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Abstract In this article, we study the geodesic problem in a generalized metric
space, in which the distance function satisfies a relaxed triangle inequality d (x, y) <
o(d(x,z)+d(z,y)) for some constant ¢ > 1, rather than the usual triangle inequal-
ity. Such a space is called a quasimetric space. We show that many well-known re-
sults in metric spaces (e.g. Ascoli-Arzela theorem) still hold in quasimetric spaces.
Moreover, we explore conditions under which a quasimetric will induce an intrinsic
metric. As an example, we introduce a family of quasimetrics on the space of atomic
probability measures. The associated intrinsic metrics induced by these quasimetrics
coincide with the d,, metric studied early in the study of branching structures arisen in
ramified optimal transportation. An optimal transport path between two atomic prob-
ability measures typically has a “tree shaped” branching structure. Here, we show
that these optimal transport paths turn out to be geodesics in these intrinsic metric
spaces.
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1 Introduction

This article aims at studying some classical analysis problems in semimetric spaces,
in which the distance is not required to satisfy the triangle inequity. During the au-
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thor’s recent study of optimal transport path between probability measures, he ob-
serves that there exists a family of very interesting semimetrics on the space of
atomic probability measures. These semimetrics satisfy a relaxed triangle inequality
d(x,y) <o(d(x,z)+d(z,y)) for some constant o > 1, rather than the usual triangle
inequality. Such semimetric spaces are called quasimetric spaces! in [6]. Moreover,
these family of quasimetrics indeed induce a family of intrinsic metrics on the space
of atomic probability measures. Furthermore, optimal transport paths studied early
in [10-14] etc turn out to be exactly geodesics in these induced metric spaces. This
observation motivates us to study the geodesic problem in quasimetric spaces in this
article. Other closely related works on ramified optimal transportation may be found
in [3-5, 7] etc.

This article is organized as follows. In Sect. 2, we first introduce the concept as
well as some basic properties of quasimetric spaces, then we extend some well-known
results (e.g. Ascoli-Arzela theorem) about continuous functions in metric spaces to
continuous functions in quasimetric spaces. After that, in Sect. 3, we consider the
geodesic problem in quasimetric spaces. We show that every continuous quasimetric
will induce an intrinsic pseudometric on the space. In case that the quasimetric is
nice enough (e.g. either “ideal” or “perfect” in the sense of Definition 2.5 or Defini-
tion 3.14), then the quasimetric will indeed induce an intrinsic metric. In the end, we
spend the last section in discussing our motivation example: optimal transport paths
between atomic probability measures. We first introduce a family of quasimetrics on
the space of atomic probability measures. Each of these quasimetric is both ideal
and perfect, and thus it induces an intrinsic metric on the space of atomic probability
measures. We showed that the d,-metrics introduced in [10] is simply the intrinsic
metrics induced by these quasimetrics. Furthermore, each geodesic in these length
spaces corresponds to an optimal transport path studied in [10].

2 Continuous Maps in Quasimetric Spaces
2.1 Quasimetric Spaces

Definition 2.1 Let X be any nonempty set. A function J : X x X — R is called a
quasimetric if for any x, y, z € X, we have

(1) (non-negativity) J(x, y) > 0;

(2) (identity of indiscernibles) J(x, y) =0if and only if x =y

(3) (symmetry) J(x,y) =J(y,x);

(4) (relaxed triangle inequality) J(x, y) < o[J(x,z) + J(z,y)] for some constant
o>1.

When J is a quasimetric on X, the pair (X, J) is called a quasimetric space. Let
o (J) denote the smallest number o satisfying condition (2.1).

1When this article was submitted, the author used the term “nearmetric” as in [8] instead of “quasimetric”.
Later, Professor Nigel Kalton kindly let the author know the term “quasimetric” used in the book [6]. Thus,
in the final version of the article, we replaced the previous term “nearmetric” with this more suitable term
“quasimetric”.
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Every metric space is clearly a quasimetric space with o = 1.

Example 2.2 Suppose d is a metric on a nonempty set X. Then, for any g > 1,
A>0,u>0,J(x,y)=rd(x,y) + ud(x, y)P is typically not a metric on X. How-
ever, J defines a quasimetric on X with o (J) < 28-1 Indeed,

J (x,y) =2d(x, y) + pd (x, y)
<1 [dx,2) +d(y. 9]+ p[dex,2) +d(y. 2]
<Ald(r.29)+d(y. 2]+ 2P uld(x, 2)f +d(y.2)]
<27 i@, 0+7@y].
In Section 4 we will provide a family of interesting quasimetrics on the space of
atomic probability measures.
More generally, suppose J is a distance function on X satisfying condi-

tions (2.1), (2.1), (2.1) in Definition 2.1. For each n, let 0,,(J) be the smallest number
o > 1 satisfying

n
J(xlsxn+l)Sanzj(xiaxi+l)» 2.1
i=1

for any x1, ..., x,41 € X. In particular, o1(J) =1 and 02(J) = o (J).
Lemma 2.3 Suppose (X, J) is a quasimetric space. Then, for each n,
on () <o ()"

Proof We show this using the mathematical induction. It is trivial when n =1 or 2.
Then, from condition (2.1), we see that for any n and any points {x{, x2, ..., x,} in
X, we have

J(x1,xp) =0 (J)(J (x1, Xp—1) + J (Xp—1, Xn))

n—2
<o (J) (G (J)"_ZZJ (xi, xit1) + J(xnhxn))
i=1
n—1
<o (N J (i xip1) sinceo (J) > 1.

i=1
Therefore, 0,(J) < o (J)*~! for all n. O
Proposition 2.4 Suppose (X, J) is a quasimetric space. Then, for eachn andm in N,

onm (J) <0 (J)owm (J).
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Proof Note that, for any {x1, x2, ..., Xmn+1} in X, from (2.1), we have

J (X1, Xmn+1)
<on () (J 1, Xma) + I Gty Xoma ) + -+ T (Xa=Dymt15 Xnm+1))

nm

m
<0n () | om (DD T Gisxig) ++om () Y T (X, xig1)
i=1 i=(n—1)m+1

=0n (J)ow (J) Y J (xi, Xig1) .

i=1
Therefore,
oum () <0 (J) o (). -
Clearly, o, (J) is nondecreasing as n increases. Thus, we define
Ooo (J) 1= lirrlna,, ) 2.2)

for any quasimetric J on X.

Definition 2.5 Suppose J is a quasimetric on X. If 05, (J) < 00, then J is called an
ideal quasimetric on X.

Note that J is an ideal quasimetric if and only if for some o > 1,

J(x,y) <0 ) T (xi, Xig1) s 23)
i=1

for any finitely many points x1,..., x,4+1 € X with x; = x, x,4+1 = y. The smallest o
satisfying (2.3) is just oso (/).

A sequence {x,} is convergent to x in a quasimetric space (X, J) if J(x,,x) — 0,
and we denote it by x, 4 x. A sequence {x,} is Cauchy in (X, J) if for any € > 0,
there exists an N € N such that J(x,, x,;,) <€ forall n,m > N. Since J(x,, x;;) <
o (J)(J (xp, x) + J(x, xp)), it follows that every convergent sequence in (X, J) is a
Cauchy sequence. If every Cauchy sequence in (X, J) is convergent, then we say J
is a complete quasimetric on X. A quasimetric J on X always gives a topology on X
where a subset A is closed if it contains every point a € X for which there is some
sequence a; € A with lim;_, » J(a;,a) =0.

Definition 2.6 A quasimetric J on X is continuous if for any convergent sequences

J J
Xp — X, Yo — ¥y, we have

J (xp,yn) = J(x,y), asn— oo. 2.4)
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J J
If for any convergent sequences x;,, — x, y, — y, we have

J (x,y) <liminf J (x,, yn), 2.5)
n
then we say J is lower semicontinuous.

For instance, suppose J satisfies conditions (2.1), (2.1), (2.1) in Definition 2.1,
and also the following condition

W x,y)—J@wl=o((xz2)+Jw,y) (2.6)

for any x,y,z,w € X and some o > 1. By setting z = w, we get J(x,y) <
ol[J(x,z)+ J(z,y)], and hence J is a quasimetric on X. Also, since for each n,

I Gens yn) = J (x, )| =0 (J (X, 00) + T (¥, yn))

J is automatically satisfying the continuous condition (2.4 ) in this case. When J is
indeed a metric on X, then (2.6) trivially holds.

2.2 Continuous Maps in Quasimetric Spaces

In this section, we extend some well-known results (see for instance in [9] or [1])
about continuous maps in metric spaces to continuous maps in quasimetric spaces.

Suppose (X, J) is a quasimetric space, and K is a compact metric space with a
metric dx. Amap f: K — (X, J) is continuous if J(f(x,), f(x)) — 0 in X when-
ever dx (x,,x) > 01in K as n — oo. Amap f : K — (X, J) is uniformly contin-
uous if for every € > 0, there exists a § > 0 such that J(f(x), f(y)) < € whenever
x,y € K with dg(x,y) <. Amap f: K — (X, J) is Lipschitz if there exists a
constant C > 0 such that

J(f (), f(y) =Cdkg(x,y)

for any x,y € K. Let C(K, (X, J)) be the family of all continuous maps from K to
(X, J),and Lip(K, (X, J)) be the family of all Lipschitz maps from K to (X, J).

Proposition 2.7 Suppose J is a continuous quasimetric on X. Then, every continu-
ousmap f: K — (X, J) is uniformly continuous.

Proof Suppose f : K — (X, J) is continuous. If f is not uniformly continuous, then
there exists an € > 0, and two sequences {x,}, {y,} in K such that d(x,, y,) < % but
J(f (xn), f(yn)) = €. By the compactness of K and taking subsequence if necessary,
we may assume that both {x,} and {y,} converge to the same point x* € K. So, by
the continuity of J in (2.4) and the continuity of f at x*, we have

0=1J (f (x*). f () = lim J (f (i) f () = €.

A contradiction. Thus, f must be uniformly continuous. O
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For any maps f,h: K — (X, J), let

Joo (fs h) i=sup J (f (x), h (x)). 2.7

xekK

If Joo(fn, f) — O, then we say that f;, is uniformly convergent to f.

Proposition 2.8 Suppose J is a quasimetric on X. Then, Jo is a quasimetric on
C(K, (X, J)).

Proof For any f,h € C(K, (X, J)), by definition (2.7), we have Jo(f, h) > 0 and
Joo(f, h) = Jso(h, f). Also, Joo(f, h) =0 if and only if f(x) =h(x) forall x € K.
Moreover, for any g € C(K, (X, J)),

Joo (fs ) = sup J (f (x), 1 (x))
xekK

<supo (J)[J (f (x), g (x)+J (g(x), h(x))]

xekK

<o (J) [Sup J(f (x),g(x))+supJ(g(x),h (X))}

xekK xekK

=0 (J) [Joo (f. &) + Joo (8. 1)].

Therefore, (C(K, (X, J)), Jxo) is also a quasimetric space. O

Proposition 2.9 Suppose {f, : K — (X, J)} is a sequence of continuous maps. If
Joo(fn, ) = O, then f is also continuous.

Proof Since Joo(fy, f) — 0, for any € > 0, there exists an n such that

sup J(fu (), f(x)) =€/3. (2.8)

For any x € K, since f, is continuous at x, there exists a § = §(x) > 0 such that
J(fn(x), fn(y)) <€/3 whenever y € K with dx (x, y) <. Therefore, by lemma 2.3
and (2.8), we have
J(fx), fO) <o (J)? [J(f ), fu )+ T (fa ), fu ()
+J (fu ), [ O]

<eo (J)?
and thus f is continuous at every x € K. |

Theorem 2.10 Suppose (X, J) is a complete quasimetric space and J is lower
semicontinuous. Then, the space (C(K, (X, J)), Jso) is also a complete quasimet-
ric space.
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Proof Let { f,} be any Cauchy sequence in C(K, (X, J)) with respect to J,. That is,
for any € > 0, there exists an N such that whenever m, n > N, we have Joo (f, fin) <
€. So, for each x € K, {f,,(x)} is Cauchy in X. Since X is complete, {f,,(x)} con-
verges to some f(x) € X with respect to J. Now,

Joo (fus J) = sup J (fu (x), f (X))

xekK

<sup lim J(f,(x), fin (x)), because J is lower semicontinuous
xek m—00

< limsup [SUP J(fn (), fim (X))} <e€
m— 00 xekK

So, Joo(fn, f) — 0. By proposition 2.9, f is continuous. Hence, by proposition 2.8,

Jo 18 a complete quasimetric on C(K, (X, J)). O

Definition 2.11 A subset F of C(K, (X, J)) is equicontinuous if for every x € K
and € > 0, there is a § = §(x, €) > 0, such that whenever y € K with dg (x,y) <34,
we have J(f(x), f(y)) <eforall f € F.

Now, we have the following Ascoli-Arzela theorem in quasimetric spaces:

Theorem 2.12 Suppose (X, J) is a complete quasimetric space and J is lower semi-
continuous. A subset F of (C(K, (X, J)), Jo) is precompact if and only if it is
bounded and equicontinuous.

Proof Suppose F is a precompact (i.e. every sequence has a convergent subsequence)
subset of C(K, (X, J)). Then, for each fixed € > 0 , there exists a finite subset
{f1,..., fx} of F such that

k

FlUBeps (), 2.9)

i=1
where the notation B.(g) = {h € C(K, (X, J))|Jxo(g,h) < €}. Otherwise, for any
finite subset {f1, ..., fx}, there exists an fr4+1 ¢ U;;l Be3(fi), and thus we get a
sequence { fx} in F. Since Joo (fin, fn) = €/3 for any m # n, we know { f;,} does not
contain any Cauchy subsequence, which contradicts to F being precompact. There-

fore, (2.9) must be true, which also implies that F is bounded.

Now, for any x € K and each f; in (2.9), there exists a §; > 0 such that whenever
y € K with dg (x, y) < §;, we have J (f;(x), fi(y)) < % For every f € F, by (2.9),
there is an 1 <i < k such that Joo(f, fi) < % We conclude that for any y € K with

dg (x,y) <d=min{éy, ..., 6}, we have

J(f @), fO) <o ([T @), fi )+ T (fi ), fi D)+ (fi ), f )]

<eo (J)2.

Therefore, F is equicontinuous at every x € K.
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On the other hand, suppose F is equicontinuous and bounded. Then, for any se-
quence { f,} in F, by using the diagonal process and taking subsequence if necessary,
we may assume {f,} is convergent to f on a countable dense subset S in K. We
now prove that { f,,} is Cauchy in C(K, (X, J)) with respect to J. Indeed, for any
€ > 0, since F is equicontinuous and K is compact, there exists a finite many points
{r1,...,rx} in S such that for any x € K, there is a r;, such that

€
J(fu (), fu (i) < 5
for all n. Now, whenever m, n are large enough, for all x € K,

J (fn (x), fim (%))
<o ([T (fa ) fu D)+ T (o i)+ fon () + T (fon () + fin (2))]
<o (J)e.
Therefore, {f,} is a Cauchy sequence in C(K, (X, J)). By the completeness of

C(K, (X, J)) stated in theorem 2.10, the sequence {f,} is convergent with respect
to Joo. Thus, F is precompact. |

Corollary 2.13 Suppose (X, J) is a complete quasimetric space and J is lower semi-
continuous. A subset F of C(K, (X, J)) is sequentially compact with respect to Jo
if and only if it is closed, bounded and equicontinuous.

3 Intrinsic Metrics Induced by Quasimetrics

This section is devoted to study the geodesic problem in a quasimetric space (X, J).
Let [a, b] be a bounded closed interval.

Definition 3.1 Let N be a natural number. A curve f € C([a, b], (X, J)) is called an
N -piecewise metric Lipschitz curve in (X, J) if there exists a partition

Pr={a=a9<a; <---<ay =b}

of [a, b] such that foreachi =0,1,...,N — 1,
(1) J is a metric on the subset f([a;,a;+1]) of X and

(2) the restriction of f on [a;, a;+1] is Lipschitz.

Here, requiring J to be a metric on f([a;, a;+1]) is the same as asking it to satisfy

the triangle inequality: J(f(t1), f(2)) < J(f(t1), f(2)) + J(f(t2), f(t3)) for any
11,0, 13 € la;,ai+1]. Let

Pn ([a,b], (X, 1))

be the family of all N—piecewise metric Lipschitz curves in (X, J), and P([a, b],
(X, J)) be the union of Py ([a, b], (X, J)) over all N’s.
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3.1 Length of Rectifiable Curves

Recall that when (X, d) is a metric space, and f : [a, b] — (X, d) is a (continuous)
curve. Then, one may define its length as

L(f)=supVp (f)€[0,+00],
P

where the supremum is over all partitions P of [a, b], and Vp(f) is the variation of
f over the partition P ={a =ty <t <--- <ty = b} given by

N
Ve ()= d(f(ti1), f ().

i=1

In case f is Lipschitz, an equivalent formula for the length of f is

b
L(f) =/ |f @), dr,
a
where | f (t)|4 is the metric derivative of f at f(¢) defined by

|f(t)‘ o limd(f(s)’f(t))
d

s—t |s — ¢

)

provided the limit exists. When f is Lipschitz, | f ()| exists almost everywhere, and
is bounded and measurable in 7.

Now, suppose (X, J) is a quasimetric space, and f € Py([a, b], (X, J)). Then
on each interval [a;, a;+1], f : [ai,ai+1] — (X, J) is a Lipschitz curve in the metric
space (f([ai,ai+1]), J), and thus the length of the restriction of f on [a;, a;+1] is
well defined. As a result, we may define the length of f to be

N-1

L(f):= Z L (f L[ai,ai+1]) :

i=0

In other words, we have

Definition 3.2 For any f € Py ([a, b], (X, J)), the length of f is defined as

b
Li(fri= [ |F o

where the metric derivative

J(f (), f @)

ol =t

provided the limit exists. We may simply write L ;(f) as L(f) if J is obvious.
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Lemma 3.3 Suppose J is a continuous quasimetric on X, C > 0 is a constant, and
P={a=ap <ay <--- <ay = Db} is a partition of the interval [a, b]. Then, for any
x,y € X, the family

feC(a,bl,(X,J)): f(a)=x, f(b)=y, and J is a metric on
B f(lai,ai+1D andLip(fl_[a[.’am]) <C, foreachi=0,...,N —1

is a bounded, closed and equicontinuous subset of C([a, b], (X, J)). Moreover, if f,
is uniformly convergent to f in J, then,

L(f) =liminfL (fu).

Proof For any g € F and any t € [a, b], we have t € [aj,a;,1] for some j <N — 1
and

J(g®),x)=J(g),g(a))
j-1

=o ()| D T @), g@))+J(g(a;),g®)

i=0
<o) Clt—al<Co (DN b—al

Therefore, F is bounded.

Suppose {f,} is any convergent sequence in J with respect to Jo with f €
C([a, b], (X, J)) being the limit. Then, for each fixed i, and any ¢, 12, 13 € [a;, aj+1],
we have

J (fn (), fn () <J (fn (1), fn #)+J (fn (t3), fn (2))
and

J(fun ), fu) =Clt —1].

Let n — oo, we have J is a metric on f([a;,ai+1]) and Lip(flla;i,ai+1]) <C.
Therefore, f € F. This shows that F is closed and also equicontinuous. Moreover,
for any partition Q of [a;, aj+1], the variation

Vo (flai.aiv1]) = lim Vg ((f) @i ain1]) < liminf L ((f) Lai ait1]).
So,
L (fL[a,-, a,-+]]) = SLle Vo (fL[ai, ai+1]) < liH}linfL (fn |_[ai, a,'+1]) .

Hence,

N-1 N-1

LN =3 L(Flgan)) = D minf L (fulfa,a)) = IminfL (£

i=0 i=0
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Proposition 3.4 Suppose (X, J) is a quasimetric space, and f € Py ([a, b], (X, J)).
If L(f) =0, then f is a constant map.

Proof L(f) =0 implies that L(f |[4;,q4;,,]) = 0 for each i. Thus, f is a constant on
[ai,a;i+1] for each i. Since f is continuous, f is a constant on [a, b]. O

Since any Lipschitz curve in a metric space has an arc parametrization, by applying
arc parametrizations piecewisely, we also have

Proposition 3.5 (Reparametrization) For any f € Py(la,b],(X,J)) and L =
L(f), there exists a homeomorphism ¢ : [0,L] — [a,b] so that y = f o ¢ €
Py (0, L], (X, J)) has |y (t)|; = 1 almost everywhere in [0, L].

3.2 The Geodesic Problem

Let N be a fixed natural number. For any x, y € X, we consider the geodesic problem

min{L (f)} 3.1

among all f in the family
Pathy (x,y) ={f € Pn ([0, 1], (X, J)) with f(0) =x; f (1) =y}.

Note that, by a linear change of variable, one may replace [0, 1] in Pathy(x, y)
by any closed interval [a, b] without changing the infimum value in the geodesic
problem (3.1).

Definition 3.6 Suppose J is a quasimetric on X. For any x, y € X, and N € N, define
D™ (x,y) =inf{Ly (f): f € Pathy (x,y)}

whenever Pathy (x, y) is not empty, and set D(JN) (x,y) = oo when Pathy(x,y) is

empty. Since D(JN) (x, y) is a decreasing function of N, we define
. N
Dj(x,y)= lim D(J )(x,y).
N—o00

Theorem 3.7 Suppose J is a continuous complete quasimetric on a nonempty set X.
For any N €N, and x,y € X, the geodesic problem (3.1) admits a solution f €
Pathy (x,y) provided that Pathy(x,y) is not empty. So, L(f) = DgN)(x, y).

Proof Suppose Pathy (x, y) is not empty. Let L =inf{L(f) : f € Pathy(x, y)}. Note
that for each f € Pathy (x, y), we have

N-1

Jx,y) <o OV YT (@), f (@)

i=0
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N—-1
<o DY L(flaany) =0 DV LG
i=0

This implies that if L = 0, then we have J(x, y) = 0. Therefore, x = y and the con-
stant f(¢) = x is the desired solution.
So, without losing generality, we may assume that L > 0. Let {f,} be a length
minimizing sequence in Pathy (x, y) with L(f;) — L. Let
Py

n

:{Oza(()")<a§n)<--~<a,(\’,l):1}

be the partition of [0, 1], associated with f,,. By reparametrization if necessary, we

may assume that each f, is Lipschitz with Lip(f,) < 1.5L on [al.("), al.(i)l] for each
i=0,...,N — 1. Then, by choosing a subsequence if necessary, we may assume

that each sequence {ai(")} is convergent to some point a; as n — oo for each i =
(n) _

0,1, ..., N. Using a linear change of variable, we may assume that for each i, a;

a; and Lip(f,) <2L on [a;, aj+1]. Now, { f,} is a sequence in the family

feC(0,11,(X,J)): f(O)=x, f(1)=y,and J is a metric on
B f(ai,ai+1]) and LiP(fL[a,-,a,»H]) <2L, foreachi =0,...,N —1 '

By Lemma 3.3, F is a bounded, closed and equicontinuous subset of C ([0, 1], (X, J)).
By the Ascoli-Arzela theorem shown in corollary 2.13, a subsequence { f;,, } of { f,}
in F is uniformly convergent to some f € F with respect to Joo. By the lower semi-
continuity of L in the family F, we have L(f) < liminfy L(f,,) = L. Therefore,
f is a length minimizer in Pathy (x, y). O

Note that each D<JN) is a semimetric> on X in the sense that D(JN) (x,y) >0,
DY (x,y) =0if and only if x = y, and D" (x, y) = D) (y, x). In general, D}
may fail to satisfy the triangle inequality. Nevertheless, we have

D™ (x,y) < DY (x,2) + DY (z,)
for any m,n and x, y, z € X. As aresult, by letting N — oo, we have
Proposition 3.8 Suppose J is a quasimetric on X, then D is a peudometric® on X.

Since Dy is a pseudometric, Dy is a metric on X if and only if

Dy (x,y) >0 whenever x # y.

2A function d : X x X — [0, +00) is a semimetric on X if d satisfies conditions (2.1), (2.1), (2.1) in
Definition 2.1. So, a semimetric d is not required to satisfy the triangle inequality.

3A functiond : X x X — [0, +00) is a pseudometric on X if d satisfies conditions (2.1), (2.1) in Defini-
tion 2.1, and the triangle inequality d(x, y) <d(x,z) +d(z,y) for any x, y,z € X. But d(x, y) = 0 does
not necessarily imply x = y.
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When D; becomes a metric on X. This metric is called the intrinsic metric, or geo-
desic distance, on X induced by the quasimetric J.

3.3 Examples of Metrics Induced by Quasimetrics
Now, we are interested in cases that D is indeed a metric on X.
3.3.1 Ideal Quasimetrics

Let J be any semimetric on X. For any x, y € X, we set

dj(x,y)

to be the infimum of

n—1
> T @i xig)
i=1

over all finitely many points x1,...,x, € X with x; =x and x,, = y.
This d; defines a pseudometric on X, but not necessarily a metric on X.

Example 3.9 For instance, let X = [0, 1] and J(x,y) = |x — y|? for some p > 1
defines a quasimetric on X. Then, for each n,

n—1 ..
I i+1

dyo,Hh<dy J|-,
s ( >_§ (n . )

ANV |
:E - = _1—>0 asn — o0.
o\ nb

1=

Thus, d;(0,1) =0, but 0 ## 1. Hence d; is not a metric on X. Also, note that in
this example, Pathy (x, y) is empty whenever x # y. Thus, Dj(x, y) = oo whenever

XFYy.
As in the case of Dy, dj is a metric on X if and only if
dj(x,y) >0 whenever x #y.
Note also that
dy (x,y) = DY (x,y)
for each N, and thus,
dy(x,y) =Dy (x,y).

Therefore, dj(x, y) > 0 will automatically imply D;(x, y) > 0. As a result, we have

Proposition 3.10 Suppose J is a quasimetric on X. If dj is a metric on X and
Dj(x,y) < oo forevery x,y € X, then Dy also defines a metric on X.
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Remark 3.11 When J is indeed a metric on X, then both d; and D, are metrics. In
this case, d is just the metric J itself, while D is the intrinsic metric induced by J.

In general, by means of definition, we have
dy(x,y) <J(x,y) <000 (N)dy(x,Y),

where 0 (J) is defined as in (2.2).
Now, suppose J is an ideal quasimetric, then 0 (J) < oo and J satisfies the
condition

n—1

J (1, %0) <000 (J) DT (X, Xig1)
i=1

for any finitely many points {x, x2,...,x,} C X. Clearly, we have the following
proposition:

Proposition 3.12 Suppose (X, J) is an ideal quasimetric space. Then for any N and
any f € Pn(la, b], (X, J)), we have

J(f (@), f (b)) =000 (J)L(f).

Lemma 3.13 Suppose J is an ideal quasimetric on X. Then, d;j is a metric on X.
Moreover, if Dj(x,y) < oo for every x,y € X, then Dj also defines a metric on X.

Proof This is simply because when x # y, dj(x,y) > ﬁf(x, y)>0. O

3.3.2 Perfect Quasimetrics
Here is another kind of quasimetric J which also induces a metric Dy .

Definition 3.14 A quasimetric J on X is a perfect near metric if for any x, y € X, the
value DSN) (x, y) becomes a real valued constant D (x, y) when N is large enough.

Since for each N, D(JN) (x,y) =0 if and only if x = y, we have the following
theorem.

Proposition 3.15 On a perfect quasimetric space (X, J), Dy defines a metric on X.

When J is indeed a metric on X, then for each N, the metric D(JN) agrees with
the intrinsic metric induced by J. Thus, every metric space is automatically a perfect
quasimetric space. In Sect. 4, we will discuss a family of very important perfect
quasimetric spaces, which are not metric spaces.

Theorem 3.16 Suppose (X, J) is a perfect quasimetric space, and the geodesic prob-
lem (3.1) has solution for N large enough. Then, (X, Dy) is a length space in the
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sense that for every x,y € X, there exists a curve f :[0,L] — (X, D) such that
fO)=x, f(L)y=yand

Dy (f @), f(s)=lt—s|

forevery t,s €0, L] where L = Dj(x,y).

Proof For every x,y € X, since (X, J) is a perfect quasimetric space, we have
D(JN) (x,y) = Dj(x,y) < oo whenever N is large enough. Now, for each large
enough N, there exists a curve f : [0, L] — (X, J) such that f is the length min-
imizer in Pathy (x, y) with L(f) = D" (x, y) = D, (x, y). Without losing general-
ity, we may assume f has its arc parametrization. Now for any 0 <s <t < L, we
have

! .
D16 f @)=L (Flo) = [ ] dr=t=s.

Similarly, D, (f(0), f(s)) <s and D;(f(t), f(L)) < L — t. Thus, we have

L=Djx,y)<Dj(f ), f)+Dy(f(s), f@®)+Dy(f (@), [f L))
<s+@—s)+(L—-1)=L.

Therefore, all inequalities becomes equalities at every step and for any ¢, s € [0, L],
we have Dy (f (1), f(s)) = |t —s]. O

Corollary 3.17 Suppose J is a complete, continuous, perfect quasimetric on X.
Then, (X, Dy) is a length space.

The curve f in Theorem 3.16 is called a geodesic from x to y in the perfect
quasimetric space (X, J).

4 Optimal Transport Paths as Geodesics

We now begin to introduce a family of both ideal and perfect quasimetrics on the
space of atomic probability measures.

4.1 A Family of Quasimetrics on the Space of Atomic Probability Measures

Let (Y, d) be any metric space. For any y € Y, let §, be the Dirac measure centered
at y. An atomic probability measure in Y is in the form of

m

Z a;idy,

i=1

m

with distinct points y; € Y, and ¢; > 0 with ) 7", ¢; = 1.
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Given two atomic probability measures

m

n
a=> as, and b=) b, 4.1)

i=1 j=1
in Y, a transport plan from a to b is an atomic probability measure
m n
7 =22 Vb “2)
i=1 j=1

in the product space Y x Y such that

m n
Z)/,’j ij and Z)/,’j =da; (43)
i=1 j=1

for each i and j. Let Plan(a, b) be the space of all transport plans from a to b.
For any @ < 1, we now introduce the functional H, on transport plans. For any
atomic probability measure y in ¥ x Y of the form (4.2), we define

Ho(y):=7_ > (vij)"d (xi,¥))
i=1 j=1

where d is the given metric on Y.
Using H,, we may define

Definition 4.1 For any two atomic probability measures a, bon Y, and & < 1, define
Jo (@,b) :=min{H, (y):y € Plan(a,b)}.

For any given natural number N € N, let Ay (Y) be the space of all atomic proba-
bility measures

m
i=1

on Y with m < N, and A(Y) = Jy An(Y) be the space of all atomic probability
measures on Y.

Proposition 4.2 J, defines a quasimetric on Ay (Y) with o (Jq) < N'7¢.

Proof For any a,b € Ay (Y) in the form of (4.1), clearly J,(a, b) >0 and J,(a,b) =
Jo (b, a).

If Jy(a,b) = 0, then there exists a y € Plan(a,b) such that H,(y) = 0. Thus,
d(x;,yj) = 0 whenever y;; # 0. Since {y;}’s are distinct, at most one of y;; can be
nonzero for each i. On the other hand, by (4.3), at least one of y;; must be nonzero
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for each i. Therefore, for each i, there is a unique j = o (i) such that x; = y; and
vij =a; = bj. This shows thata =b.

Now, we prove that J satisfies the relaxed triangle inequality as in condition (2.1)
in Definition 2.1. Indeed, for any

m n h
a=> asy,, b=) b;js, and c=) ad;,
i=1 j=1 k=1

in Ay (Y), and any

n h

m h
ug = Z Zuik‘s(x,',zw € Path(a, ¢), ‘L'cb = Z Tkj(s(Zk,_Vj) € Path (c,b),

i=1 k=1 j=1k=1
we denote

h
Uik Tkj
Yij = Z —_—
Ck

k=1
for each i, j. Note that

i=1 \k=1

i(i lktkj) kaf—b

k=1 \i=1
and similarly > jVij = ai. Therefore, we find a transport plan
m n
V= Z Z Vij‘s(x,-,yj) € Plan(a,b).
i=1j=1
We now want to show

Ho () = N (Ha () + Ho (20)).

Indeed,
"y b ik Tkj ¢
Hae @) Z (7/1]) d(x”yf)zz Z c d(xz,yj)

i=1 j=1 izt =1 \ket k

< i n o h (ulktkj )"‘ (d (xi,zx) +d (2x. yj)), because o < 1

- Ck P j
i=1 j=1k=1
m h n it

:ZZ < ik kj) d(_xl’zk)
i=1 k=1 \j=1 Ck
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n h

m h
e [ w0z + 3 ) )

i=1 k=1 j=lk=1
=N (H (u§) + H, <‘L’b>)
- o a o C I

where the 2nd inequality follows from the inequality ZlNzl () < N« (ZlN:l )%,
Therefore, by taking infimum, we have

Jo (a,b) < N'"%(Jy (a,¢) + Jy (¢, b)) O

Proposition 4.3 Suppose (Y, d) is a complete metric space. Then, Jy is a complete
quasimetric on Ay(Y).

Proof Let {a,} be any Cauchy sequence in Ay (Y). Then, for any € > 0, there exists
a natural number N, such that

Jo(a,,a,) <€

whenever n, m > N. Note that each atomic probability measure a, may be expressed
as

N
— (n)
a; = 2ai (Sxi(n)

for some a ) >0, Zl \a l(") 1 and x(") eY.
Now, let y(” M) be an H, minimizer in Plan(a,, a,,) with

Jo (An, ay) = Hy (y(n,m)) .

This transport plan y ™ is expressed as

(n ) = Z V,J ) (n) <m>)

i,j=1 g

for some y(” ™ > 0 with Zl " yl(]" " a(m) and ZJ " yl(]” m .(") forall i, j =
1,2,. N
By picking a subsequence if necessary, without losing generality, we may use the
diagonal argument and assume that for all i, j =1,2,..., N andalln > N
(n,m) ()
Yii T Vij

as m — oo. Then, for each i, j and each n > N, we have

N
(n) : (n,m) (m) (m) _ (n)
E Yij _m]me E 1 Yij _m]mea« and E Yij . 4.4
1=
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Let
aj= lim at™
; m—0oQ
for each j.If a; > 0, then by (4.4), there exists an i such that yl(
d<x.(n) x(m)) < H, (y(n,m)) _ Jo(an, an)
i J [V,(n m)]a [Vi(jn,m)]a

which implies that

)
{xj m=1

is a Cauchy sequence in the complete metric space (Y, d). Thus,

oo for some x; €Y.
Let

a= ) a;s,; €Ay (Y)

a;>0
and for each n > N , let
(n) _ (n)
=27 S(x.)
ij
Then, 7/(”) € Plan(a,,a) and

JO{ (al’l’ a) S HO[ (y(n))

Z[ T a )

ij
(n)y _(m)
mlgnoo Z [ ] ( Yoo

lim J, (a,,a,) <e.
m—0o0

(n)
Vij

(n,m)

Vij

Therefore, {a,} is (subsequentially) convergent to a in (Ay(Y),
An (Y) is complete with respect to the quasimetric J.

" < 0. So

(m

)
Xj

—)Xj asm —

)

Jo). This shows that
O

Note that, in general, J, may fail to be a metric on Ay (Y) as demonstrated in the

following example.

Example 4.4 For any o < 1, let y be a positive real number. Then, we consider three

atomic measures in ¥ = R? :

1

1
S8(—1,y+1) + 55(1,y+1>»

a= and
2

b = 40,0

¢ =04(0,y)-
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Then,
Jy (a,¢) + J, (e, b) — Jy (a, b)
(1Y (N 2
_2<2> V2+y 2(2) 1+(+1)?%<0

whenever y is large enough. Thus, J, does not satisfy the triangle inequality.
4.2 Optimal Transport Paths between Atomic Probability Measures

Now, we want to show that the quasimetric J, is both ideal and perfect. To achieve
these results, we first recall some concepts about optimal transport paths between
probability measures as studied in [10].

Let a and b be two fixed atomic probability measures in the form of (4.1).

Definition 4.5 A transport path from a to b is a weighted directed graph G consists
of a vertex set V(G), a directed edge set E(G) and a weight function

w: E(G)— (0,+00)

such that {x1 x2,...,xc} U {y1, y2, ..., y1} C V(G) and for any vertex v € V(G),

aj, ifv=ux; forsomei=1,...,k,
Z w(e) = Z w(e)+ 4 —bj, ifv=y;forsome;j=1,...,1, (4.5)
effz((v;) ejf:((j) 0, otherwise

where e~ and et denotes the starting and ending endpoints of each edge e € E(G).

Remark 4.6 The balance equation (4.5) simply means that the total mass flows into
v equals to the total mass flows out of v. When G is viewed as a polyhedral chain or
current, (4.5) can be simply expressed as

G =b—a.
Also, when G is viewed as a vector valued measure, the balance equation is simply
div(G)=a—b
in the sense of distributions.
Let Path(a, b) be the space of all transport paths from a to b.

Definition 4.7 For any @ < 1, and any G € Path(a, b), define

M, (G):= Y w(e)*length (e).
ecE(G)
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Remark 4.8 In [10], the parameter o was restricted in [0, 1]. Later, the author ob-
served that o < 0 is also very interesting, and related to studying the dimension of
fractals. So, negative « is also allowed here.

We first recite two lemmas that were proved in [10, Proposition 2.1] and [10,
Definition 7.1 and Lemma 7.1] respectively.

Lemma 4.9 For any transport path G € Path(a,b), there exists another transport
path G € Path(a, b) such that

M, (G) <M, (G),
the set of vertices V(é) Cc V(G) and G contains no cycles.

Here, a weighted directed graph G = {V(G), E(G), W : E(G) — (0, 1]} contains
a cycle if for some k > 3, there exists a list of distinct vertices {vy, va,..., vk} in
V(G) such that for each i =1, ..., k, either the segment [v;, v;4+1] or [vi4+1, v;] is a
directed edge in E(G), with the agreement that vi4; = vi. When a directed graph G
contains no cycles, it becomes a directed tree.

Lemma 4.10 For any transport path G € Path(a, b) containing no cycles, there ex-
ists
(1) an m x n real matrix

u= (ui j) with

m n

uij >0, Zui‘/=bj, ZuijZCli foreachi,jandii:uijzl,

i=l j=1 i=1 j=1
(2) and an m x n matrix
g = (gij)
with each g;j is either 0 or an oriented polyhedral curve g;; from x; to y;,

such that
G= Z Uijgij
iJj
as real coefficients polyhedral chains.

By means of Lemma 4.9, it is easy to see that for each o < 1, there exists an
optimal transport path in Path(a, b) which minimizes the cost functional M.

For the sake of visualization we provide some numerical simulations (see the
forthcoming paper [15]) for different values of «.
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* Lk . k eV L L sk )
02 04 06 038 1 . . . . 1

Fig. 1 A family of optimal transport paths from 50 random points to a single point

Example 4.11 Let {x;} be 50 random points in the square [0, 1] x [0, 1]. Then, {x;}
determines an atomic probability measure

50

azz%(sxi.

i=1

Let b =§p where O = (0, 0) is the origin. Then an optimal transport path from a to
b looks like Fig. 1 with o = 1, 0.75, 0.5 and 0.25 respectively.

Example 4.12 Let {x;} be 100 random points in the rectangle [—2.5, 2.5] x [0, 1].
Then, {x;} determines an atomic probability measure

100

1
a=2ﬁaxi.

i=1

Let b= 38p where O = (0, 0) is the origin, and let « = 0.85. Then an optimal trans-
port path from a to b looks like Fig. 2.
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15+

-0.5F

-2 -1.5 -1 -0.5 0 05 1 1.5 2

Fig.2 An example of an optimal transport path from 100 random points to a single point with « = 0.85

4.3 Relation between Optimal Transport Paths and Quasimetrics Jy

We now start to investigate the relationship between optimal transport path and the
quasimetric J, on Ay (Y). We first observe that any transport plan y € Plan(a, b) in
the form of (4.2) determines a transport path G, € Path(a,b). Indeed, we consider
the weighted directed graph G,, with

V(Gy) ={X1,.0s Xm, Y1s-ev» Yn}s
E(G,) = {apair [x;, y;]if yij # 0},
and setting the weight W ([x;, y;]) = y;; for each i, j with y;; # 0. Moreover,

My (Gy)= Y w(e)*length(e)=) (vij)"d (xi,yj) = Ha ().

ecE(Gy) )
Proposition 4.13 For any a),a® ... a® e A(Y), there exists a transport path
Ge Path(a(l), a<k)) such that

k—1
M, (G) = Y Jo (20D

i=1

and G contains no cycles.
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Proof Let y; be an optimal transport path from a) to a(’”fl), for each i =
1,2, ...,k — 1. Each y; determines a transport path G,, € Path(a®, at+D) as above.
Then, viewed as real coefficients polyhedral chains,

k—1
G= Z Gy,
i=1

is a transport path from a" to a®). Moreover, we have
k—1 k—1 k—1

M, (G) =Y My (Gy) =D Ho ()= Jo (a®,a0*D).
i=1 i=1

i=1

By Lemma 4.9, there exists a transport path G from a®") to a®) such that G contains
no cycles, V(G) C V(G), and

M, (G) =M, (G) = ]:Z:;l Ja (a(i), a“*”) .

Theorem 4.14 J, is an ideal quasimetric on Ax(Y) with 600(Jy) < N2-e)

Proof For any k € N and any points {aV,a®, ... a®} c Ay(Y), by proposi-
tion 4.13, there exists a transport path G € Path(a(l), a(k)) such that

k—1
M, (G) =) Jo (a0
i=1

and G contains no cycles. Moreover, by Lemma 4.10, there exists a matrix (u;;) of
real numbers and a metric (g;;) of polyhedral curves such that

G= Z uijgij
ij
as real coefficients polyhedral chains. Let
y =2 i)
ij

be any transport plan in Plan(a'l, a®®). Then,

Hy (y) = Z (u,-j)ad (xi.yj) < Z (Mij)a length (gi;)

ij ij

= Z Z (uij)* | length (e)

e€E(G) \gij contains e
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o

< Z N2(1-o) Z ujj length (e)
e

gij contains e
— N2(-o) Z (w (e))® length (e)
ecE(G)

k—1
— NZ(I—C{)Ma (G) S N2(1—Q’) Z Ja (a(i), a(i-‘rl)) .

i=1

Therefore,
k—1
T, (a(”,a(k)) < NSy, (a(”,a("“))
i=1

and thus Jy is an ideal quasimetric on Ay (Y) with 040 (Jy) < N2 O

Suppose (Y, d) is a geodesic metric space. That is, for any x, y € Y, there exists
a Lipschitz curve I'y y : [0, 1] — (Y, d) with T, ,(0) = x, I'y y(1) = y and length
LTy y) =d(x,y).

Lemma 4.15 Suppose (Y,d) is a geodesic metric space. Let G € Path(a,b) for
some a,b eAyn(Y). If each edge of G is a geodesic curve between its endpoints
in the metric space Y, then there exists a piecewise metric Lipschitz curve g €
Pne ([0, 11, (AN (Y), Jo)) such that

Ly, (8) =My (G),

where N¢ is total number of edges in the graph G.

Proof We may prove it using the mathematical induction on Ng. When Ng =1, G
itself is a geodesic in Y. Then, it is clearly true in this case. Now, assume Ng > 1.
Pick an edge e of G with its starting endpoint e~ being a vertex in a. Let

d=a+w(e) B+ —8,),

where e is the targeting endpoint of the directed edge e, and w(e) is the as-
sociated weight on e. Removing edge ¢ from G, we get another transport path
G € Path(a, b). Then, Né = Ng — 1 > 1. By the principle of the mathematical in-

duction, we may assume that G corresponds to a piecewise metric Lipschitz curve
g € Pn, (10,11, (An(Y), Jo)) such that

Li, ®=M, ().

Now, let
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where A = le,;] , and I, is the associated geodesic in Y from e~ to e*t. Then, g €

Png (10, 11, (AN (Y), Jo)) and

Ly, (@) =Ly, (@) + Ly, T) =M, (G) +w (&) length () =My (G). [

Remark 4.16 From this lemma, we see that for any transport path G € Path(a, b) in
a geodesic metric space (Y, d), we have a simple formula for the transport cost:

1
M, (G) = /0 1 (O, dr.

On the other hand, in [2], the authors studied another kind of ramified transportation
in which the cost of a path is given by

1
/0 18Ol J (g () dr

where W is the Wasserstein distance on probability measures, and J is some function
on the space of atomic probability measures. It is interesting to see this difference
between these two different approaches.

Theorem 4.17 Suppose (Y, d) is a geodesic metric space. Then, J, is a perfect qua-
simetric on Ay (Y), and thus it induces a metric D, on Ay(Y).

Proof Suppose a, b are two points in Ay (Y). For any f € P ([0, 1], (An(Y), Jy))
with f(0) =aand f(1) =b, there exists a partition P = {0 =ap < --- < ar = 1} of
[0, 1] such that J,, is a metric on f([a;, a;+1]) and f (4 ,4;,,) i Lipschitz for each
i=0,1,...,k — 1. Let x; = f(a;) for each i, by Proposition 4.13, there exists a
transport path G from f(0) =ato f(1) =b such that

My (G) =3 Ja Gioxisn) = 30 L (Flfaa]) =L ()

and G contains no cycles.When (Y, d) is a geodesic metric space, each edge of G is
realized by a geodesic curve between its endpoints. By Lemma 4.15, G determines
a curve g € Py, ([0, 1], (An(Y), J)) with L(g) = My (G) < L(f). Since a,b €
An(Y) and G € Path(a,b), the total number of vertices of G with degree one is
no more than 2N. Since G contains no cycles, the total number Ng of edges of
G is no more than 4N — 3. Thus, g € Pan—3([0, 1], (An(Y), Jo)). Hence, for any
a,be Ay(Y),

k 4N-3
DY (a,b) =D} (a,b)

for any k > 4N — 3. This shows that Jj is a perfect quasimetric on Ay (Y). g

Corollary 4.18 Suppose (Y,d) is a geodesic metric space. Then, for any a,b €
An(Y) and a < 1, we have

Dy, (a,b) =min{M, (G) : G € Path(a,b)}.
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Proof Let G be any optimal transport path from a to b. From the proof of the above
theorem, we see D, (a,b) <My (G) < L(f) for any f € Px([0, 1], (An(Y), Jo))
with k > 4N — 3. Hence, D, (a, b) = My (G). O

Corollary 4.19 Suppose (Y, d) is a geodesic metric space. Then, (An(Y), Dy,) is a
length space.

Proof By Corollary 4.18, each optimal transport path G determines a solution g to
the geodesic problem (3.1). Then, by Theorem 3.16, (Ax (Y), Dy, ) becomes a length
space. 0

Since A1 (Y) C A (Y)C--- CAN(Y) C---,and (Ax(Y), Dy, ) is alength space
for each N, we have

Proposition 4.20 Suppose (Y, d) is a geodesic metric space. Then, D, is a metric
on the space A(Y) of all atomic probability measures on Y . Moreover, (A(Y), D)
is a length space.

We now give some conclusive remarks.

Remark 4.21 In [10], we defined d,(a,b) := min{My(G) : G € Path(a,b)} for
0 <« < 1 and showed that d,, defines a metric on the space of (atomic) probabil-
ity measures. Moreover, we showed (A(Y), dy,) is a length space. Now, from Corol-
lary 4.18, we see that d, = D,. That is, the metric d,, is just the intrinsic metric on
A(Y) induced by the quasimetric J,. Proposition 4.20 simply gives another proof
of (A(Y), dy) being a length space. Furthermore, an optimal transport path studied
in [10] is simply a geodesic in the length space (A(Y), Dy,).

Remark 4.22 Suppose (Y, d) is a geodesic metric space, and Py (Y) is the comple-
tion of the metric space (A(Y), Dy,). Then, (P,(Y), Dy,) is also a length space.
A geodesic in the length space (Py(Y), Dy, ) is also called an optimal transport path
between its endpoints.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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