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Main Problem
We consider the following minimizing problem:
Minimize

T (E) = P (E, Ω) + G (E)

among all setsE ⊂ Ω of finite perimeter with a fixed volume.
Here

• Ω is any open subset ofRn with n ≥ 2.

• P (E, Ω) denotes the perimeter ofE,

•G is a lower semicontinuous functional on thesets of finite perimetera in Ω
with the property thatb

G(E) ≤ G(F ) + C|E∆F |β

for any setsE, F in Ω of finite perimeter with|E| = |F |, for some constant
C > 0 and a numberβ > 1− 1

n.()
a (44)
bSee notations in43
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The special case:G (E) ≡ 0
That is,minimize

T (E) = P (E, Ω)

among all setsE ⊂ Ω of finite perimeter with a fixed volume.
This problem is often encountered in the field of capillarity theory. Liquid drops,
resting on or hanging from a given surface, are some typical examples.
The regularity of the corresponding minimizers has been studied extensively in:
E. Gonzalez, U. Massari & I. Tamanini, On the regularity of boundaries of sets
minimizing perimeter with a volume constraint. Indiana University Mathematics
Journal, Vol. 32, No.1 (1983), 25-37.
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Another example
Minimize

T (E) = P (E, Ω) +

∫
E

H (x) dx

among all setsE ⊂ Ω of finite perimeter with a fixed volume.HereH ∈ Lp (Ω),
for somep > n, is a given function.

Without a volume constraint, this is the problem of finding sets withprescribed
mean curvatureH, and has been studied for instance in
U. Massari. Frontiere orientate di curvatura media assegnata inLp. Rend. Sem.
Mat. Univ. Padova 53 (1975), 37-52.

In our case, we impose an additional volume constraint on it. So,

G(E) =

∫
E

H (x) dx.

From Hölder inequality, we see thatβ = 1− 1
p > 1− 1

n here.
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Main motivation: mud cracking

Mud cracking represents a very typical physical phenomenon.
After losing a certain amount of moisture, a material such as a piece of mud will
begin to crack.
People are interested in why, how and where the material cracks.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

My approach
Let Ω represent a piece of mud. After losing a certain amount of moisture, say
σ |Ω| for someσ ∈ (0, 1), the volume of the mud decreases, and thus a crackE
of volumeσ |Ω| must come out to replace the losing volume.

The selection of cracking is not totally random, but the actual physics of it might
be too complicated to handle.

Instead, we may assume thatit minimizes the total workof transporting the old
mudΩ to the new mudΩ−E, with multiplicity 1

1−σ, under a volume preserving
map.
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Justification
Let us think about a mud of the shape of a disk.

To replace the volume of losing moisture, it can

• either shrink evenly to a smaller disk

• or dig some space out by cracking inside it.

Which way is better? As we know, the mud will possibly choose the later way.
This is because the corresponding transport costs of two ways are different. The
mud just chooses a cheaper way to reduce the total work.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A reasonable way to represent the total work is given by the Wasserstein dis-
tancesWp between Radon measures of equal total mass.
As a result, one would like to minimize

W
q
p

(
LnbΩ,

1

1− σ
Lnb(Ω− E)

)
+ P (E, Ω)

among all setsE of finite perimeter inΩ with volume |E| = σ |Ω| for some
σ ∈ (0, 1). Here,q = min(1, 1/p), and the perimeterP (E, Ω) of E is used to
represent the cracking energy for breaking the mud.
Using the properties of Wasserstein distances, it is easy to see that

Wp

(
LnbΩ,

1

1− σ
Lnb(Ω− E)

)
= Wp

(
1

1− σ
LnbE,

σ

1− σ
LnbΩ

)
= λWp (LnbE, σLnbΩ)

for some constantλ > 0.
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Thus, the problem becomes tominimize

P (E, Ω) + λW
q
p (LnbE, σLnbΩ)

among all setsE in Ω of finite perimeter and with a volume constraint|E| =
σ |Ω|. In this case,

G (E) = λW
q
p (LnbE, σLnbΩ) .

It is easy to see thatβ = 1 here and thusβ > 1− 1
n.
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More general form
Minimize the quasi perimeter

T (E) = P (E, Ω) + G (E)

among all sets in

Fσ = {E ⊂ Ω : P (E, Ω) < +∞, |E| = σ|Ω|} .

for some0 < σ < 1.
Here,G satisfies the property that

G(E) ≤ G(F ) + C|E∆F |β

for any setsE, F in Fσ andβ > 1− 1
n.

• Existence: follows from the compactness of sets of finite perimeter.

•Main question: theregularityof these minimizers.

• Further properties and numerical simulation will be considered later.
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Main Theorem

Theorem 1.SupposeE is a minimizer of the quasi perimeterT in Fσ. ThenE
is a quasi minimizer of perimeter (without the volume constraint) in the sense
that

P (E, Ω) ≤ P (F, Ω) + C|E∆F |min(1,β) (0.1)

for all subsetsF of Ω with E∆F contained in a small open ball.

C1,αRegularity
As a corollary, we get the followingC1,α regularity:

Corollary 1. SupposeE is a minimizer of the quasi perimeterT in Fσ. Then the
reduced boundary∂∗E is an (n− 1) dimensionalC1,min(1/2,β/2) hypersurface
in Ω, and moreoverdim ((∂E − ∂∗E) ∩ Ω) ≤ n− 8.
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Strategy for regularity results
The special caseG (E) ≡ 0 was studied by Gonzalez, Massari & Tamanini. We
adapt a similar approach to deal with more general cases.

• Step 1 (key step): show that theseT minimizers indeed have both interior
points and exterior points;

• Step 2: show that they are quasi minimizers of perimeter without the volume
constraint;

• Step 3: using the known results about quasi minimizers of perimeter to get the
desired regularity of theseT minimizers.
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Exterior points of sets of finite perimeter
Let E be a set of finite perimeter inΩ. A point p ∈ Ω is said to be anexterior
point of E (or interior point of E) if

|E ∩B (p, r)| = 0 (or |E ∩B (p, r)| = |B(p, r)|, respectively)

for some open ball neighborhoodB (p, r) of p.

• If |E| = 0, then every point is an exterior point ofE.

• If |E| = |Ω|, then every point is an interior point ofE.

• In general, if0 < |E| < |Ω|, E may not necessarily have an exterior or interior
point inΩ.

The existence of exterior points and interior points itself becomes an interesting
problem to study.
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Existence of exterior points
To study the existence of exterior points, we consider the following function. For
anyr ≥ 0, let

f (r) = inf
x∈Ω

|E ∩Q (x, r)| ,

whereQ (x, r) denotes then-dimensional open cube inRn centered atx and
with edge lengthr. Note thatf (0) = 0 andf (r) is an increasing function ofr.
Also, E has exterior points inΩ if and only if f (r) ≡ 0 in a small neighborhood
of 0.
For any pointp in Ω with metric density0, one may say directly that

|E ∩B (p, r)| = o (rn) ,

and thus we may conclude thatf (r) = o (rn) asr approaches0. This is true
even ifE is not of finite perimeter. WhenE is indeed a set of finite perimeter,
we can get a better result by saying thatf (r) = o

(
rn+1

)
, which is demonstrated

by the following theorem.
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Theorem 2.SupposeE is a set of finite perimeter inΩ with |E| < |Ω|. Then,
there exists anη > 0 such that for anyr ∈ [0, η),

0 ≤ f (r) ≤ C1r
n+1+ 1

n−1

for some constantC1 ≥ 0, depending onE.

Proof.Let p ∈ Ω\E be any point with metric density0 . That is,

lim
r→0

|E ∩B (p, r)|
αnrn = 0.

Thus, there exists aη1 > 0 such that

|Q (p, η1) ∩ E| ≤ (η1)
n

4
.

Now, for anyr ≤ η1, one can subdivideQ = Q (p, η1) into totally
[η1

r

]n disjoint
smaller cubes

{
Qj
}

with edge lengthr, where[x] denotes the integer part ofx.
Let

A =

{
Qj :

∣∣E ∩Qj

∣∣ > 1

2
rn
}
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and

B =

{
Qj :

∣∣E ∩Qj

∣∣ ≤ 1

2
rn
}

.

Then, the total number|A| + |B| =
[η1

r

]n and

1

2
|A| rn ≤

∑
Qj∈A

∣∣E ∩Qj

∣∣ ≤ |E ∩Q| ≤ 1

4
(η1)

n ,

where|A| denotes the total number of elements in setA. Thus,|A| ≤ 1
2

(η1
r

)n
and

|B| =
[η1

r

]n
− |A| ≥

[η1

r

]n
− 1

2

(η1

r

)n
≥ 1

4

(η1

r

)n

if r <
(
1− n

√
0.75

)
η1.

By the relative isoperimetric inequality,1 for anyQi ∈ B,∣∣E ∩Qj

∣∣1−1/n ≤ γ (n) P (E, Qi)
10.19
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for some constantγ (n). Therefore,

|B| f (r)1−1/n =
∑

Qi∈B

f (r)1−1/n

≤
∑

Qi∈B

∣∣E ∩Qj

∣∣1−1/n

≤
∑

Qi∈B

γ (n) P (E, Qi)

≤ γ (n) P (E, Q) < +∞
becauseE has finite perimeter inQ. Thus,

f (r) ≤
(

γ (n) P (E, Q)

|B|

) n
n−1

≤
(

4γ (n) P (E, Q)

(η1)
n

) n
n−1

r
n2

n−1

wheneverr ≤ η =
(
1− n

√
0.75

)
η1.

Remark 1.This theorem enables one to find a good cube inside which the total
volume ofE is very tiny.
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Proposition 1.SupposeE is a set inΩ of finite perimeter with|E| < |Ω|, and
τ is any positive real number. LetQ be anyn-dimensional open cube inΩ with
edge lengthr satisfying

r <
( τ

2n+2

)n−1 1

(2C1)
α (0.2)

and

|E ∩Q| ≤ 2C1r
n2

n−1. (0.3)

Then there exists ans ∈
[r
2, r
]

such that

|E ∩Q (p, s)| ≤ 2C1s
n2

n−1

and
Hn−1 (E ∩ ∂Q (p, s)) ≤ τ |E ∩Q (p, s)|α ,

whereα = 1− 1
n andQ (p, s) is the cube having the same centerp of Q and with

edge lengths.
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Proof.Let p be the center ofQ andQ (p, s) be the cube centered atp and with
edge lengths. We consider the functiong : [0, r] → [0, +∞) defined by

g (s) = |E ∩Q (p, s)| ,
for eachs ∈ [0, r]. Then,g (0) = 0 and

g′ (s) = Hn−1 (E ∩ ∂Q (p, s))

for almost alls.
From (0.2) and (0.3), we have∫ r

0

(
g (s)1/n

)′
ds = g (r)1/n − g (0)1/n

≤ (2C1)
1/n r

n
n−1 ≤ τ

n
r.

Therefore, there exists ans ∈ [0, r] such that(
g (s)1/n

)′
≤ τ

n
.

That is,
g′ (s) ≤ τg (s)α .
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Let
s0 = max

{
s ∈ [0, r] : g′ (s) ≤ τg (s)α

}
≤ r.

We claim that

g (s0) ≤ 2C1 (s0)
n2

n−1 .

In fact, if s0 = r, then it follows from our assumption (0.3).
If s0 < r, then for anys ∈ (s0, r), we have

g′ (s) > τg (s)α ,

which yields (
g (s)1/n

)′
>

τ

n
.

Integrating it froms0 to r yields

g (r)1/n − g (s0)
1/n ≥ τ

n
(r − s0) . (0.4)
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Therefore,

g (s0)
1/n ≤ g (r)1/n − τ

n
(r − s0)

≤ (2C1)
1/n r

n
n−1 − τ

n
(r − s0)

≤ (2C1)
1/n (s0)

n
n−1 .

The last inequality follows from the fact that the function

h (x) = (2C1)
1/n x

n
n−1 − τ

n
x

is decreasing on[0, r] becauseh′ (x) = (2C1)
1/n n

n−1x
1

n−1 − τ
n ≤ 0.

Moreover, sinceg (s0) ≥ 0, by (0.4) and (0.2), we have

r − s0 ≤
n

τ
g (r)1/n

≤ n

τ
(2C1)

1/n r
n

n−1 ≤ r

2
.

Therefore, we have
s0 ≥ r/2.
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Let τ be a small positive number and

Aτ (E)

be the family of alln-dimensional open cubes inΩ satisfying

|E ∩Q| ≤ 2C1r
n2

n−1,Hn−1 (E ∩ ∂Q) ≤ τ |E ∩Q|α , (0.5)

wherer is the edge length ofQ satisfying (0.2).

Question: How to control the perimeterP (E, Q)?
The isoperimetric inequality says that

P (E, Q) +Hn−1 (E ∩ ∂Q) ≥ Cn |E ∩Q|α ,

whereCn = n|B(0, 1)|1/n.
Question: For any setE of finite perimeter, is there a cubeQ such that

P (E, Q) ≥ (Cn + 2τ ) |E ∩Q|α?
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Proposition 2.Let E be a set of finite perimeter with|E| < |Ω|, andQ be any
cube inAτ (E). Then either

P (E, Q) ≥ (Cn + 2τ ) |E ∩Q|α

or there exists a smaller cubẽQ ⊂ Q such thatQ̃ ∈ Aτ (E) and the edge length
of Q̃ satisfying

r̃ ∈ (r/8, 3r/4) .

Proof.Without losing generality, we may assume thatQ is centered at the origin
O. Let

Z =

{
s ∈

(
−r

2
,
r

2

)
:

n∑
i=1

Hn−1 (E ∩ {x = (x1, · · · , xn) ∈ Q : xi = s}) ≥ τ

2
|E ∩Q|α

}
.
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Then, since

n |E ∩Q| ≥
n∑

i=1

∫ r/2

−r/2
Hn−1 (E ∩ {x ∈ Q : xi = s}) ds

≥
∫

Z

n∑
i=1

Hn−1 (E ∩ {x ∈ Q : xi = s}) ds

≥ τ

2
|E ∩Q|αH1 (Z) ,

by applying (0.2) and (0.3), we have

H1 (Z) ≤ 2n

τ
|E ∩Q|

1
n

<
2n

τ
(2C1)

1
n r

n
n−1 <

r

2
.

Therefore, there existss0 ∈
(−r

4 , r
4

)
such that

n∑
i=1

Hn−1 (E ∩ {x = (x1, · · · , xn) ∈ Q : xi = s0}) <
τ

2
|E ∩Q|α . (0.6)
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Using the hyperplanes{x : xi = s0}, we decomposeQ into the union of2n

smallern-dimensional rectangles{Q1, Q2, · · · , Q2n}. Each of theseQi’s is lo-
cated in one corner ofQ, and two of these rectangles are in factn dimensional
cubes and with edge lengthsr

2 ± s0. Sinces0 ∈
(
−r

4,r4
)
, we have

r

4
<

r

2
± s0 <

3r

4
. (0.7)

Now, if
max

i
|E ∩Qi| ≤ (1− δ) |E ∩Q| ,

then we can rearrange{Qi} into two groups

V1 = ∪
{
Q̄i1, Q̄i2, · · · , Q̄ik

}
andV2 = Q\V1

such that
δ |E ∩Q| ≤ |E ∩ Vi| ≤ (1− δ) |E ∩Q|

for eachi = 1, 2. A well known inequality says

(2− 2α) (min (a, b))α ≤ aα + bα − (a + b)α , for anya, b ≥ 0.
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Therefore,

|E ∩ V1|α + |E ∩ V2|α − |E ∩Q|α

≥ (2− 2α) min {|E ∩ V1|α , |E ∩ V2|α}

≥ (2− 2α) δα |E ∩Q|α ≥ 4τ

Cn
|E ∩Q|α .

Hence, by the isoperimetric inequality, (0.6), and (0.5),

P (E, Q) ≥ P (E, V1) + P (E, V2)

≥ Cn |E ∩ V1|α + Cn |E ∩ V2|α −Hn−1 (E ∩ ∂V1)−Hn−1 (E ∩ ∂V2)

≥ Cn |E ∩ V1|α + Cn |E ∩ V2|α − 2
τ

2
|E ∩Q|α −Hn−1 (E ∩ ∂Q)

≥ Cn |E ∩Q|α + 4τ |E ∩Q|α − τ |E ∩Q|α − τ |E ∩Q|α

= (Cn + 2τ ) |E ∩Q|α .

This gives one the first case.
If

max
i
|E ∩Qi| > (1− δ) |E ∩Q| ,
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then at least one of the two cubes inQi’s, sayQ1, satisfies

|E ∩Q1| < δ |E ∩Q|

≤ δ (2C1) r
n2

n−1

≤ δ (2C1) (4r1)
n2

n−1 ≤ 2C1 (r1)
n2

n−1 ,

wherer1 = r
2 ± s0 is the edge length ofQ1. By proposition1, there exists a

smaller cubeQ̃ ⊂ Q1 such thatQ̃ ∈ Aτ (E) with edge length̃r ∈
(r1

2 , r1
)
⊂(

r
8,

3r
4

)
, due to (0.7). This completes the second part.
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Classification

Corollary 2. LetE ⊂ Ω be a set of finite perimeter with|E| < |Ω|. Then one of
the following two cases must be true:

1.either for anyλ > 0, there exists a cubeQ ∈ Aτ (E) with edge lengthr < λ
and

P (E, Q) ≥ (Cn + 2τ ) |E ∩Q|α ;

2.or there exists a sequence of cubes{Qi} ⊂ Aτ (E) such that

Qi+1 ⊂ Qi

and their edge lengths satisfy

1

8
ri ≤ ri+1 ≤

3

4
ri

for eachi.
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Remark 2. In the second case of corollary2, we may associate a family of open
cubes to it as follows. LetQ0 be any given cube inΩ. By picking the first
cubeQ1 insideQ0, we get a sequence of cubes{Qi}∞i=1 as in the second case
of corollary 2, and all these smaller cubes are contained inQ0. By rescaling
and translation, each cubeQi is the image of[−1, 1]n under some affine map
fi for eachi = 0, 1, · · · . Using these affine maps, we define a continuous map
F : [−1, 1]n × (0, +∞) → Rn by setting

F (x, s) =

{
s
r1

(f0 (x)− f0 (0)) + f0 (0) , if s > r0
1

ri−ri+1
((s− ri+1) fi (x) + (ri − s) fi+1 (x)) , if s ∈ [ri+1, ri]

for somei. Note that, for eachs > 0,the image

Fs = F (Q0, s)

is also a cube with edge lengths. Also,Fri = Qi for eachi = 0, 1, 2, · · · , and

Fs ⊆ Ft

whenevers ≤ t. Moreover, ifs ∈ [ri+1, ri] for somei = 1, 2, · · · , we have

Qi+1 ⊆ Fs ⊆ Qi ⊂ Q0
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and

|E ∩ Fs| ≤ |E ∩Qi|

≤ 2C1 (ri)
n2

n−1

≤ 2C1 (8s)
n2

n−1 .

Therefore,|E ∩ Fs| is continuous ins and

|E ∩ Fs| ≤ CEs
n2

n−1

for any s ∈ (0, r1), whereCE = 2C18
n2

n−1. Similarly, for any open ballB in
Ω, we may pick the first cubeQ1 insideB, and then construct a family of cubes
{Fs} as above. If we setKs to be the largest open ball of diameters inscribed
in the cubeFs, then we get a family of open balls{Ks} and |Ks ∩ E| is also
continuous ins with

|E ∩Ks| ≤ CEs
n2

n−1.
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Minimizers of a quasi perimeter

Lemma 1.Let E be anyT minimizer inFσ. Then the second case of corollary
will happen.

Proof.It is trivial if E has exterior points. Therefore, we may assume thatE
has no exterior points inΩ. Under this assumption, we will prove the result by
showing that the first case in corollary2 will not happen here.

Assume that there exists a cubeQ in Aτ (E) such that

P (E, Q) ≥ (Cn + 2τ ) |E ∩Q|α (0.8)

and its edge length

r < λ =

(
τ

2βC (2C1)
β−α

) n−1
n2(β−α)

. (0.9)

Then, we consider another set

Ẽ = (E\Q) ∪B,
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whereB is the ball having the same center asQ and with

|B| = |E ∩Q| ≤ 2C1r
n2

n−1 <
1

2
rn.

Note thatB is strictly contained inQ. SinceQ is in Aτ (E) andE has no exterior
points, we have

0 < |E ∩Q| ≤ 2C1r
n2

n−1.

Therefore, by (0.9),

C
∣∣E∆Ẽ

∣∣β ≤ C (2 |E ∩Q|)β

= 2βC |E ∩Q|β−α |E ∩Q|α

≤ 2βC

(
2C1r

n2

n−1

)β−α

|E ∩Q|α

< τ |E ∩Q|α .
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Now, |E| =
∣∣Ẽ∣∣ and

T
(
Ẽ
)

= P
(
Ẽ, Ω

)
+ G

(
Ẽ
)

= P (E, Ω)− P (E, Q) +Hn−1 (E ∩ ∂Q) + Cn |E ∩Q|α + G
(
Ẽ
)

≤ P (E, Ω)− τ |E ∩Q|α + G
(
Ẽ
)

, by (0.8)

< P (E, Ω)− C
∣∣E∆Ẽ

∣∣β + G
(
Ẽ
)

≤ P (E, Ω) + G (E) = T (E) .

This is a contradiction with the minimality ofE. Therefore, by the corollary2,
only the second case of the corollary will happen here.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

SupposeE is aT minimizer inFσ. We may consider another operator

T̃ (F ) = P (F, Ω) + G̃ (F )

for anyF ∈ F1−σ, whereG̃ (F ) = G (F c).

Lemma 2.E is aT minimizer inFσ if and only ifEc is a T̃ minimizer inF1−σ.

Proof.This is because

T (E) ≤ T (F )

⇐⇒ G(E) + P (E, Ω) ≤ G(F ) + P (F, Ω)

⇐⇒ G̃(Ec) + P (Ec, Ω) ≤ G̃(F c) + P (F c, Ω)

⇐⇒ T̃ (Ec) ≤ T̃ (F c) ,

for anyF ∈ Fσ.
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Theorem 3.Let E be anyT minimizer inFσ. ThenE has both interior points
and exterior points inΩ.

Proof.AssumeE has no exterior points. Since0 < |E| = σ |Ω| < |Ω|, there
exists at least one open cubeQ in Ω such that|E ∩Q| > 0, and also an open
ball B in Ω such that|Ec ∩B| > 0. We may also require thatQ andB are
disjoint. Now, by lemma1, lemma2 and the remark2, there exist a family of
n-dimensional open cubes{Fs} for E and a family ofn-dimensional open balls
{Ks} for Ec such that

1. for eachs > 0, both the edge length ofFs and the diameter ofKs equal tos;

2. let s0 be the edge length ofQ andt0 be the diameter ofB, thenFs0 = Q and
Kt0 = B;

3.whenevers < t, we haveFs ⊆ Ft andKs ⊆ Kt;

4. there exists a decreasing sequence of positive numbers{si}∞i=0 with limit 0
such thatFsi ∈ Aτ (E) for eachi = 1, 2, · · · ;

5.both |Fs ∩ E| and|Ks ∩ Ec| are nondecreasing continuous functions ofs ∈
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(0, +∞).

6.moreover, for anys ≤ s1, we have

0 < |Fs ∩ E| ≤ CEs
n2

n−1 (0.10)

for some constantCE > 0. Also, there exists a positive numbert1 ≤ t0 such
that for anyt ≤ t1, we have

0 < |Kt ∩ Ec| ≤ CEct
n2

n−1 (0.11)

for some constantCEc > 0.

Now, we pick a positive numberεo ≤ min {s1, t1} small enough so that

2n (CEc)1/n ε
1

n−1
0 ≤ τ (0.12)

and ∣∣Fε0 ∩ E
∣∣ < |B ∩ Ec| .

For anys ∈ (0, ε0), since

|Fs ∩ E| ≤
∣∣Fε0 ∩ E

∣∣ < |B ∩ Ec| =
∣∣Kt0 ∩ Ec

∣∣ ,
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by the mean value theorem, there exists at least onet ≤ t0 such that

|Kt ∩ Ec| = |Fs ∩ E| . (0.13)

SinceE has no exterior points, we have|Fs∩E| > 0. By the fact thatlims→0 |Ks∩
Ec| = 0, the set of allt satisfying (0.13) must have a minimum in(0, t0), and we
denote this minimum byg (s). Thus,g (s) ∈ (0, t0) and

|Fs ∩ E| =
∣∣∣Kg(s) ∩ Ec

∣∣∣ . (0.14)

Note that sinceFs ⊆ Q andKg(s) ⊆ Kt0 = B, we know thatFs andKg(s) are
still disjoint. Now, we fix ans ∈ (0, ε0) small enough so thatFs ∈ Aτ (E),

2n

ε0
(CE)1/n s

n
n−1 ≤ τ (0.15)

and

C

(
CEs

n2

n−1

)β−1+1
n

< τ . (0.16)

For this particulars, we consider the set

Ẽ = (E − Fs) ∪Kg(s).
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Then, by (0.14), we have|Ẽ| = |E| = σ|Ω| and

P
(
Ẽ, Ω

)
= P (E, Ω)− P (E, Fs) +Hn−1 (E ∩ ∂Fs)

−P
(
Ec, Kg(s)

)
+Hn−1

(
Ec ∩ ∂Kg(s)

)
. (0.17)

By the isoperimetric inequality (),

P (E, Fs) +Hn−1 (E ∩ ∂Fs) ≥ Cn |E ∩ Fs|α .
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Also, by (??),

Hn−1
(
Ec ∩ ∂Kg(s)

)
− P

(
Ec, Kg(s)

)
≤ 2n

g (s)

∣∣∣Ec ∩Kg(s)

∣∣∣ , by (0.14)

≤


2n
g(s)

|E ∩ Fs|α (CEc)1/n g (s)
n

n−1 , if g (s) ≤ ε0, by (0.11)
2n
g(s)

|E ∩ Fs|α (CE)1/n s
n

n−1, if g (s) > ε0, by (0.10)

≤

 |E ∩ Fs|α 2n (CEc)1/n ε
1

n−1
0 , if g (s) ≤ ε0

|E ∩ Fs|α 2n
ε0

(CE)1/n s
n

n−1, if g (s) > ε0,

≤ τ |E ∩ Fs|α , by (0.15) and (0.12).

Therefore, by (0.17), the factFs ∈ Aτ (E), and (??), we have

P
(
Ẽ, Ω

)
≤ P (E, Ω)− Cn |E ∩ Fs|α + 2Hn−1 (E ∩ ∂Fs) + τ |E ∩ Fs|α

≤ P (E, Ω)− Cn |E ∩ Fs|α + 3τ |E ∩ Fs|α

≤ P (E, Ω)− τ |E ∩ Fs|α ,
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due to (??). Hence,

T
(
Ẽ
)

= P
(
Ẽ, Ω

)
+ G

(
Ẽ
)

≤ P (E, Ω)− τ |E ∩ Fs|α + G (E) + C |E ∩ Fs|β

= T (E) + |E ∩ Fs|α
(
C |E ∩ Fs|β−1+1

n − τ
)

< T (E) .

The last inequality follows from (0.10) and (0.16). This contradicts with theT
minimality of E. Therefore,E must have an exterior points. Since, by lemma
2, Ec is aT̃ minimizer, we seeEc have also some exterior points. Therefore,E
has both interior points and exterior points.
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Proof of the Main Theorem
SinceE is anT minimizer,E has both interior points and exterior points inΩ.
Thus, there exist two open ballsB1 andB2 in Ω of same radius2R such that

|E ∩B1| = 0 and |Ec ∩B2| = 0.

Let F be any set of finite perimeter withE∆F contained in some open ballBρ

of radiusρ < R.
Suppose that

∣∣E ∩Bρ
∣∣ ≥ ∣∣F ∩Bρ

∣∣. We can move a ballB in B1\Bρ of radius
R, while remaining strictly inΩ− B̄ (ρ) , until it reaches a new positionB3 such
that

|B3 ∩ Ec| =
∣∣E ∩Bρ

∣∣− ∣∣F ∩Bρ
∣∣ .

Let Fρ = F ∪B3. Then
∣∣Fρ
∣∣ = |E|. SinceE is aT minimizer, we get

T (E) ≤ T
(
Fρ
)

.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

That is,
G(E) + P (E, Ω) ≤ G(Fρ) + P

(
Fρ, Ω

)
.

Therefore,

P (E, Ω) ≤ G(Fρ)−G(E) + P
(
Fρ, Ω

)
≤ C|E∆Fρ|β + P (F, Ω)− P (B3 ∩ Ec, B3) +Hn−1 (∂B3 ∩ Ec)

≤ P (F, Ω) + C|E∆Fρ|β +
n

R
|B3 ∩ Ec|

≤ P (F, Ω) + c|E∆F |min(1,β),

wherec = C + n
R.

We arrive at the same relation

P (E, Ω) ≤ P (F, Ω) + c |E∆F |min(1,β)

if we suppose
∣∣E ∩Bρ

∣∣ ≤ ∣∣F ∩Bρ
∣∣.
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Notations
We mention here only the basic notations and definitions about perimeters.

•We assume thatΩ is an open (bounded) subset ofRn with n ≥ 2.

• If E ⊆ Ω, |E| is the Lebesgue measure ofE,

• χE (x) is the characteristic function ofE.

•Hs (·) denotes thes dimensional Hausdorff measure.

•E∆F is the symmetric difference(E\F ) ∪ (F\E).

• Finally, Ec is the complement ofE in Ω.
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Sets of finite perimeter
Recall that a functionf ∈ L1 (Ω) is of bounded variation inΩ if

‖ Df ‖ (Ω) = sup

{∫
Ω

fdivφdx : φ ∈ C1
0 (Ω, Rn) , |φ| (x) ≤ 1

}
< ∞. (0.18)

A setE ⊂ Ω is said to be of finite perimeter inΩ if its characteristic functionχE
is of bounded variation inΩ. We will use the notationP (E, Ω) for the perimeter
so that

P (E, Ω) =‖ DχE ‖ (Ω) .

For∂E ∩ Ω sufficiently smooth,P (E, Ω) = Hn−1 (∂E ∩ Ω).
Moreover, for eachn-dimensional open cubeQ ⊂ Ω, a relative isoperimetric
inequality says that

γ (n) P (E, Q) ≥ min
{
|E ∩Q|α , |Ec ∩Q|α

}
(0.19)

for some constantγ (n) > 0.
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Reduced boundary


