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Abstract. In this article, we study the regularity of the boundary of sets

minimizing a quasi perimeter T (E) = P (E, Ω) + G (E) with a volume con-
straint. Here Ω is any open subset of Rn with n ≥ 2, G is a lower semi-

continuous function on sets of finite perimeter satisfying a condition that

G (E) ≤ G (F ) + C |E∆F |β among all sets of finite perimeter with equal vol-

ume. We show that under the condition β > 1 − 1
n

, any volume constrained

minimizer E of the quasi perimeter T has both interior points and exterior

points, and E is indeed a quasi minimizer of perimeter without the volume
constraint. Using a well known regularity result about quasi minimizers of

perimeter, we get the classical C1,α regularity for the reduced boundary of E.

1. Introduction

Let Ω ⊂ Rn be any open subset with n ≥ 2. We consider the following minimizing
problem: Minimize

T (E) = P (E,Ω) + G (E)

among all sets E ⊂ Ω of finite perimeter with a fixed volume.
Here P (E,Ω) denotes the perimeter of E, and G is a lower semicontinuous

functional on the sets of finite perimeter in Ω with the property that

G(E) ≤ G(F ) + C|E∆F |β

for any sets E,F in Ω of finite perimeter with |E| = |F |, for some constant C > 0
and a number β > 1− 1

n .
The special case that G (E) ≡ 0 corresponds to a well known problem which

considers sets minimizing perimeter with a volume constraint. This problem is
often encountered in the field of capillarity theory. Liquid drops, resting on or
hanging from a given surface, are some typical examples. The regularity of the
corresponding minimizers has been studied extensively in [2].

Another example is given by

G (E) =
∫

E

H (x) dx

where H ∈ Lp (Ω), for some p > n, is a given function. Without a volume con-
straint, this is the problem of finding sets with prescribed mean curvature H, and
has been studied for instance in [3] by Massari. In our case, we impose an additional
volume constraint on it. From Hölder inequality, we see that β = 1 − 1

p > 1 − 1
n

here.
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thanks to Professor Luis Caffarelli and Robert Hardt for helpful discussions.
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Our main motivation of this problem comes from the study of mud cracking and
related problems. Mud cracking represents a very typical physical phenomenon.
After losing a certain amount of moisture, a material such as a piece of mud will
begin to crack. People are interested in why, how and where the material cracks.
To understand these problems, we propose the following variational model. Let Ω
represent a piece of mud. After losing a certain amount of moisture, say σ |Ω| for
some σ ∈ (0, 1), the volume of the mud decreases, and thus a crack E of volume
σ |Ω| must come out to replace the losing volume. The selection of cracking is not
totally random, but the actual physics of it might be too complicated to handle.
Instead, we may assume that it minimizes the total work of transporting the old
mud Ω to the new mud Ω − E, with multiplicity 1

1−σ , under a volume preserving
map. To justify this idea, let us think about a mud of the shape of a disk. To
replace the volume of losing moisture, it can either shrink evenly to a smaller disk
or dig some space out by cracking inside it. Which way is better? As we know,
the mud will possibly choose the later way. This is because the corresponding
transport costs of two ways are different. The mud just chooses a cheaper way to
reduce the total work. A reasonable way to represent the total work is given by the
Wasserstein distances Wp between Radon measures of equal total mass for some
p > 0. We refer to [5, Chapter 7] about the concepts of Wasserstein distances and
related topics. As a result, one would like to minimize

Wp

(
LnbΩ,

1
1− σ

Lnb(Ω− E)
)

+ P (E,Ω)

among all sets E of finite perimeter in Ω with volume |E| = σ |Ω| for some σ ∈
(0, 1). Here, the notation LnbK denotes the Lebesgue measure Ln restricted on any
measurable set K, and the perimeter P (E,Ω) of E is used to represent the cracking
energy for breaking the mud. Using the properties of Wasserstein distances, it is
easy to see that

Wp

(
LnbΩ,

1
1− σ

Lnb(Ω− E)
)

= Wp

(
1

1− σ
LnbE,

σ

1− σ
LnbΩ

)
= λWp (LnbE, σLnbΩ)

for some constant λ > 0. Thus, the problem becomes to minimize

P (E,Ω) + λWp (LnbE, σLnbΩ)

among all sets E in Ω of finite perimeter and with a volume constraint |E| = σ |Ω|.
In this case,

G (E) = λWp (LnbE, σLnbΩ) .

It is easy to see that β = 1 here.
Keeping all these examples in mind, we would like to study the minimizers for

more general G. Note that the existence of minimizers for the quasi perimeter T
follows immediately from the compactness of sets of finite perimeter. Thus, the
aim of this article is mainly focused on the regularity of these minimizers. Further
properties as well as numerical simulation will be considered later. The special
case G (E) ≡ 0 was studied in [2]. The approach there was to show that volume
constrained minimizers are quasi perimeter minimizing in small balls without the
volume constraint. This yields regularity results analogous to those for uncon-
strained problem. A key step there is showing the existence of an interior and an
exterior point of the minimizer. We adopt the same approach here as in [2]. That is,
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show that these T minimizers indeed have both interior points and exterior points
(see theorem 4.3), and in fact they are quasi minimizers of perimeter without the
volume constraint (see theorem 4.4 ). Then, using the known results in [4, Theo-
rem 1] about quasi minimizers of perimeter to get the desired regularity of these T
minimizers.

The paper is organized as follows. After providing some basic notations about
perimeters, we provide some estimate on how fast the infimum of the metric density
is approaching 0 for any set of finite perimeter. Using this estimate and some tech-
nical lemmas, we classify the sets of finite perimeter into two classes (see corollary
3.2 for details). Using this classification and also properties of T minimizers, we
show that any T minimizer will have both interior points and exterior points in Ω.
By this result, we get rid of the volume constraint and prove our main theorems in
section 4.

2. Preliminaries

We mention here only the basic notations and definitions about perimeters.
We assume that Ω is an open (bounded) subset of Rn with n ≥ 2. If E ⊆ Ω,

|E| is the Lebesgue measure of E, χE (x) is the characteristic function of E. Hs (·)
denotes the s dimensional Hausdorff measure. E∆F is the symmetric difference
(E\F ) ∪ (F\E). Finally, Ec is the complement of E in Ω.

Recall that a function f ∈ L1 (Ω) is of bounded variation in Ω if

‖ Df ‖ (Ω) = sup
{∫

Ω

fdivφdx : φ ∈ C1
0 (Ω, Rn) , |φ| (x) ≤ 1

}
< ∞.

A set E ⊂ Ω is said to be of finite perimeter in Ω if its characteristic function χE

is of bounded variation in Ω. We will use the notation P (E,Ω) for the perimeter
so that

P (E,Ω) =‖ DχE ‖ (Ω) .

For ∂E ∩ Ω sufficiently smooth, P (E,Ω) = Hn−1 (∂E ∩ Ω).
Let α = 1− 1

n . For any set E of finite perimeter in Ω , the isoperimetric inequality
says that

(2.1) P (E,Ω) ≥ Cn |E|α ,

where Cn = n (α (n))1/n with α (n) being the Lebesgue measure of the unit ball in
Rn. Moreover, for each n-dimensional open cube Q ⊂ Ω, a relative isoperimetric
inequality says that

γ (n) P (E,Q) ≥ min {|E ∩Q|α , |Ec ∩Q|α}

for some constant γ (n) > 0.
In the following, we shall frequently use some simple properties of sets of finite

perimeter, which can be found for instance in [1]. Here, we also mention a property
that we will use later. Let B be any open ball of radius r. For every set L of finite
perimeter in B, it holds that (see [2, (8)])

(2.2) Hn−1 (L ∩ ∂B) ≤ P (L, B) +
n

r
|L ∩B|

in the sense of traces.
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3. Exterior points of sets of finite perimeter

Let E be a set of finite perimeter in Ω. In this article, a point p ∈ Ω is said
to be an exterior point of E (or interior point of E) if there exists an open ball
neighborhood B (p, r) of p for some r > 0 such that

|E ∩B (p, r)| = 0 (or |E ∩B (p, r)| = 1, respectively).

If |E| = 0, then every point is an exterior point of E, while if |E| = |Ω|, then every
point is an interior point of E. In general, if 0 < |E| < |Ω|, E may not necessarily
have an exterior or interior point in Ω. The existence of exterior points and interior
points becomes an interesting problem to study.

To study the existence of exterior points, we consider the following function. For
any r ≥ 0, let

f (r) = inf
x∈Ω

|E ∩Q (x, r)| ,

where Q (x, r) denotes the n-dimensional open cube in Rn centered at x and with
edge length r. Note that f (0) = 0 and f (r) is an increasing function of r. Also, E
has exterior points in Ω if and only if f (r) ≡ 0 in a small neighborhood of 0.

For any point p in Ω with metric density 0, one may say directly that

|E ∩B (p, r)| = o (rn) ,

and thus we may conclude that f (r) = o (rn) as r approaches 0. This is true even
if E is not of finite perimeter. When E is indeed a set of finite perimeter, we can
get a better result by saying that f (r) = o

(
rn+1

)
, which is demonstrated by the

following theorem.

Theorem 3.1. Suppose E is a set of finite perimeter in Ω with |E| < |Ω|. Then,
there exists an η > 0 such that for any r ∈ [0, η),

0 ≤ f (r) ≤ C1r
n2

n−1

for some constant C1 ≥ 0, depending on E.

Proof. Let p ∈ Ω\E be any point with metric density 0 . That is,

lim
r→0

|E ∩B (p, r)|
αnrn

= 0.

Thus, there exists a η1 > 0 such that

|Q (p, η1) ∩ E| ≤ (η1)
n

4
.

Now, for any r ≤ η1, one can subdivide Q = Q (p, η1) into totally
[

η1
r

]n disjoint
smaller cubes {Qj} with edge length r, where [x] denotes the integer part of x.

Let

A =
{

Qj : |E ∩Qj | >
1
2
rn

}
and

B =
{

Qj : |E ∩Qj | ≤
1
2
rn

}
.

Then, the total number |A|+ |B| =
[

η1
r

]n and
1
2
|A| rn ≤

∑
Qj∈A

|E ∩Qj | ≤ |E ∩Q| ≤ 1
4

(η1)
n ,
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where |A| denotes the total number of elements in set A. Thus, |A| ≤ 1
2

(
η1
r

)n and

|B| =
[η1

r

]n
− |A| ≥

[η1

r

]n
− 1

2

(η1

r

)n

≥ 1
4

(η1

r

)n

if r <
(
1− n

√
0.75

)
η1.

By the relative isoperimetric inequality, for any Qi ∈ B,

|E ∩Qj |1−1/n ≤ γ (n)P (E,Qi)

for some constant γ (n). Therefore,

|B| f (r)1−1/n =
∑

Qi∈B

f (r)1−1/n

≤
∑

Qi∈B

|E ∩Qj |1−1/n

≤
∑

Qi∈B

γ (n) P (E,Qi)

≤ γ (n) P (E,Q) < +∞

because E has finite perimeter in Q. Thus,

f (r) ≤
(

γ (n) P (E,Q)
|B|

) n
n−1

≤
(

4γ (n) P (E,Q)
(η1)

n

) n
n−1

r
n2

n−1

whenever r ≤ η =
(
1− n

√
0.75

)
η1. �

Proposition 1. Suppose E is a set in Ω of finite perimeter with |E| < |Ω|, and τ
is any positive real number. Let Q be any n-dimensional open cube in Ω with edge
length r satisfying

(3.1) r <
( τ

2n+2

)n−1 1
(2C1)

α

and

(3.2) |E ∩Q| ≤ 2C1r
n2

n−1 .

Then there exists an s ∈
[

r
2 , r
]

such that

|E ∩Q (p, s)| ≤ 2C1s
n2

n−1

and
Hn−1 (E ∩ ∂Q (p, s)) ≤ τ |E ∩Q (p, s)|α ,

where Q (p, s) is the cube having the same center p of Q and with edge length s.

Proof. Let p be the center of Q and Q (p, s) be the cube centered at p and with
edge length s. We consider the function g : [0, r] → [0,+∞) defined by

g (s) = |E ∩Q (p, s)| ,

for each s ∈ [0, r]. Then, g (0) = 0 and

g′ (s) = Hn−1 (E ∩ ∂Q (p, s))

for almost all s.
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From (3.1) and (3.2), we have∫ r

0

(
g (s)1/n

)′
ds = g (r)1/n − g (0)1/n

≤ (2C1)
1/n

r
n

n−1 ≤ τ

n
r.

Therefore, there exists an s ∈ [0, r] such that(
g (s)1/n

)′
≤ τ

n
.

That is,
g′ (s) ≤ τg (s)α .

Let
s0 = max {s ∈ [0, r] : g′ (s) ≤ τg (s)α} ≤ r.

We claim that

g (s0) ≤ 2C1 (s0)
n2

n−1 .

In fact, if s0 = r, then it follows from our assumption (3.2).
If s0 < r, then for any s ∈ (s0, r), we have

g′ (s) > τg (s)α
,

which yields (
g (s)1/n

)′
>

τ

n
.

Integrating it from s0 to r yields

(3.3) g (r)1/n − g (s0)
1/n ≥ τ

n
(r − s0) .

Therefore,

g (s0)
1/n ≤ g (r)1/n − τ

n
(r − s0)

≤ (2C1)
1/n

r
n

n−1 − τ

n
(r − s0)

≤ (2C1)
1/n (s0)

n
n−1 .

The last inequality follows from the fact that the function

h (x) = (2C1)
1/n

x
n

n−1 − τ

n
x

is decreasing on [0, r] because h′ (x) = (2C1)
1/n n

n−1x
1

n−1 − τ
n ≤ 0, by (3.1).

Moreover, since g (s0) ≥ 0, by (3.3) and (3.1), we have

r − s0 ≤ n

τ
g (r)1/n

≤ n

τ
(2C1)

1/n
r

n
n−1 ≤ r

2
.

Therefore, we have
s0 ≥ r/2.

This s0 is the desired s. �
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From now on, we let δ be a number such that

0 < δ ≤ 4−
n2

n−1 .

Let

(3.4) 0 < τ ≤ 1
4

(2− 2α) Cnδα,

and it is easy to check that

(3.5) τ ≤ 1
4
Cn.

Let
Aτ (E)

be the family of all n-dimensional open cubes in Ω satisfying

(3.6) |E ∩Q| ≤ 2C1r
n2

n−1 ,Hn−1 (E ∩ ∂Q) ≤ τ |E ∩Q|α ,

where r is the edge length of Q satisfying (3.1).

Proposition 2. Let E be a set of finite perimeter with |E| < |Ω|, and Q be any
cube in Aτ (E). Then either

P (E,Q) ≥ (Cn + 2τ) |E ∩Q|α

or there exists a smaller cube Q̃ ⊂ Q such that Q̃ ∈ Aτ (E) and the edge length of
Q̃ satisfying

r̃ ∈ (r/8, 3r/4) .

Proof. Without losing generality, we may assume that Q is centered at the origin
O. Let

Z =

{
s ∈

(
−r

2
,
r

2

)
:

n∑
i=1

Hn−1 (E ∩ {x = (x1, · · · , xn) ∈ Q : xi = s}) ≥ τ

2
|E ∩Q|α

}
.

Then, since

n |E ∩Q| ≥
n∑

i=1

∫ r/2

−r/2

Hn−1 (E ∩ {x ∈ Q : xi = s}) ds

≥
∫

Z

n∑
i=1

Hn−1 (E ∩ {x ∈ Q : xi = s}) ds

≥ τ

2
|E ∩Q|αH1 (Z) ,

by applying (3.1) and (3.2), we have

H1 (Z) ≤ 2n

τ
|E ∩Q|

1
n

<
2n

τ
(2C1)

1
n r

n
n−1 <

r

2
.

Therefore, there exists s0 ∈
(−r

4 , r
4

)
such that

(3.7)
n∑

i=1

Hn−1 (E ∩ {x = (x1, · · · , xn) ∈ Q : xi = s0}) <
τ

2
|E ∩Q|α .

Using the hyperplanes {x : xi = s0}, we decompose Q into the union of 2n smaller
n-dimensional rectangles {Q1, Q2, · · · , Q2n}. Each of these Qi’s is located in one
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corner of Q, and two of these rectangles are in fact n dimensional cubes and with
edge lengths r

2 ± s0. Since s0 ∈
(
− r

4 , r
4

)
, we have

(3.8)
r

4
<

r

2
± s0 <

3r

4
.

Now, if
max

i
|E ∩Qi| ≤ (1− δ) |E ∩Q| ,

then we can rearrange {Qi} into two groups

V1 = ∪
{
Q̄i1 , Q̄i2 , · · · , Q̄ik

}
and V2 = Q\V1

such that
δ |E ∩Q| ≤ |E ∩ Vi| ≤ (1− δ) |E ∩Q|

for each i = 1, 2. A well known inequality says

(2− 2α) (min (a, b))α ≤ aα + bα − (a + b)α , for any a, b ≥ 0.

Therefore,

|E ∩ V1|α + |E ∩ V2|α − |E ∩Q|α

≥ (2− 2α) min {|E ∩ V1|α , |E ∩ V2|α}

≥ (2− 2α) δα |E ∩Q|α ≥ 4τ

Cn
|E ∩Q|α .

Hence, by the isoperimetric inequality, (3.7), and (3.6),

P (E,Q) ≥ P (E, V1) + P (E, V2)
≥ Cn |E ∩ V1|α + Cn |E ∩ V2|α −Hn−1 (E ∩ ∂V1)−Hn−1 (E ∩ ∂V2)

≥ Cn |E ∩ V1|α + Cn |E ∩ V2|α − 2
τ

2
|E ∩Q|α −Hn−1 (E ∩ ∂Q)

≥ Cn |E ∩Q|α + 4τ |E ∩Q|α − τ |E ∩Q|α − τ |E ∩Q|α

= (Cn + 2τ) |E ∩Q|α .

This gives one the first case.
If

max
i
|E ∩Qi| > (1− δ) |E ∩Q| ,

then at least one of the two cubes in Qi’s, say Q1, satisfies

|E ∩Q1| < δ |E ∩Q|

≤ δ (2C1) r
n2

n−1

≤ δ (2C1) (4r1)
n2

n−1 ≤ 2C1 (r1)
n2

n−1 ,

where r1 = r
2 ± s0 is the edge length of Q1. By proposition 1, there exists a smaller

cube Q̃ ⊂ Q1 such that Q̃ ∈ Aτ (E) with edge length r̃ ∈
(

r1
2 , r1

)
⊂
(

r
8 , 3r

4

)
, due to

(3.8). This completes the second part. �

Corollary 3.2. Let E ⊂ Ω be a set of finite perimeter with |E| < |Ω|. Then one
of the following two cases must be true:

(1) either for any λ > 0, there exists a cube Q ∈ Aτ (E) with edge length r < λ
and

P (E,Q) ≥ (Cn + 2τ) |E ∩Q|α ;
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(2) or there exists a sequence of cubes {Qi} ⊂ Aτ (E) such that

Qi+1 ⊂ Qi

and their edge lengths satisfy

1
8
ri ≤ ri+1 ≤

3
4
ri

for each i.

Proof. Follows from proposition 2. �

Remark 3.3. In the second case of corollary 3.2, we may associate a family of
open cubes to it as follows. Let Q0 be any given cube in Ω. By picking the first cube
Q1 inside Q0, we get a sequence of cubes {Qi}∞i=1 as in the second case of corollary
3.2, and all these smaller cubes are contained in Q0. By rescaling and translation,
each cube Qi is the image of [−1, 1]n under some affine map fi for each i = 0, 1, · · · .
Using these affine maps, we define a continuous map F : [−1, 1]n × (0,+∞) → Rn

by setting

F (x, s) =
{ s

r1
(f0 (x)− f0 (0)) + f0 (0) , if s > r0
1

ri−ri+1
((s− ri+1) fi (x) + (ri − s) fi+1 (x)) , if s ∈ [ri+1, ri]

for some i. Note that, for each s > 0,the image

Fs = F (Q0, s)

is also a cube with edge length s. Also, Fri
= Qi for each i = 0, 1, 2, · · · , and

Fs ⊆ Ft

whenever s ≤ t. Moreover, if s ∈ [ri+1, ri] for some i = 1, 2, · · · , we have

Qi+1 ⊆ Fs ⊆ Qi ⊂ Q0

and

|E ∩ Fs| ≤ |E ∩Qi|

≤ 2C1 (ri)
n2

n−1

≤ 2C1 (8s)
n2

n−1 .

Therefore, |E ∩ Fs| is continuous in s and

|E ∩ Fs| ≤ CEs
n2

n−1

for any s ∈ (0, r1), where CE = 2C18
n2

n−1 . Similarly, for any open ball B in Ω, we
may pick the first cube Q1 inside B, and then construct a family of cubes {Fs} as
above. If we set Ks to be the largest open ball of diameter s inscribed in the cube
Fs, then we get a family of open balls {Ks} and |Ks ∩ E| is also continuous in s
with

|E ∩Ks| ≤ CEs
n2

n−1 .
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4. Minimizers of quasi perimeters

Let Ω be any bounded open subset of Rn with n ≥ 2. For any σ ∈ (0, 1), let

Fσ = {E ⊂ Ω : P (E,Ω) < +∞, |E| = σ|Ω|} .

For any E ∈ Fσ, a quasi perimeter of E is of the form

T (E) = P (E,Ω) + G(E),

where G is a lower semicontinuous functional on Fσ satisfying the property that

(4.1) G(A) ≤ G(B) + C|A∆B|β

for any A,B ∈ Fσ, and for a constant C > 0, a number β > 1− 1
n . Some examples

of G may be found in the introduction.

4.1. Existence of interior and exterior points. Note that for any G, by the
compactness of sets of finite perimeter, the quasi perimeter T automatically has a
minimizer. The following lemma says that for a T minimizer E, only the second
case of corollary 3.2 will happen.

Lemma 4.1. Let E be any T minimizer in Fσ. Then there exists a sequence of
cubes {Qi} ⊂ Aτ (E) such that

Qi+1 ⊂ Qi

and their edge lengths satisfy

1
8
ri ≤ ri+1 ≤

3
4
ri

for each i.

Proof. It is trivial if E has exterior points. Therefore, we may assume that E has
no exterior points in Ω. Under this assumption, we will prove the result by showing
that the first case in corollary 3.2 will not happen here.

Assume that there exists a cube Q in Aτ (E) such that

(4.2) P (E,Q) ≥ (Cn + 2τ) |E ∩Q|α

and its edge length

(4.3) r < λ =

(
τ

2βC (2C1)
β−α

) n−1
n2(β−α)

.

Then, we consider another set

Ẽ = (E\Q) ∪B,

where B is the ball having the same center as Q and with

|B| = |E ∩Q| ≤ 2C1r
n2

n−1 <
1
2
rn.

Note that B is strictly contained in Q. Since Q is in Aτ (E) and E has no exterior
points, we have

0 < |E ∩Q| ≤ 2C1r
n2

n−1 .
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Therefore, by (4.3),

C
∣∣∣E∆Ẽ

∣∣∣β ≤ C (2 |E ∩Q|)β

= 2βC |E ∩Q|β−α |E ∩Q|α

≤ 2βC
(
2C1r

n2
n−1

)β−α

|E ∩Q|α

< τ |E ∩Q|α .

Now, |E| =
∣∣∣Ẽ∣∣∣ and

T
(
Ẽ
)

= P
(
Ẽ,Ω

)
+ G

(
Ẽ
)

= P (E,Ω)− P (E,Q) +Hn−1 (E ∩ ∂Q) + Cn |E ∩Q|α + G
(
Ẽ
)

≤ P (E,Ω)− τ |E ∩Q|α + G
(
Ẽ
)

, by (4.2)

< P (E,Ω)− C
∣∣∣E∆Ẽ

∣∣∣β + G
(
Ẽ
)

≤ P (E,Ω) + G (E) = T (E) .

This is a contradiction with the minimality of E. Therefore, by the corollary 3.2,
only the second case of the corollary will happen here. �

Suppose E is a T minimizer in Fσ. We may consider another operator

T̃ (F ) = P (F,Ω) + G̃ (F )

for any F ∈ F1−σ, where G̃ (F ) = G (F c).

Lemma 4.2. E is a T minimizer in Fσ if and only if Ec is a T̃ minimizer in
F1−σ. Moreover, if G satisfies the property (4.1), then G̃ also satisfies the property
(4.1) with same β.

Proof. This is because

T (E) ≤ T (F )
⇐⇒ G(E) + P (E,Ω) ≤ G(F ) + P (F,Ω)

⇐⇒ G̃(Ec) + P (Ec,Ω) ≤ G̃(F c) + P (F c,Ω)

⇐⇒ T̃ (Ec) ≤ T̃ (F c) ,

for any F ∈ Fσ. Moreover, if G satisfies equation (4.1), then G̃ also satisfies the
property (4.1) with same β. This is because A∆B = Ac∆Bc. �

From now on, let E be any T minimizer in Fσ. To understand the regularity of
E, we adopt the approach given in [2], which corresponds to the case that G ≡ 0.
Over there, a crucial step is to show the existence of both exterior and interior
points of the minimizer. Our result is stated as follows.

Theorem 4.3. Let E be any T minimizer in Fσ. Then E has both interior points
and exterior points in Ω.
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Proof. Assume E has no exterior points. Since 0 < |E| = σ |Ω| < |Ω|, there exists
at least one open cube Q in Ω such that |E ∩Q| > 0, and also an open ball B in
Ω such that |Ec ∩B| > 0. We may also require that Q and B are disjoint. Now,
by lemma 4.1, lemma 4.2 and the remark 3.3, there exist a family of n-dimensional
open cubes {Fs} for E and a family of n-dimensional open balls {Ks} for Ec such
that

(1) for each s > 0, both the edge length of Fs and the diameter of Ks equal to
s;

(2) let s0 be the edge length of Q and t0 be the diameter of B, then Fs0 = Q
and Kt0 = B;

(3) whenever s < t, we have Fs ⊆ Ft and Ks ⊆ Kt;
(4) there exists a decreasing sequence of positive numbers {si}∞i=0 with limit 0

such that Fsi ∈ Aτ (E) for each i = 1, 2, · · · ;
(5) both |Fs ∩E| and |Ks ∩ Ec| are nondecreasing continuous functions of s ∈

(0,+∞).
(6) moreover, for any s ≤ s1, we have

(4.4) 0 < |Fs ∩ E| ≤ CEs
n2

n−1

for some constant CE > 0. Also, there exists a positive number t1 ≤ t0
such that for any t ≤ t1, we have

(4.5) 0 < |Kt ∩ Ec| ≤ CEct
n2

n−1

for some constant CEc > 0.
Now, we pick a positive number εo ≤ min {s1, t1} small enough so that

(4.6) 2n (CEc)1/n
ε

1
n−1
0 ≤ τ

and
|Fε0 ∩ E| < |B ∩ Ec| .

For any s ∈ (0, ε0), since

|Fs ∩ E| ≤ |Fε0 ∩ E| < |B ∩ Ec| = |Kt0 ∩ Ec| ,
by the mean value theorem, there exists at least one t ≤ t0 such that

(4.7) |Kt ∩ Ec| = |Fs ∩ E| .
Since E has no exterior points, we have |Fs∩E| > 0. By the fact that lims→0 |Ks∩
Ec| = 0, the set of all t satisfying (4.7) must have a minimum in (0, t0), and we
denote this minimum by g (s). Thus, g (s) ∈ (0, t0) and

(4.8) |Fs ∩ E| =
∣∣Kg(s) ∩ Ec

∣∣ .
Note that since Fs ⊆ Q and Kg(s) ⊆ Kt0 = B, we know that Fs and Kg(s) are

still disjoint. Now, we fix an s ∈ (0, ε0) small enough so that Fs ∈ Aτ (E),

(4.9)
2n

ε0
(CE)1/n

s
n

n−1 ≤ τ

and

(4.10) C
(
CEs

n2
n−1

)β−1+ 1
n

< τ .

For this particular s, we consider the set

Ẽ = (E − Fs) ∪Kg(s).
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Then, by (4.8), we have |Ẽ| = |E| = σ|Ω| and

P
(
Ẽ,Ω

)
= P (E,Ω)− P (E,Fs) +Hn−1 (E ∩ ∂Fs)

−P
(
Ec,Kg(s)

)
+Hn−1

(
Ec ∩ ∂Kg(s)

)
.(4.11)

By the isoperimetric inequality (2.1),

P (E,Fs) +Hn−1 (E ∩ ∂Fs) ≥ Cn |E ∩ Fs|α .

Also, by (2.2),

Hn−1
(
Ec ∩ ∂Kg(s)

)
− P

(
Ec,Kg(s)

)
≤ 2n

g (s)

∣∣Ec ∩Kg(s)

∣∣ , by (4.8)

≤

{
2n

g(s) |E ∩ Fs|α (CEc)1/n
g (s)

n
n−1 , if g (s) ≤ ε0, by (4.5)

2n
g(s) |E ∩ Fs|α (CE)1/n

s
n

n−1 , if g (s) > ε0, by (4.4)

≤

{
|E ∩ Fs|α 2n (CEc)1/n

ε
1

n−1
0 , if g (s) ≤ ε0

|E ∩ Fs|α 2n
ε0

(CE)1/n
s

n
n−1 , if g (s) > ε0,

≤ τ |E ∩ Fs|α , by (4.9) and (4.6).

Therefore, by (4.11), the fact Fs ∈ Aτ (E), and (3.4), we have

P
(
Ẽ,Ω

)
≤ P (E,Ω)− Cn |E ∩ Fs|α + 2Hn−1 (E ∩ ∂Fs) + τ |E ∩ Fs|α

≤ P (E,Ω)− Cn |E ∩ Fs|α + 3τ |E ∩ Fs|α

≤ P (E,Ω)− τ |E ∩ Fs|α ,

due to (3.5). Hence,

T
(
Ẽ
)

= P
(
Ẽ,Ω

)
+ G

(
Ẽ
)

≤ P (E,Ω)− τ |E ∩ Fs|α + G (E) + C |E ∩ Fs|β

= T (E) + |E ∩ Fs|α
(
C |E ∩ Fs|β−1+ 1

n − τ
)

< T (E) .

The last inequality follows from (4.4) and (4.10). This contradicts with the T
minimality of E. Therefore, E must have an exterior points. Since, by lemma 4.2,
Ec is a T̃ minimizer, we see Ec have also some exterior points. Therefore, E has
both interior points and exterior points. �

4.2. Regularity Results. Now, we may discuss the regularity of the T minimizer
E. By theorem 4.3, E has both interior points and exterior points. Therefore, there
exists a number R > 0 and two open balls B1, B2 in Ω of the same radius 2R such
that

|E ∩B1| = 0 and |Ec ∩B2| = 0.

Our main theorem is stated as follows.

Theorem 4.4. Suppose E is a minimizer of the quasi perimeter T in Fσ. Then E
is a quasi minimizer of perimeter (without the volume constraint) in the sense that

(4.12) P (E,Ω) ≤ P (F,Ω) + c|E∆F |min(1,β)
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for all subsets F of Ω with E∆F contained in any open ball Bρ with radius ρ < R
and for some constant c > 0.

Proof. By theorem 4.3, there exist two open balls B1 and B2 in Ω of same radius
2R such that

|E ∩B1| = 0 and |Ec ∩B2| = 0.

Let ρ ∈ (0, R) be any fixed number and F be any set of finite perimeter with E∆F
contained in some open ball Bρ of radius ρ.

Suppose that |E ∩Bρ| ≥ |F ∩Bρ|. We can move a ball B in B1\Bρ of radius R,
while remaining strictly in Ω− B̄ (ρ) , until it reaches a new position B3 such that

|B3 ∩ Ec| = |E ∩Bρ| − |F ∩Bρ| .
Let Fρ = F ∪B3. Then |Fρ| = |E|. Since E is a T minimizer, we get

T (E) ≤ T (Fρ) .

That is,
G(E) + P (E,Ω) ≤ G(Fρ) + P (Fρ,Ω) .

Therefore, by (2.2),

P (E,Ω) ≤ G(Fρ)−G(E) + P (Fρ,Ω)

≤ C|E∆Fρ|β + P (F,Ω)− P (B3 ∩ Ec, B3) +Hn−1 (∂B3 ∩ Ec)

≤ P (F,Ω) + C|E∆Fρ|β +
n

R
|B3 ∩ Ec|

≤ P (F,Ω) + c|E∆F |min(1,β),

where c = C + n
R .

We arrive at the same relation

P (E,Ω) ≤ P (F,Ω) + c |E∆F |min(1,β)

if we suppose |E ∩Bρ| ≤ |F ∩Bρ|. �

By the theorem and a well known result about quasi minimizers of perimeter
satisfying (4.12) (see for instance [4, Theorem 1]), we get the desired classical
regularity result of the boundary of E as follows:

Theorem 4.5. Suppose E is a minimizer of the quasi perimeter T in Fσ. Then
the reduced boundary ∂∗E is an (n− 1) dimensional C1,min(1/2,β/2) hypersurface in
Ω, and moreover dim ((∂E − ∂∗E) ∩ Ω) ≤ n− 8.
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