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We consider the following minimizing problem:
Minimize
T(E)=P(E,Q) +G(F)

among all setdy C 2 of finite perimeter with a fixed volume.
Here

e () IS any open subset @ with n > 2.
e P (F,(2) denotes the perimeter &f,

e G is a lower semicontinuous functional on thets of finite perimetet in
with the property tha?

G(E) < G(F) + C|EAF|’

for any setst, F' in Q of finite perimeter with £| = |F'|, for some constant
C' > 0and a numbes > 1 — 1.()

& (44
bSee notations iA3



That Is,minimize
T(E)=P(E,Q)
among all sets’' C () of finite perimeter with a fixed volume.
This problem is often encountered in the field of capillarity theory. Liquid drop
resting on or hanging from a given surface, are some typical examples.
The regularity of the corresponding minimizers has been studied extensively

E. Gonzalez, U. Massari & I. Tamanini, On the regularity of boundaries of se

minimizing perimeter with a volume constraint. Indiana University Mathemati
Journal, Vol. 32, No.1 (1983), 25-37.



Minimize
T (E)=P(FE,Q) +/EH(x)dx

among all setd” C € of finite perimeter with a fixed volumeere H € LP (1)),
for somep > n, IS a given function.

Without a volume constraint, this is the problem of finding sets wrdscribed
mean curvaturé{, and has been studied for instance in

U. Massari. Frontiere orientate di curvatura media assegndt& iRend. Sem.
Mat. Univ. Padova 53 (1975), 37-52.

In our case, we impose an additional volume constraint on it. So,
G(E) / H (x)dzx.
E

From Holder inequality, we see that=1 — 5>1—3 here.



Main motivation: mud cracking

Mud cracking represents a very typical physical phenomenon.

After losing a certain amount of moisture, a material such as a piece of mud \
begin to crack.

People are interested in why, how and where the material cracks.



Let () represent a piece of mud. After losing a certain amount of moisture, s
o |§2| for someo € (0, 1), the volume of the mud decreases, and thus a ckack
of volumeo || must come out to replace the losing volume.

The selection of cracking is not totally random, but the actual physics of it mig
be too complicated to handle.

Instead, we may assume thiaimninimizes the total worlof transporting the old

mud(? to the new mud? — E, with multiplicity ﬁ, under a volume preserving

map.



Let us think about a mud of the shape of a disk.

To replace the volume of losing moisture, it can
e either shrink evenly to a smaller disk
e Or dig some space out by cracking inside it.

Which way is better? As we know, the mud will possibly choose the later we
This Is because the corresponding transport costs of two ways are different.
mud just chooses a cheaper way to reduce the total work.



A reasonable way to represent the total work is given by the Wasserstein |
tancedV), between Radon measures of equal total mass.
As a result, one would like to minimize

1

1l —0

W (L” 1, L™ (Q - E)) +P(E,Q)

among all setdv of finite perimeter inQ2 with volume |E| = ¢ || for some
o € (0,1). Hereq = min(1,1/p), and the perimeteP(FE,(2) of E is used to
represent the cracking energy for breaking the mud.

Using the properties of Wasserstein distances, it is easy to see that

: L”L(Q—E)) _ W, (11 B -2 /J”LQ)

1l —0o — 0 1l —0o

= AW, (L™ E, o L")

W, (/5” Q,

for some constant > 0.



Thus, the problem becomesrionimize
P(E, Q)+ AW/ (L E, L")

among all setdr in 2 of finite perimeter and with a volume constrajit| =
o |©2]. In this case,
G (E) = \W3 (L"|E,0L"]Q).

It is easy to see that = 1 here and thug > 1 — L.



Minimize the quasi perimeter
T(E)=P((E,Q) +G(F)
among all sets in
Foe={E CQ:P(EQ) < 4o, |E|=0|Q|}.

for somel < o < 1.
Here,G satisfies the property that

G(E) < G(F) + C|EAF)|’
for any sets, Fin 7, andg > 1 — 1.
e Existence: follows from the compactness of sets of finite perimeter.

e Main guestion: theeqgularityof these minimizers.
e Further properties and numerical simulation will be considered later.



Theorem 1.Supposé&? is a minimizer of the quasi perimetdrin F,. ThenE
IS a quasi minimizer of perimeter (without the volume constraint) in the ser
that

P(E,Q) < P(F,Q) + C|EAF|™n(L5) (0.1)
for all subsets:’ of (2 with EAF' contained in a small open ball.

As a corollary, we get the following' > regularity:

Corollary 1. Supposé” is a minimizer of the quasi perimet@rin 7,. Then the
reduced boundary*E is an (n — 1) dimensionalcl:min(1/2,6/2) hypersurface
in €, and moreovedim ((0F — 0*FE) N ) < n — 8.



The special casé: (E) = 0 was studied by Gonzalez, Massari & Tamanini. We
adapt a similar approach to deal with more general cases.

e Step 1 (key step): show that thedeminimizers indeed have both interior
points and exterior points;

e Step 2: show that they are quasi minimizers of perimeter without the volur
constraint;

e Step 3: using the known results about quasi minimizers of perimeter to get
desired regularity of thes€& minimizers.



Let £ be a set of finite perimeter 1. A pointp € () Is said to be amxterior
pointof £ (or interior point of £) if

|[ENB(p,r)|=0(or |[ENB(p,r)| = |B(p,r)|, respectively)
for some open ball neighborhodsl(p, ) of p.

o If |F| =0, then every point is an exterior point &f
o If |[E| = |Q)|, then every point is an interior point &f.

e In general, if0 < |E| < |€2|, E may not necessarily have an exterior or interio
point in ).

The existence of exterior points and interior points itself becomes an interest
problem to studly.



To study the existence of exterior points, we consider the following function. F
anyr > 0, let

f) = inf |ENQm)

where@ (z,r) denotes the:-dimensional open cube IR" centered at: and
with edge lengthr. Note thatf (0) = 0 and f () is an increasing function of.
Also, E has exterior points if if and only if f () = 0 in a small neighborhood
of 0.

For any pointp in €2 with metric density), one may say directly that
ENB(p,r)|=o0(r"),

and thus we may conclude that{r) = o (") asr approaches. This is true
even If £ Is not of finite perimeter. Whe#' is indeed a set of finite perimeter,

we can get a better result by saying tliat) = o (r”+ 1), which is demonstrated
by the following theorem.




Theorem 2.Supposer is a set of finite perimeter i with |E| < |2|. Then,
there exists am > 0 such that for any € [0, n),

1
0< f(r) <Oyt

for some constant| > 0, depending orf.

Proof.Letp € 2\ £ be any point with metric density. That is,
ENB
o BN BT
r—0 o’

Thus, there exists g > 0 such that

= (.

Q (p,m)NE| < %.

Now, for anyr < 1, one can subdivid€ = @ (p, 1) into totally ["]" disjoint
smaller cubes{Qj} with edge lengthr, where|z] denotes the integer part of
Let

A = {Qj ; }Eﬂ@j‘ >%7‘n}



and ) !
B=<0Q }EQQ]}§§T”’}

Then, the total numben | + B] 11" and

1 1
S Al < > |ENQ;| <|ENQ) < 7 (m)",

Q]EA

where|A | denotes the total number of elements in AetThus,|A| < %(%)”

and
B - 2] tar> 2] -5 ()" > 1 (2)°
if r < (1— 30.75) n

By the relative isoperimetric inequalifyfor anyQ, € B,
1—1
ENQ;|" " <y (n)P(E,Q)




for some constani (n). Therefore,

‘B|f 1 1/n_ Z f 1 1/n

(;€B

< > EnQt"
Q,€B
Z v(n) P(E,Q;)
Q;€B

< v(n)P(E,Q) < +00
becausd&r has finite perimeter id). Thus,
W(H)P(E,Q))”nl (M(n)P(E,Q))”nl el
1< (Mg =\ "
whenever < n = (1 — v0.75) n;. (]

Remark 1. This theorem enables one to find a good cube inside which the tc
volume ofFE Is very tiny.




Proposition 1.Supposée? is a set in() of finite perimeter withE| < ||, and
7 1S any positive real number. L& be anyn-dimensional open cube i with
edge lengthr satisfying

T \n—1 1
r < (Qn +2) NG (0.2)

and ,
ENQ| <2CyrT. (0.3)

Then there exists anc |5, | such that
n2
ENQ(p,s)| <20 sn-1

and

H'" H(ENJQ(p,s) <T|IENQ(p,s)|”,
wherea = 1 — % andq@ (p, s) is the cube having the same centef () and with
edge lengths.



Proof.Let p be the center of) and( (p, s) be the cube centered atand with
edge lengths. We consider the functiog : |0, r] — [0, +00) defined by
g(s)=1ENQ (s,
for eachs € |0, r]. Then,g (0) = 0 and
g'(5) =H""H(ENAQ (p,s))

for almost alls.
From 0.2) and (Q.3), we have

[ (a7) as = g/~ g 011

Therefore, there exists anc |0, r| such that
I T
(9 (5)1/”) < -

n

That Is,
g (s) <7g(s)*.



Let

so =max {s € [0,7r] : ¢’ (s) <Tg(s)*} <r.

We claim that ,
g (s0) < 2C1 (sp)n—T.

In fact, if sg = r, then it follows from our assumptioi® (3).
If so < r, then for anys € (sg, ), we have

g (s)>71g(s)*,

1/n ! T
(9 (s) ) >
Integrating it froms to r yields
-
g (" =g (s0)" = = (r = s).

which yields

(0.4)



Therefore,
-
g (so)/™ < g (r)/" — - (r — sp)

< (201)1/n T % (r — sp)

< (20" (s0)7 T

The last inequality follows from the fact that the function
T

h(z) = C)Y" piT — Zg

(g

1
is decreasing oft), r] becausé’ (z) = (201)1/” i1 — L < 0.

Moreover, sincey (sg) > 0, by (0.4) and Q.2), we have

Therefore, we have



Let 7 be a small positive number and
Ar (E)

be the family of alln-dimensional open cubes {hsatisfying

n2
ENQ| <201, H" Y (ENdQ) < t|ENQ|%,

wherer Is the edge length af satisfying Q.2).
Question: How to control the perimeté& £, ))?
The isoperimetric inequality says that
PE,Q+H" N (ENIQ) > Ch|ENQ|Y,

whereC,, = n|B(0,1)|*/".
Question: For any st of finite perimeter, Is there a culd¢ such that

P(E,Q) > (Cp+27)|ENQ|™?

(0.5)



Proposition 2.Let £ be a set of finite perimeter witl| < |2, and @ be any

cube inA; (F). Then either
P(E,Q) 2 (Ch+27)|[ENQ|”

or there exists a smaller culig C Q such that) € A, (£) and the edge length
of () satisfying

r e (r/8,3r/4).

Proof. Without losing generality, we may assume thails centered at the origin
O. Let

Zz{se (‘5»%) :;H”_l(Em{x:(xh... ,xn)eQ:xizs})zg]EﬂQ\o‘}.



Then, since

n
> / ZHn_l(Eﬂ{x €Q:x;=s})ds
Z =1
> Z|ENQI H! (2),
by applying 0.2) and Q.3), we have
K1 (2) < D|EAQp

Therefore, there existg € (=, ) such that

n

S HTHEN {z = (o, w0) €Q 1w = s0}) < S [EN QI

1=1

(0.6)



Using the hyperplane$z : z; = so}, we decomposé) into the union of2"
smallern-dimensional rectangleg), Q)o, - - - , Qon}. Each of thesé&);’s is lo-

cated in one corner @, and two of these rectangles are in faat
cubes and with edge lengthst s,. Slnceso C ( 1 4) we have

r 3r
Tl <2
T e U

Now, If
max BN Q] < (1—9)
1

then we can rearrande); } into two groups
= U {Qip Qiga S 76_22/{} andVQ — Q\Vl

such that
SIENQISIENV] <(1-6)|ENQ

for eachv = 1, 2. A well known inequality says

Imensional

(0.7)

(2 —2%) (min (a, b)) < a® + 0 — (a +b)*, for anya, b > 0.



Therefore,
IENVI*+|ENV,|® — |ENQI®
> (2 — 2&) min{|E N V1|Oé : |E N Vg‘a}
4
> (2-2%0%|ENQI* > 5 [ENQ|".
n

Hence, by the isoperimetric inequality.§), and 0.5),

P(E,Q) > P(E,V])+ P(E,V»)

> Ch|ENVI*+Cp |EN|Y —H"HENV]) —H" 1 (ENoVs)
> Cp |ENTVAY + Cp |E N V5| —2%]EHQ|O‘ 1" Y(ENHQ)

> Cn|ENQI"+4T[ENQ|" —T|ENQ[" —7|ENQ|"

= (Cp+27) |ENQIZ.

This gives one the first case.
If

max |[E N Q| > (1—0) |ENQ,
(4



then at least one of the two cubesix's, say(), satisfies
WﬂQﬂ<5WﬂQb
< 6 (2C) rn-1

< 4 (2CY) (4r1)nn——21 < 2CY (rl)nn——Ql,

wherery = § £ sy is the edge length of);. By propositionl, there exists a
smaller cube) C @y such that) € A, (E) with edge lengthF € (4,71) C

(g, %’“) due to 0.7). This completes the second part. L]



Corollary 2. Let E C () be a set of finite perimeter witl'| < |€2|. Then one of
the following two cases must be true:

1.either for any\ > 0, there exists a cub@ € A (£) with edge lengthr < A
and
P(E,Q) > (Crh+27) |[ENQ|*;

2.0r there exists a sequence of cubés} C A- (E) such that
Qi+1 C Q;

and their edge lengths satisfy

1 3
271 STkl S 7T

for eachs.



Remark 2.In the second case of corollaB; we may associate a family of open
cubes to it as follows. Lef); be any given cube if. By picking the first
cube; inside @, we get a sequence of cubgg;}-°, as in the second case
of corollary 2, and all these smaller cubes are containediJp. By rescaling
and translation, each cub@; is the image of—1, 1| under some affine map

f; foreach: = 0,1, ---. Using these affine maps, we define a continuous mi
F:[—1,1]" x (0,+00) — R" by setting
Fa S){%(ifo(@fo(o))Jrfo(O), f s>y

’ =g (8 = 7i1) fi (@) + (i — 8) fig (2)), i s € [rip, 7y

for some:. Note that, for eaclh > 0,the image
Fs = F(Qo,s)
Is also a cube with edge length Also, ., = ¢); foreach: =0,1,2,---, and
Fs C Iy

whenever < t. Moreover, ifs € [r; 1, r;] forsome = 1,2, --- , we have

Qi1 € Fs C Q; C Qo



and

[ENFs| < |ENQ
201 (7“@)7"‘71—‘21
2C" (85)nn——21.
E N F| is continuous ins and

I

VAN

Therefore,

n2

n2
for anys € (0,71), whereCgr = 2C18»-1. Similarly, for any open balB in
(2, we may pick the first cub@,; inside B, and then construct a family of cubes
{Fs} as above. If we sek; to be the largest open ball of diametemnscribed
in the cubefly, then we get a family of open bal{d<{;} and |K; N E| is also

continuous Ins with ,



Lemma 1.Let £ be anyT minimizer inF,. Then the second case of corollary
will happen.

Proof.It is trivial If E has exterior points. Therefore, we may assume Hat
has no exterior points if. Under this assumption, we will prove the result by
showing that the first case in corolla2ywill not happen here.

Assume that there exists a cugen A (E') such that

P(E,Q) > (Cn+27) |[ENQ|° (0.8)
and its edge length
n—1
\ T n2(6—a) (O 9)
r<\= . .
28C (201)5—04

Then, we consider another set
E=(E\Q)UB,



whereB is the ball having the same center@snd with

2

n 1
Bl = |ENQ| < 2017T < 1™

Note thatB is strictly contained ir). SinceQ) is in A- (E) andE has no exterior

points, we have
2

0<|ENQ| < 2017“%.
Therefore, by (.9),

C |EAE)’

AN

C2ENQ°
= CIENQIP®|ENQ®

22\ B—a
< 28¢ (2017“”1> ENQ|?
< T|ENQ|".



H
E E
|
jv

(E,Q) +G (E)

Q) +
P )— P(E, Q)+H”_1(EH8Q)+Cn|EﬂQ|O‘+G(E)
)_
) —

AN
i

r|ENQ|* + G (E), by 0.8
C|EAE|” + G (E)
P(E,Q)+G (E) =T (E).

This is a contradiction with the minimality of. Therefore, by the corollarg,
only the second case of the corollary will happen here. []

(E,Q
(E,Q
P(E,Q

I/\/\



Supposey is aT minimizer in F,. We may consider another operator
T(F)=P(F,Q) + G (F)
forany F € F,_,, whereG (F) = G (F¢).

Lemma 2. E is aT minimizer inF, if and only if E€ is a T minimizer inF;_,.

Proof.This Is because

T(E)<T(F)
«— G(E)+P(E,Q) < G(F)+P(F,Q)
«— G(E° + P (EQ) < G(F)+ P(F°Q)
«— T (E° < T(F°,

forany F' € Fg. []



Theorem 3.Let £/ be anyT minimizer inF,. ThenE has both interior points
and exterior points in).

Proof. AssumeFE has no exterior points. Sinde< |E| = o [)| < ||, there
exists at least one open cufein 2 such that £ N Q| > 0, and also an open
ball B in 2 such thatf N B| > 0. We may also require thap and B are
disjoint. Now, by lemmadl, lemmaZ2 and the remark, there exist a family of
n-dimensional open cubggs s} for £ and a family ofn-dimensional open balls
{Ks} for E€ such that

1.for eachs > 0, both the edge length df; and the diameter ok’ equal tos;

2.let sy be the edge length @ andt; be the diameter oB, thenFs, = () and

Kto :B1

3.whenevers < t, we haveFs C F; andKs C Ky,

4.there exists a decreasing sequence of positive num{Bgys’, with limit 0
such thatFs, € A-(F) foreachi = 1,2, ---;

5.both |Fs N E| and| K N E€| are nondecreasing continuous functions af




(0, +00).

6. moreover, for ang < s, we have
2

0 < |FsN E| < Cpsn-1 (0.10)
for some constant’y, > 0. Also, there exists a positive numhigr< ¢, such

that for anyt < ¢{, we have
2

0 < |K; N ES| < Cpetn—T (0.11)
for some constant'zc > 0.

Now, we pick a positive numbey, < min {sy,%;} small enough so that
1

on (Cre) el < 7 (0.12)

and
Fe, NE| < |BNE“.
For anys € (0, ), since
|FsNE| < |F,NE|<|BNE‘=|KyNE“,



by the mean value theorem, there exists at least ahe, such that
KN ES| = |FsNE. (0.13)
SinceFE has no exterior points, we halg;NE| > 0. By the fact thatim,_,q | KN
E°€| =0, the set of alk satisfying 0.13 must have a minimum if0, ¢y), and we
denote this minimum by (s). Thus,g (s) € (0, ty) and
FyNE| = ‘Kg@ N E . (0.14)

Note that since’s € ¢ andK () € Ky, = B, we know thatFs and K ) are
still disjoint. Now, we fix ans € (0, ¢y) small enough so that; € A, (F),

sn—1 < T (0.15)
and
f—14=
C (CEsnl> < T. (0.16)

For this particular, we consider the set

~

E = (E— FS) UKg(S)'



Then, by 0.14), we have E| = |E| = ¢|Q| and
P(FE,Q) = P(E,Q) — P(E,Fs) + H" 1 (E N dF;)
P (B Ky + M (BON 0K ). (017)
By the isoperimetric inequality) (
P(E,Fs)+H" N (ENOFy) > Cy|EN Fs|“.



Also, by (??)

Hl (EC N 8Kg(8>) _p (EC, Kg(8>)
2n

g(s)

( 2n |Eﬂ Fy|® (CEC)I/n (s ) if g(s) < e, by (0.17)

\ Qn 7|1 B0 F|® (Cp)l/" i1 if g(s) > ey, by (0.10

)

C
BT Ry

VAN

-

1
‘EﬂFS‘QQn(CEC)/ 61 ,if g (s) < ¢
. ‘E A Fs‘aze_?g (CE>1/ —17 If g(S) > €,
< 7|EN Fs|“, by (0.19 and 0.12).

Therefore, by .17, the factfs € A (E), and (?), we have

P (Ea Q) P(E,Q)—Cp|ENFs|%+ H (ENOFs)+7|EN Fg®
P(E,Q) — Cn|EN Fs|® + 37 |EN Fy|®
P(E,Q)—71|EN Fg|%,

< 9

IA A IA



due to (??). Hence,

T (E) = P(E,Q) + G (B)
< P(E,Q )—T\EmFS\O‘+G(E)+C\EmFSyﬁ
T (E)+ |EN F|° ( BN Fy|5~1a — T)
< T(F).
The last inequality follows from(Q.10) and (.16). This contradicts with th&
minimality of £. Therefore,£Z must have an exterior points. Since, by lemm:

2, E€i1s aT minimizer, we se&’“ have also some exterior points. Therefdte,
has both interior points and exterior points.

]



SinceE is anT minimizer, £ has both interior points and exterior points{in
Thus, there exist two open balls and B, in €2 of same radiug R such that

’EﬂBl‘ = (0 and |ECHBQ‘ = 0.

Let /" be any set of finite perimeter with AF’ contained in some open bdll,
of radiusp < R.
Suppose that N B,| > |F N B,|. We can move a balB in B;\ B, of radius
R, while remaining strictly irt2 — B (p) , until it reaches a new positiol; such
that

| BsNE‘|=|ENB,| — |[FNB,|.
Let F,, = F U Bs. Then|F,| = |E|. SinceFE is aT minimizer, we get

T (E) < T (F,).



That is,
G(E)+P(E,Q) <G(Fy)+P (Fp, Q) .

Therefore,

P(E,Q) < G(F)) — G(E)+ P (F,,Q)

C|EAF,)° + P (F,Q) — P@yﬂ?B@+HWWM%ﬂE3
P (F,Q) + C|EAF,|’ + — \Bg N E°

}%FJD+dEAFWm>m,

IAIA

VAN

wherec = C + %.
We arrive at the same relation

P(E,Q) < P(F, Q)+ c|EAF™nLO)
if we supposeE N B,| < |F N B,|.



We mention here only the basic notations and definitions about perimeters.
¢ \We assume thd? is an open (bounded) subset®f with n > 2.

o|f £/ C (),
e \ r () is the characteristic function df.

E| is the Lebesgue measure Bf

e 1° (-) denotes the dimensional Hausdorff measure.
e LAF' is the symmetric difference\ ') U (F\ E).
e Finally, £¢ Is the complement oF in ).



Recall that a functiorf € L' (Q) is of bounded variation i if

| Df || () =sup {/Qfdivgbdm Q€ C& (2, R™), o] (x) < 1} < oo. (0.18)

A setE C () is said to be of finite perimeter @ if its characteristic functiorny g

IS of bounded variation if2. We will use the notatio® (F, §2) for the perimeter
so that

P(E,Q)=|| Dxg | ().
For OE N Q sufficiently smoothP (E, Q) = H" 1 (E N Q).

Moreover, for eaclm-dimensional open cub@ C (), a relative isoperimetric
Inequality says that

v(n) P(E,Q) >min {|ENQ|*, [E°NQ|"} (0.19)
for some constant (n) > 0.



Reduced boundary




