source property.

3. Existence of an optimal transport multi-path

In this section, we will show that Problem 1 has a solution. We first note that,

by (1.4), for any multi-path ~T = (T1, T2, · · · , Tk, · · · ) ∈ Pathc(µ
−, µ+), the series

∞
∑

k=1

Tk ∈ Path(µ−, µ+)

provided that the series is convergent as currents, i.e., for any ω ∈ D1(Rm), the
series

∑∞
k=1 Tk(ω) of real numbers converges.

Lemma 3.1. For any convergent series
∑∞

i=1 Ti of rectifiable 1-currents, if 0 ≤
α ≤ 1 then

Mα

(

∞
∑

k=1

Tk

)

≤
∞
∑

k=1

Mα(Tk).

Proof. Suppose Tk = τ (Mk, θk, ξk), and let ω ∈ D1(Rm), then

Tk(ω) =

∫

Mk

〈ω(x), ξk(x)〉θk(x) dH
1(x),
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and

∞
∑

k=1

Tk(ω) =

∞
∑

k=1

∫

Mk

〈ω(x), ξk(x)〉 θk(x) dH
1(x)

=

∫

∞⋃

k=1

Mk

〈

ω(x),

∞
∑

k=1

ξk(x)θk(x)

〉

dH1(x).

Here, we adopt the convention that for each k, θk(x) = 0 when x 6∈ Mk. Since
0 ≤ α ≤ 1, then for each n ∈ N,

(

n
∑

k=1

θk(x)

)α

≤
n
∑

k=1

θk(x)
α ≤

∞
∑

k=1

θk(x)
α,

so that
(

∞
∑

k=1

θk(x)

)α

= lim
n→∞

(

n
∑

k=1

θk(x)

)α

≤
∞
∑

k=1

θk(x)
α.

Therefore,

Mα

(

∞
∑

k=1

Tk

)

≤

∫

∞⋃

k=1

Mk

(

∞
∑

k=1

θk(x)

)α

dH1(x)

≤

∫

∞⋃

k=1

Mk

∞
∑

k=1

θk(x)
αdH1(x) =

∞
∑

k=1

∫

∞⋃

k=1

Mk

θk(x)
αdH1(x)

=
∞
∑

k=1

∫

Mk

θk(x)
αdH1(x) =

∞
∑

k=1

Mα(Tk).

�

Lemma 3.2. For any transport capacity c > 0 and any ~T ∈ Pathc(µ
−, µ+), there

exists a constant N(c) ∈ N with

N(c) <
2‖µ−‖

c
+ 1,

and ~T ′ = (T ′
1, T

′
2, · · · , T

′
N(c)) ∈ Pathc(µ

−, µ+) such that Mα( ~T ′) ≤ Mα(~T ).

Proof. Since
∑∞

k=1 ‖µ
−
k ‖ =

∑∞
k=1 ‖µ

+
k ‖ < ∞, and ‖µ−

k ‖ = ‖µ+
k ‖ for each k, there

exists N such that
∞
∑

k=N

‖µ−
k ‖ =

∞
∑

k=N

‖µ+
k ‖ <

c

2
.

For any ~T = (T1, T2, · · · , TN , · · · ) ∈ Pathc(µ
−, µ+), denote

T ′
N :=

∞
∑

k=N

Tk ∈ Path

(

∞
∑

k=N

µ−
k ,

∞
∑

k=N

µ+
k

)

.
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Then ~T ′ = (T1, T2, · · · , TN−1, T
′
N) ∈ Pathc(µ

−, µ+), and by Lemma 3.1,

Mα( ~T ′) =

N−1
∑

k=1

Mα(Tk) +Mα(~T
′
N ) =

N−1
∑

k=1

Mα(Tk) +Mα

(

∞
∑

k=N

Tk

)

≤
∞
∑

k=1

Mα(Tk) = Mα(~T ).

As a result, without loss of generality, we may assume that ~T has only finitely

number of components, i.e. ~T = (T1, T2, · · · , TN).
We may further assume that there is at most one k with 1 ≤ k ≤ N satisfying

‖µ−
k ‖ ≤ c/2. Indeed, assume for some 1 ≤ i < j ≤ N , it holds that ‖µ−

i ‖ ≤ c/2

and ‖µ−
j ‖ ≤ c/2. Let

~T ∗ := (T1, · · · , Ti + Tj , · · · , Tj−1, Tj+1, · · · , TN ) .

Then ~T ∗ ∈ Pathc(µ
−, µ+), since ‖µ+

i + µ+
j ‖ = ‖µ−

i + µ−
j ‖ = ‖µ−

i ‖ + ‖µ−
j ‖ ≤ c.

Also,

Mα(~T
∗) =

∑

k 6=i,j

Mα(Tk) +Mα(Ti+Tj) ≤
∑

k 6=i,j

Mα(Tk) +Mα(Ti)+Mα(Tj) = Mα(~T ).

Thus, replacing ~T by ~T ∗ if necessary, we may assume that there is at most one
k, with 1 ≤ k ≤ N , satisfying ‖µ−

k ‖ ≤ c/2. Hence,

‖µ−‖ =

N
∑

k=1

‖µ−
k ‖ > (N − 1)

c

2
,

which implies N < 2‖µ−‖/c+ 1. �

The following theorem says that Problem 1 has a solution when α ∈ (1−1/m, 1].

Theorem 3.3. Let µ− and µ+ be two Radon measures on R
m with equal mass,

supported on compact sets. For any α ∈ (1−1/m, 1] and c > 0, there exists a trans-

port multi-path ~T ∗ = (T1, T2, · · · , TN) ∈ Pathc(µ
−, µ+) of finite many components

such that

Mα(~T
∗) ≤ Mα(~T )

for all ~T ∈ Pathc(µ
−, µ+). Moreover, the number of components N of ~T ∗ is less

than 2
c
‖µ−‖+ 1.

Proof. We first show that there exists a transport path ~S ∈ Pathc(µ
−, µ+) satis-

fying (1.4) with Mα(~S) < ∞. Indeed, since both µ− and µ+ are supported on a
compact set, by the existence theorem in [17] we can find S ∈ Path(µ−, µ+) with
Mα(S) < +∞ for α ∈ (1− 1/m, 1].

Pick L ∈ N large enough so that ‖µ+‖ = ‖µ−‖ ≤ cL. Then

~S :=

(

1

L
S,

1

L
S, · · · ,

1

L
S

)

∈ Pathc(µ
−, µ+)

with µ±
k = 1

L
µ± for k = 1, 2, · · · , L. Moreover,

Mα(~S) =

L
∑

k=1

Mα(S/L) =

L
∑

k=1

L−αMα(S) = L1−αMα(S) < ∞.
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Now, let {~T (n)} be any Mα-minimizing sequence in Pathc(µ
−, µ+) with

Mα(~T
(n)) ≤ Mα(~S).

By Lemma 3.2, without loss of generality, we may assume that each ~T (n) =

(T n
1 , T

n
2 , · · · , T

n
N) with N = N(c) < 2‖µ−‖

c
+ 1. For each 1 ≤ k ≤ N and n ∈ N, let

T n
k = τ(Mk,n, θk,n, ξk,n) with θk,n(x) ≤ ‖µ−

k ‖ ≤ c, then

M(T n
k ) =

∫

Mk,n

θk,n H
1(x)

=

∫

Mk,n

θαk,n · θ1−α
k,n H1(x) ≤ c1−α

∫

Mk,n

θαk,n H1(x) = c1−αMα(T
n
k ).

Hence,

M(T n
k ) ≤ c1−αMα(T

n
k ) ≤ c1−αMα(~T

(n)) ≤ c1−αMα(~S) < ∞.

By the compactness of rectifiable currents, each sequence

{T n
k }

∞
n=1

sub-sequentially converges to some rectifiable current Tk for k = 1, 2, · · · , N . Since
N is finite, we may assume they have the same convergent subsequence. As a

result, we have a convergent subsequence of {~T (n) = (T n
1 , T

n
2 , · · · , T

n
N)} with limit

~T ∗ = (T1, T2, · · · , TN). It is easy to see that ~T ∗ ∈ Pathc(µ
−, µ+). Also, by the

lower-semicontinuity of Mα-mass, this multi-path ~T ∗ is the desired solution for
Problem 1. �

4. Properties of optimal transport multi-paths

This section aims to study some non-trivial properties of optimal transport multi-
paths. To do so, we first introduce some notations.

Given a transport multi-path (T1, T2, · · · , TN ) ∈ Pathc(µ
−, µ+), it follows that

each component Tk ∈ Path(µ−
k , µ

+
k ) with ∂Tk = µ+

k − µ−
k . Denote ∂−Tk := µ−

k as

the source measure and denote ∂+Tk := µ+
k as the target measure, then by definition

of transport path we have ‖∂−Tk‖ = ‖∂+Tk‖. The conditions for transport multi-
paths in Pathc(µ

−, µ+) can be expressed as

µ− =

N
∑

k=1

∂−Tk, µ+ =

N
∑

k=1

∂+Tk, ‖∂−Tk‖ = ‖∂+Tk‖ ≤ c.

We now introduce a technical result that will be used later to determine whether
a transport multi-path is optimal or not.

Theorem 4.1. Given µ− =
∑N

k=1 µ
−
k , µ

+ =
∑N

k=1 µ
+
k , ‖µ

−
k ‖ = ‖µ+

k ‖ ≤ c, and a
transport multi-path

~T = (T1, T2, · · · , TN ) ∈ Pathc(µ
−, µ+).

Suppose ~S = (S1, S2, · · · , SN ) is a list of rectifiable 1-currents such that for each
k = 1, 2, · · · , N , its component Sk satisfies the following conditions:

(1) Sk is on Tk in the sense of Definition 2.4(a);
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(2) In the sense of signed measures, ∂Sk = ρk(x)∂Tk with |ρk(x)| ≤ 1 and

(4.1)

N
∑

k=1

ρk(x)∂
−Tk = 0,

N
∑

k=1

ρk(x)∂
+Tk = 0;

(3) ‖∂−(Tk ± Sk)‖ ≤ c and ‖∂+(Tk ± Sk)‖ ≤ c.

Then for any ǫ ∈ [−1, 1],

~T + ǫ~S := (T1 + ǫS1, T2 + ǫS2, · · · , TN + ǫSN ) ∈ Pathc(µ
−, µ+),

and for α ∈ [0, 1],

(4.2) min
{

Mα(~T + ~S),Mα(~T − ~S)
}

≤ Mα(~T ).

Moreover, if ~T is Mα-optimal for some α ∈ (0, 1), then ~S = ~0 in the sense that
Sk = 0 for all k = 1, 2, · · · , N .

Proof. For each k, since

∂(Tk + ǫSk) = ∂Tk + ǫ∂Sk = (1 + ǫρk(x))∂Tk

and 1 + ǫρk(x) ≥ 0 because |ǫ| ≤ 1 and |ρk(x)| ≤ 1, it follows that

∂−(Tk + ǫSk) = (1 + ǫρk(x))∂
−Tk, and ∂+(Tk + ǫSk) = (1 + ǫρk(x))∂

+Tk.

By (4.1), this implies that

N
∑

k=1

∂−(Tk + ǫSk) =

N
∑

k=1

(1 + ǫρk(x))∂
−Tk

=

N
∑

k=1

∂−Tk + ǫ

N
∑

k=1

ρk(x)∂
−Tk =

N
∑

k=1

∂−Tk = µ−,

and similarly

N
∑

k=1

∂+(Tk + ǫSk) =

N
∑

k=1

(1 + ǫρk(x))∂
+Tk

=

N
∑

k=1

∂+Tk + ǫ

N
∑

k=1

ρk(x)∂
+Tk =

N
∑

k=1

∂+Tk = µ+.

Also, since ‖∂−(Tk+ǫSk)‖ =
∫

X
1+ǫρk(x) d(∂

−Tk) is linear in ǫ ∈ [−1, 1], it follows
that

‖∂−(Tk + ǫSk)‖ ≤ max
{

‖∂−(Tk + Sk)‖, ‖∂
−(Tk − Sk)‖

}

≤ c.

Similarly, ‖∂+(Tk + ǫSk)‖ ≤ c. As a result, ~T + ǫ~S ∈ Pathc(µ
−, µ+) for each

ǫ ∈ [−1, 1].

To show (4.2), without loss of the generality, we may assume that Mα(~T ) < ∞,
i.e., Mα(Tk) < ∞ for each k. For each k = 1, 2, · · · , N , denote Tk = τ (Mk, θk, ξk)

and Sk = τ (Nk, φk, ζk). By definition, Sk is on Tk means that H1(Nk \Mk) = 0,

and φk(x) ≤ θk(x) for H1 almost every x ∈ Nk. Note that ξk(x) = ±ζk(x) for
H1 almost every x ∈ Nk, since two rectifiable sets have the same tangent almost
everywhere on their intersection. Thus, it follows that

Mα(Tk + ǫSk) =

∫

Mk

|θk(x) + ǫφk(x)〈ξk(x), ζk(x)〉|
αdH1(x),
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where we use the convention that φk(x) = 0, ζk(x) = ξk(x) when x ∈ Mk \Nk and
〈ξk(x), ζk(x)〉 = ±1 for a.e. x ∈ Nk ∩ Mk. Note also that when ǫ ∈ [−1, 1], since
φk(x) ≤ θk(x), we have θk(x) + ǫφk(x)〈ξk(x), ζk(x)〉 ≥ 0, and hence

Mα(Tk + ǫSk) =

∫

Mk

(θk(x) + ǫφk(x)〈ξk(x), ζk(x)〉)
α
dH1(x).

Since Mα(Tk) =
∫

Mk
θk(x)

αdH1(x) < ∞ and φk(x) ≤ θk(x), one may take deriva-

tives directly and get

d2

dǫ2
Mα(Tk + ǫSk) = α(α − 1)

∫

Mk

(θk(x) + ǫφk(x)〈ξk(x), ζk(x)〉)
α−2 φk(x)

2 ≤ 0.

This implies Mα(~T+ǫ~S) =
∑N

k=1 Mα(Tk+ǫSk) is a concave function of ǫ and hence

it reaches minimum value at one of its endpoint ǫ = ±1. As a result, min{Mα(~T +
~S),Mα(~T − ~S)} ≤ Mα(~T ) as desired.

Now assume that ~T is Mα-optimal for some α ∈ (0, 1) but ~S = (S1, S2, · · · , SN )
is non-zero. i.e. there exists k ∈ {1, 2, · · · , N} such that Sk is a non-vanishing
current. Then,

d2

dǫ2

∣

∣

∣

∣

ǫ=0

Mα(Tk + ǫSk) = α(α− 1)

∫

Mk

θk(x)
α−2φk(x)

2 < 0

due to the facts
∫

Mk

θk(x)
α−2φk(x)

2 =

∫

Nk

θk(x)
α−2φk(x)

2 ≥

∫

Nk

φk(x)
α−2φk(x)

2 = Mα(Sk) > 0,

and α ∈ (0, 1). This implies that Mα(~T + ǫ~S) cannot achieve a local minimum at

ǫ = 0, contradicting with ~T is Mα-optimal. �

Remark 4.2. Note that an obvious necessary condition for ~S = (S1, S2, · · · , SN )
is given by condition (2):

∂

(

N
∑

k=1

Sk

)

=

N
∑

k=1

∂Sk =

N
∑

k=1

ρk(x)∂Tk =

N
∑

k=1

ρk(x)∂
+Tk −

N
∑

k=1

ρk(x)∂T
−
k = 0.

In general, a component ∂Sk of ~S does not necessarily vanish. Nevertheless, when
each ∂Sk = 0, conditions (2) and (3) are automatically satisfied, since we have
ρk(x) = 0 and ∂(Tk ± Sk) = ∂Tk.

We now use Theorem 4.1 to study properties of optimal transport multi-paths
between atomic measures. In the following content, let

(4.3) µ− =

N1
∑

i=1

m′
iδxi

and µ+ =

N2
∑

j=1

mjδyj
with

N1
∑

i=1

m′
i =

N2
∑

j=1

mj .

By Theorem 3.3, there exists an Mα-minimizer ~T ∗ = (T1, T2, · · · , TN ) among all

transport multi-paths ~T ∈ Pathc(µ
−, µ+). Here, each component Tk is an optimal

transport path from µ−
k to µ+

k , and
∑N

k=1 µ
±
k = µ±.

Besides knowing Tk satisfies some basic properties of an optimal transport path,
we are interested in finding some non-trivial properties of Tk. Our first result in
this direction is about the map-compatibility.
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Theorem 4.3. Let µ− and µ+ be defined as in equation (4.3), and α ∈ (0, 1). Let
~T ∗ = (T1, T2, · · · , TN) be an Mα-minimizer in Pathc(µ

−, µ+). Then except for at

most N2 − 1 many k’s, each component Tk of ~T ∗ is map-compatible.

Proof. For each k = 1, 2, · · · , N , since Tk is an optimal transport path, it is an
acyclic normal 1-current. Thus, it has a good decomposition ηk. Using similar
notation as in equation (2.11), we denote

(4.4) Xj(ηk) := {xi ∈ X : ηk(Γxi,yj
) > 0}.

To prove the theorem, by Proposition 2.3, it is sufficient to prove the collection of
sets

{Xj(ηk) : j = 1, 2, · · · , N2}

are mutually disjoint, except for at most N2 − 1 many k’s. For the sake of contra-
diction, we assume there are N2 collections of sets

{Xj(ηkℓ
) : j = 1, 2, · · · , N2} , for ℓ = 1, 2, · · · , N2,

that are not mutually disjoint. Thus for each ℓ, there exist xiℓ , yjℓ , yj′ℓ , such that

xiℓ ∈ Xjℓ(ηkℓ
) ∩Xj′

ℓ
(ηkℓ

). That is,

(4.5) ηkℓ
(Γxiℓ

,yjℓ
) > 0 and ηkℓ

(Γxiℓ
,yj′

ℓ

) > 0.

In the following, to get a contradiction with the optimality of ~T ∗, we will build a

non-vanishing ~S satisfying the conditions in Theorem 4.1.
Let M be the N2 ×N2 matrix

M :=











ej′
1
− ej1

ej′
2
− ej2
...

ej′
N2

− ejN2











,

where for each k = 1, 2 · · · , N2, ek denotes the row vector (0, · · · , 1, · · · , 0) in R
N2

with the nonzero number 1 at its k-th position. Since

M











1
1
...
1











=











0
0
...
0











,

it follows that rank (M) < N2. Thus, there exists a nonzero row vector

[c1, c2, · · · , cN2
] ∈ R

N2

such that

(4.6)
[

c1, c2, · · · , cN2

]

M =
[

0, 0, · · · , 0
]

.

By (4.5) and (4.6), we may further assume that

(4.7) 0 < max{|cℓ| : 1 ≤ ℓ ≤ N2} ≤ min{ηkℓ
(Γxiℓ

,yjℓ
), ηkℓ

(Γxiℓ
,yj′

ℓ

) : 1 ≤ ℓ ≤ N2}.

Since ηk is a good decomposition of Tk ∈ Path(µ−
k , µ

+
k ), it follows that

Tk =

∫

Γ

Iγdηk =

N1
∑

i=1

N2
∑

j=1

∫

Γxi,yj

Iγdηk.
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Let

Skℓ
:= −

cℓ
ηkℓ

(Γxiℓ
,yjℓ

)

∫

Γxiℓ
,yjℓ

Iγdηkℓ
+

cℓ
ηkℓ

(Γxiℓ
,yj′

ℓ

)

∫

Γxiℓ
,y

j′
ℓ

Iγdηkℓ
,

for ℓ = 1, 2, · · · , N2, and Sk := 0 for any other k’s. We now check that ~S =
(S1, S2, · · · , SN) satisfies the conditions of Theorem 4.1. By (4.7), each Sk is on
Tk. Since

(4.8) ∂Skℓ
= cℓδyj′

ℓ

− cℓδyjℓ
, for ℓ = 1, 2, · · · , N2, and ∂Sk = 0 for any other k,

it follows that ∂Sk = ρk(x)∂Tk, where ρk(x) is defined as

(4.9) ρkℓ
(x) =







−cℓ/
∑

i ηkℓ
(Γxi,yjℓ

) if x = yjℓ
cℓ/
∑

i ηkℓ
(Γxi,yj′

ℓ

) if x = yj′
ℓ

0 otherwise,

for ℓ = 1, 2, · · · , N2, and ρk(x) = 0 for any other k’s. Therefore, we have |ρk(x)| ≤ 1,
for all k and all x. Moreover, since ∂−Tk({x}) = 0 for x 6∈ {x1, x2, · · · , xN1

} and
ρk(x) = 0 for x ∈ {x1, x2, · · · , xN1

}, by (4.9), we have

N
∑

k=1

ρk(x)∂
−Tk =

N
∑

k=1

0 · ∂−Tk = 0.

Using it, (4.8) and (4.6),

N
∑

k=1

ρk(x)∂
+Tk =

N
∑

k=1

ρk(x)∂
+Tk −

N
∑

k=1

ρk(x)∂
−Tk

=

N
∑

k=1

∂Sk =

N2
∑

ℓ=1

∂Skℓ
=

N2
∑

ℓ=1

cℓ · (δyj′
ℓ

− δyjℓ
)

=
[

c1, c2, · · · , cN2

]

M











δy1

δy2

...
δyN2











=
[

0, 0, · · · , 0
]











δy1

δy2

...
δyN2











= 0.

Furthermore, by (4.8), for k = kℓ, with ℓ = 1, 2, · · · , N2,

‖∂−(Tkℓ
± Skℓ

)‖ = ‖∂−Tkℓ
‖ ≤ c, ‖∂+(Tkℓ

± Skℓ
)‖ = ∓cℓ ± cℓ + ‖∂+Tkℓ

‖ ≤ c,

and for k 6= kℓ, ‖∂
−(Tk ± Sk)‖ = ‖∂−Tk‖ ≤ c and ‖∂+(Tk ± Sk)‖ = ‖∂+Tk‖ ≤ c,

hold trivially.

As a result, ~S = (S1, S2, · · · , SN ) satisfies the conditions of Theorem 4.1. Since
~T ∗ is optimal, by Theorem 4.1, we have ~S = ~0. On the other hand, since the
vector [c1, c2, · · · , cN2

] is non-zero, at least one Skℓ
is non-zero. This leads to a

contradiction. �

We now further explore other non-trivial properties of ~T ∗. Note that Theorem 4.3
says that with at mostN2−1 exceptions, |Xj1(ηk)∩Xj2(ηk)| = 0, i.e. Tk has a “zero
common-source property”. Since each Tk is an optimal transport path from µ−

k to

µ+
k , by Proposition 2.5, Tk has the “simple common-source property” in the sense

that there exists a good decomposition ηk of Tk such that |Xj1(ηk) ∩Xj2(ηk)| ≤ 1
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for any 1 ≤ j1 < j2 ≤ N2. We now generalize this simple common-source property
to its counterparts between different components.

Theorem 4.4 (Simple Common-Source Property). Let µ− and µ+ be defined as

in equation (4.3), and α ∈ (0, 1). Let ~T ∗ = (T1, T2, · · · , TN ) be an Mα-minimizer
in Pathc(µ

−, µ+). For each k = 1, 2, · · · , N , let ηk be any good decomposition of
Tk. Then for all pairs 1 ≤ j1 ≤ j2 ≤ N2, 1 ≤ k1 < k2 ≤ N , it holds that

(4.10) |Xj1(ηk1
) ∩Xj2(ηk2

)| ≤ 1.

Proof. For the sake of contradiction, assume

|Xj1(ηk1
) ∩Xj2(ηk2

)| ≥ 2

for some 1 ≤ j1 ≤ j2 ≤ N2 and 1 ≤ k1 < k2 ≤ N . Thus, there exists two points,
say x1, x2 ∈ Xj1(ηk1

) ∩ Xj2(ηk2
), with x1 6= x2. By definition of Xj(ηk) given in

(4.4), it means that

ηk1
(Γx1,yj1

) > 0, ηk1
(Γx2,yj1

) > 0, ηk2
(Γx1,yj2

) > 0, and ηk2
(Γx2,yj2

) > 0.

As in the proof of Theorem 4.3, to get a contradiction with the optimality of ~T ∗,

we will build a non-vanishing ~S satisfying the conditions in Theorem 4.1. For each
k, since ηk is a good decomposition of Tk ∈ Path(µ−

k , µ
+
k ), it follows that

Tk =

∫

Γ

Iγdηk =

N1
∑

i=1

N2
∑

j=1

∫

Γxi,yj

Iγdηk,

and thus

∂Tk =

N1
∑

i=1

N2
∑

j=1

ηk(Γxi,yj
)(δyj

− δxi
).

Let

ǫ0 :=
1

4
min{ηk1

(Γx1,yj1
), ηk1

(Γx2,yj1
), ηk2

(Γx1,yj2
), ηk2

(Γx2,yj2
)} > 0,

and define

Sk1
:=

ǫ0
ηk1

(Γx1,yj1
)

∫

Γx1,yj1

Iγdηk1
−

ǫ0
ηk1

(Γx2,yj1
)

∫

Γx2,yj1

Iγdηk1
,

Sk2
:= −

ǫ0
ηk2

(Γx1,yj2
)

∫

Γx1,yj2

Iγdηk2
+

ǫ0
ηk2

(Γx2,yj2
)

∫

Γx2,yj2

Iγdηk2
,

Sk := 0 for k 6= k1, k2.

Note that

∂Sk1
=

ǫ0
ηk1

(Γx1,yj1
)

∫

Γx1,yj1

(δyj1
− δx1

)dηk1
−

ǫ0
ηk1

(Γx2,yj1
)

∫

Γx2,yj1

(δyj1
− δx2

)dηk1

= ǫ0δx2
− ǫ0δx1

,

and similarly ∂Sk2
= ǫ0δx1

− ǫ0δx2
. Since x1 6= x2, both Sk1

and Sk2
are non-

vanishing currents on Tk1
and Tk2

, respectively. Using it, we may express ∂Sk1
=

ρk1
(x)∂Tk1

, where

ρk1
(x1) =

ǫ0
∑N2

j=1 ηk1
(Γx1,yj

)
, ρk1

(x2) = −
ǫ0

∑N2

j=1 ηk1
(Γx2,yj

)
,
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and ρk1
(x) = 0 for any x ∈ spt(∂Tk1

)\{x1, x2} = {x3, x4, · · · , xN1
, y1, y2, · · · , yN2

}.
Similarly, we have ∂Sk2

= ρk2
(x)∂Tk2

, where

ρk2
(x1) = −

ǫ0
∑N2

j=1 ηk2
(Γx1,yj

)
, ρk2

(x2) =
ǫ0

∑N2

j=1 ηk2
(Γx2,yj

)
,

and ρk2
(x) = 0 for any x ∈ spt(∂Tk2

) \ {x1, x2}. For k 6= k1, k2, since Sk = 0, we
have ρk(x) = 0. As a result, we express ∂Sk = ρk(x)∂Tk with |ρk(x)| ≤ 1 for each
k = 1, 2, · · · , N .

Moreover, by the values of ρk(x) given above,

N
∑

k=1

ρk(x)∂
−Tk = ρk1

(x)∂−Tk1
+ ρk2

(x)∂−Tk2

=
ǫ0

∑N2

j=1 ηk1
(Γx1,yj

)
·

N2
∑

j=1

ηk1
(Γx1,yj

)δx1
−

ǫ0
∑N2

j=1 ηk1
(Γx2,yj

)
·

N2
∑

j=1

ηk1
(Γx2,yj

)δx2

−
ǫ0

∑N2

j=1 ηk2
(Γx1,yj

)
·

N2
∑

j=1

ηk2
(Γx1,yj

)δx1
+

ǫ0
∑N2

j=1 ηk2
(Γx2,yj

)
·

N2
∑

j=1

ηk2
(Γx2,yj

)δx2

= 0,

and

N
∑

k=1

ρk(x)∂
+Tk =

N
∑

k=1

0 = 0.

We now check condition (3) in the statement of Theorem 4.1.

• When k = k1, ‖∂+(Tk1
± Sk1

)‖ = ‖∂+Tk1
‖ ≤ c, and

‖∂−(Tk1
± Sk1

)‖

=





N2
∑

j=1

ηk1
(Γx1,yj

)



± ǫ0 +





N2
∑

j=1

ηk1
(Γx2,yj

)



∓ ǫ0 +

N1
∑

i=3

N2
∑

j=1

ηk1
(Γxi,yj

)

=

N1
∑

i=1

N2
∑

j=1

ηk1
(Γxi,yj

) = ‖∂−Tk1
‖ ≤ c.

Similarly, for k = k2 we have ‖∂+(Tk2
±Sk2

)‖ ≤ c and ‖∂−(Tk2
±Sk2

)‖ ≤ c.
• When k 6= k1, k2, since Sk’s are zero currents, we trivially have

‖∂−(Tk ± Sk)‖ = ‖∂−Tk‖ ≤ c, ‖∂+(Tk ± Sk)‖ = ‖∂+Tk‖ ≤ c.

Thus, ~S = (S1, S2, · · · , SN ) satisfies the conditions of Theorem 4.1. Since T is

optimal, by Theorem 4.1, we have ~S = ~0, contradicting with the non-vanishing
Sk1

, Sk2
constructed above. As a result, for all 1 ≤ j1 ≤ j2 ≤ N2, 1 ≤ k1 < k2 ≤ N ,

|Xj1(ηk1
) ∩Xj2(ηk2

)| ≤ 1.

�
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5. Case study: Single target

As an example, in this section, we would like to investigate the case of a single
target. Namely, let

µ− =

N1
∑

i=1

m′
iδxi

, µ+ = m1δy with m1 =

N1
∑

i=1

m′
i,

~T ∗ = (T1, T2, · · · , TN) be an α-optimal multi-path in Pathc(µ
−, µ+) for some α ∈

(0, 1) and c > 0. For each k = 1, 2, · · · , N , let ηk be a good decomposition of Tk.
Thus,

Tk =

∫

Γ

Iγdηk =

N1
∑

i=1

∫

Γxi,y

Iγdηk,

and

(5.1) ∂Tk =

N1
∑

i=1

ηk(Γxi,y)(δy − δxi
) =

(

N1
∑

i=1

ηk(Γxi,y)

)

δy −
N1
∑

i=1

ηk(Γxi,y)δxi
.

For simplicity, we also denote

X(ηk) := {xi ∈ X : ηk(Γxi,y) > 0}.

By Theorem 4.4, when k1 6= k2, it holds that

(5.2) |X(ηk1
) ∩X(ηk2

)| ≤ 1.

Proposition 5.1. In the single target case, suppose |X(ηk1
)∩X(ηk2

)| = 1 for some
k1 6= k2, then either ‖µ−

k1
‖ = c or ‖µ−

k2
‖ = c.

Proof. Without loss of generality, assume k1 = 1, k2 = 2, and let X(η1) ∩X(η2) =
{x1}, which implies that

η1(Γx1,y) > 0, and η2(Γx1,y) > 0.

y

x1

η1(Γx1,y) η2(Γx1,y)

Figure 3. T1 and T2

For the sake of contradiction, assume that both ‖µ−
1 ‖ < c and ‖µ−

2 ‖ < c. Let

ǫ0 := min
{

η1(Γx1,y), η2(Γx1,y), c− ‖µ−
1 ‖, c− ‖µ−

2 ‖
}

> 0.

Consider
~S = (S1, S2, S3, · · · , SN ),
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where

S1 :=
ǫ0

η1(Γx1,y)

∫

Γx1,y

Iγdη1, S2 := −
ǫ0

η2(Γx1,y)

∫

Γx1,y

Iγdη2,

and Sk := 0 for k ≥ 3. By construction, each Sk is on Tk for all k = 1, 2, · · · , N .
Now we may express ∂Sk = ρk(x)∂Tk as follows. Since ∂T1 is given in (5.1) and

∂S1 =
ǫ0

η1(Γx1,y)

∫

Γx1,y

∂Iγdη1 =
ǫ0

η1(Γx1,y)

∫

Γx1,y

(δy − δx1
)dη1 = ǫ0δy − ǫ0δx1

,

it follows that ρ1(x1) = ǫ0/η1(Γx1,y), ρ1(y) = ǫ0/
∑N1

i=1 η1(Γxi,y), and ρ1(x) = 0 for
x 6= x1, y. Note that |ρ1(x)| ≤ 1.

In general, for each k = 1, 2, · · · , N , we get ∂Sk = ρk(x)∂Tk, with |ρk(x)| ≤ 1
where

x = x1 x = y otherwise

ρ1(x) ǫ0/η1(Γx1,y) ǫ0/
∑N1

i=1 η1(Γxi,y) 0

ρ2(x) −ǫ0/η2(Γx1,y) −ǫ0/
∑N1

i=1 η2(Γxi,y) 0
ρk(x), k ≥ 3 0 0 0

Moreover, using the values of ρk given above, we have

N
∑

k=1

ρk(x)∂
−Tk =

ǫ0
η1(Γx1,y)

· η1(Γx1,y)δx1
−

ǫ0
η2(Γx1,y)

· η2(Γx1,y)δx1
= 0,

and

N
∑

k=1

ρk(x)∂
+Tk =

ǫ0
∑N1

i=1 η1(Γxi,y)
·
N1
∑

i=1

η1(Γxi,y)δy−
ǫ0

∑N1

i=1 η2(Γxi,y)
·
N1
∑

i=1

η2(Γxi,y)δy = 0.

In the end, we check the condition (3) of Theorem 4.1

• When k = 1, 2, since ‖µ−
k ‖ = ‖µ+

k ‖,

‖∂−(T1 ± S1)‖ = η1(Γx1,y)± ǫ0 +

N1
∑

i=2

η1(Γxi,y) = ±ǫ0 + ‖µ−
1 ‖ ≤ c,

‖∂+(T1 ± S1)‖ = ±ǫ0 +

N1
∑

i=1

η1(Γxi,y) = ±ǫ0 + ‖µ−
1 ‖ ≤ c,

‖∂−(T2 ± S2)‖ = η2(Γx1,y)∓ ǫ0 +

N1
∑

i=2

η2(Γxi,y) = ∓ǫ0 + ‖µ−
2 ‖ ≤ c,

‖∂+(T2 ± S2)‖ = ∓ǫ0 +

N1
∑

i=1

η2(Γxi,y) = ∓ǫ0 + ‖µ−
2 ‖ ≤ c,

• When k ≥ 3,

‖∂−(Tk ± Sk)‖ = ‖∂−Tk‖ ≤ c, ‖∂+(Tk ± Sk)‖ = ‖∂+Tk‖ ≤ c.

Theorem 4.1 implies for α ∈ (0, 1), each Sk is a vanishing current, but S1, S2

constructed above are non-vanishing, and this leads to a contradiction. Hence,
either ‖µ−

1 ‖ = c or ‖µ−
2 ‖ = c. �
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Corollary 5.2. In the single target case, suppose
n
⋂

ℓ=1

X(ηkℓ
) 6= ∅ for some n ≥ 2.

Then at most one of the µkℓ
has ‖µkℓ

‖ < c, and any other µkℓ
’s have mass ‖µkℓ

‖ =
c.

Proof. Suppose there exist two components µk1
, µk2

with ‖µk1
‖ < c and ‖µk2

‖ < c.
By equation (5.2), we have |X(ηk1

) ∩ X(ηk2
)| ≤ 1. Since X(ηk1

) ∩X(ηk2
) is non-

empty, then |X(ηk1
)∩X(ηk2

)| = 1. Proposition 5.1 implies ‖µk1
‖ = c or ‖µk2

‖ = c,
which leads to a contradiction. �

In the following examples, denote the line segment from x to y as xy. Also,
denote aJγK as the rectifiable 1-current, with density equals a, supported on the
curve γ, and has direction along this curve. Let ⌈x⌉ denote the smallest integer n
such that n ≥ x.

Example 5.3. Suppose µ− = m1δx, µ+ = m1δy for some m1 > 0, c > 0 and
~T ∗ = (T1, T2, · · · , TN) ∈ Pathc(µ

−, µ+) is α-optimal for some 0 < α < 1. Then,
up to a permutation of component indices,

T1, T2, · · · , TN−1 = cJxyK, TN = rJxyK,

with N = ⌈m1/c⌉ and r = m1 − (N − 1)c.

x y
...

c1 = c

c2 = c

cN−1 = c

cN = r

Figure 4. Transport multi-path components from 1 point to 1
point.

Proof. Since the minimum path between two points in R
m is a line segment, by the

optimality of ~T ∗, each Tk = ckJxyK for some 0 < ck ≤ c. On the other hand, as the

only source point, x ∈
⋂N

k=1 X(ηk). By Corollary 5.2 , for k = 1, 2, · · · , N , there
is at most one component Tk (without loss of generality assume this component is
TN) such that TN = rJxyK, r ∈ (0, c], and any other components are Tk = cJxyK.
The total number of components required is N = ⌈m1/c⌉, and since there is only
one component that has mass less or equal to c, then r = m1 − (N − 1)c. �

Example 5.4. Suppose µ− = m1δx1
+ m2δx2

, µ+ = (m1 + m2)δy, and ~T ∗ =
(T1, T2, · · · , TN) ∈ Pathc(µ

−, µ+) is optimal with N ≥ 2. Then, there exists an
integer 1 ≤ n ≤ N − 1 such that up to a permutation of component indices,

T1 = T2 = · · · = Tn−1 = cJx1yK, Tn+2 = Tn+3 = · · · = TN = cJx2yK

and one of the following cases hold:

Case 1: Tn = θ1Jx1yK, Tn+1 = θ2Jx2yK, where

(5.3) n = ⌈m1/c⌉, θ1 = m1−(n−1)c ∈ (0, c] and θ2 = m2−(N−n−1)c ∈ (0, c].
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Case 2: Tn = θ1Jx1yK for some θ1 ∈ (0, c] and Tn+1 is Y-shaped.
Case 3: Tn is Y-shaped, and Tn+1 = θ2Jx2yK for some θ2 ∈ (0, c).

y

x1

Tn

y

x2

Tn+1

(a) Case 1

y

x1

Tn

y

x1 x2

Tn+1

(b) Case 2

y

x1 x2

Tn

y

x2

Tn+1

(c) Case 3

Figure 5. Different cases of transport multi-paths from 2 source
points to 1 target point.

Proof. We first observe that there is at most one k = 1, 2, · · · , N such that |X(ηk)| =
2. Indeed, suppose |X(ηk1

)| = |X(ηk2
)| = 2 for some k1, k2 ∈ {1, 2, · · · , N} with

k1 6= k2. Since |supp(µ−)| = |{x1, x2}| = 2, it follows that X(ηk1
) = {x1, x2} =

X(ηk2
), which contradicts the result |X(ηk1

)∩X(ηk2
)| ≤ 1 given in equation (5.2).

As a result, there is at most one k such that |X(ηk)| = 2. In other words, among

all N components of ~T , there is at most one “Y-shaped” path and all others are
straight line segments. Up to a permutation of indices, we may list components
from x1 to y first, then the “Y-shaped” one if any, and then the line segments from
x2 to y. Moreover, by Proposition 5.1, with at most one exception, the density on
each line segment from xi to y reaches its maximum capacity c for each i = 1, 2.

Case 1: When ~T has no “Y-shaped” component, let n, θ1, θ2 be as in (5.3). Then,
up to a permutation of indexes, we have

T1 = T2 = · · · = Tn−1 = cJx1yK, Tn = θ1Jx1yK, Tn+1 = θ2Jx2yK,

and

Tn+2 = Tn+3 = · · · = TN = cJx2yK.

Case 2: When ~T has one “Y-shaped” component and all components supported on
the line segment from x2 to y reach their maximum capacity c, up to a

permutation of indexes, we may list components of ~T as

T1 = T2 = · · · = Tn−1 = cJx1yK, Tn = θ1Jx1yK, Tn+1 is “Y-shaped”,

and

Tn+2 = Tn+3 = · · · = TN = cJx2yK,

where θ1 ∈ (0, c].

Case 3: When ~T has one “Y-shaped” component and there exists one component
supported on the line segment from x2 to y that does not reach its maximum

capacity c, up to a permutation of indexes, we may list components of ~T as

T1 = T2 = · · · = Tn−2 = cJx1yK, Tn−1 = θ1Jx1yK, Tn is “Y-shaped”,
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and

Tn+1 = θ2Jx2yK, Tn+2 = Tn+3 = · · · = TN = cJx2yK,

where θ1 ∈ (0, c] and θ2 ∈ (0, c). We will show that θ1 = c. For the sake of
contradiction, assume 0 < θ1 < c. Since Tn is “Y-shaped”, we may write

Tn = a1Iγx1,y
+ a2Iγx2,y

,

where ai > 0 and γxi,y is a polyhedral curve from xi to y for each i = 1, 2.
Let ǫ0 = min{θ1, θ2, c− θ1, c− θ2, a1, a2} > 0, and define

~S = (S1, S2, · · · , SN),

where

Sn−1 := ǫ0Jx1yK, Sn := ǫ0
(

Iγx2,y
− Iγx1,y

)

, Sn+1 := −ǫ0Jx2yK,

and Sk = 0 for k 6= n− 1, n, n+1. By construction, Sk is on Tk for each k.
The corresponding ρk(x)’s, where ∂Sk = ρk(x)∂Tk for each k, are

x = x1 x = x2 x = y otherwise
ρn−1(x) ǫ0/θ1 0 ǫ0/θ1 0
ρn(x) −ǫ0/a1 ǫ0/a2 0 0

ρn+1(x) 0 −ǫ0/θ2 −ǫ0/θ2 0

and ρk(x) = 0, for k 6= n − 1, n, n + 1. Direct calculation shows that
~S constructed above satisfies the conditions in Theorem 4.1. Since ~T is
optimal and α ∈ (0, 1), Theorem 4.1 gives ~S = ~0. This contradicts with the

non-vanishing ~S constructed above.

�
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[1] L. Ambrosio, E. Brué, and D. Semola, Lectures on Optimal Transport, Unitext, Volume 130,
Springer, 2021.

[2] L. Ambrosio, N. Gigli. A User’s Guide to Optimal Transport. In: Modelling and Optimisa-

tion of Flows on Networks. Lecture Notes in Mathematics, vol 2062. (2013) Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-32160-3-1.

[3] M. Bernot, V. Caselles, and J.-M. Morel. Optimal transportation networks. Models and theory.
Lecture Notes in Mathematics, 1955. Springer, Berlin, 2009.

[4] A. Brancolini and B. Wirth. General transport problems with branched minimizers as function-

als of 1-currents with prescribed boundary. Calc. Var. Partial Differential Equations, 57(3):Art.
82, 39, 2018.

[5] M. Colombo, A De Rosa, A, Marchese, Improved stability of optimal traffic paths, Calc Var

Partial Differ Equ, 57:28, 2018
[6] M. Colombo, A. De Rosa, and A. Marchese. On the well-posedness of branched transportation.
Comm. Pure Appl. Math. 74 (2021), 833-864.

[7] F. Lin, X. Yang, Geometric Measure Theory: An Introduction, Science Press & International
Press, 2002.

[8] F. Maddalena, S. Solimini, and J.M. Morel. A variational model of irrigation patterns. Inter-
faces Free Bound., 5(4):391–415, 2003.

[9] E. Paolini, E. Stepanov. Decomposition of acyclic normal currents in a metric space, J Funct

Anal, Vol. 263, Issue 11, (2012), 3358-3390.
[10] P. Pegon, F. Santambrogio, and Q. Xia. A fractal shape optimization problem in branched

transport. J. Math. Pures Appl. (9), 123:244–269, 2019.
[11] L. Simon, Introduction to Geometric Measure Theory. 2014.



TRANSPORT MULTI-PATHS WITH CAPACITY CONSTRAINTS 25

[12] F. Santambrogio. Optimal Transport for Applied Mathematicians- Calculus of Variations,

PDEs, and Modeling, Progress in Nonlinear Differential Equations and Their Applications,
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