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Abstract. In a previous paper [12], we considered problems for which the cost of transport-
ing one probability measure to another is given by a transport path rather than a transport
map. In this model overlapping transport is frequently more economical. In the present ar-
ticle we study the interior regularity properties of such optimal transport paths. We prove
that an optimal transport path of finite cost is rectifiable and simply a finite union of line
segments near each interior point of the path.

Mathematics Subject Classification (2000): 90B06, 49Q20.

1. Introduction

In a previous paper [12], the author considered a phenomena of mass transport
problems, for which the actual transport cost is given by the actual transport path,
rather than by transport maps as in Monge’s problems [7,10,8,3,6,2]. In this model,
an optimal transport path in [12] between two probability measures will often
overlap in some cost efficient way. Such a phenomenon is very common in the nature
such as trees, railways, circulatory system and so on. This article is a continuation
of the paper [12]. Namely, we will consider here the regularity properties of these
optimal transport paths.

There are mainly three steps to get the regularity results. The first step is about
the rectifiability of transport paths of finite cost. We achieve this by viewing a
transport path as a real flat 1-chain. We showed that a real flat k-chain with finite
mass and finite Mα mass is rectifiable. The idea of the proof is partly from Brian
White’s result [11] on rectifiability of flat chains with coefficients in general groups.
Thus, an optimal transport path with finite Mα cost (which automatically implies
finite mass) is rectifiable . The second step is achieving tangent cone properties of
optimal transport paths. Some readers may find that proofs here are analogous to
the proofs of tangent cone properties of classical integer multiplicity minimizing
currents as in the book [9]. In the third part, by some comparisons, we achieve some
local finiteness property at every interior point on the support of the path away from
the boundary. Namely, in a neighborhood of such points, the path is given simply by
a cone consisting of a finite union of segments. An interesting aspect of this proof
is that we do not assume the usual positive lower bound condition on the density
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of flat chains as in the study of stationary varifolds in [1]. In fact one should not
expect a global positive lower bound on the density to exist here.

The author wants to express his thanks to Professors Robert Hardt, Thierry De
Pauw and Luis Caffarelli for some useful conversations.

In this paper, we will use the following notations as in [12]:

– X : a compact convex subset of a Euclidean space R
m.

– α : a positive number in [0, 1).
– µ+ : a probability Radon measure on X as the initial measure.
– µ− : a probability Radon measure on X as the target measure.
– Path (µ+, µ−) : the space of all transport path from µ+ to µ−.
– MΛ (X) : the space of Radon measure µ on X with total mass µ (X) = Λ.
– δp: the Dirac measure at the point p.

2. Rectifiability of real flat chains with finite Mα mass

Let Pk denote the group of polyhedral chains of dimension k in R
m with real

coefficients. Given any α ∈ [0, 1], and any polyhedral chain P =
∑
giσi ∈ Pk

with each gi ∈ R, we define the Mα mass of P to be

Mα (P ) :=
∑

|gi|α Hk (σi) , (2.1)

where the σi are nonoverlapping oriented k-dimensional convex cells. Let

Wα (P ) = inf
R∈Pk+1

{Mα (R) + Mα (P − ∂R)} ,

where ∂ is the usual boundary operation on Pk. The Whitney flat α−distance
between P1, P2 ∈ Pk is Wα (P1 − P2). Let Fk be the W 1-completion of Pk. The
elements of Fk are called (real) flat k−chains in [4]. For any real flat chainT ∈ Fk,
we define its Mα mass to be

Mα (T ) := inf
{Pi}W1→ T

lim inf
i→∞

Mα (Pi) . (2.2)

Remark 2.1. An element T of Fk with finite Mα mass is not necessarily a flat chain
with coefficients in the group

(
R

1, |x|α) as in [11] or [5], because T is the limit of
polyhedral chains under W1 flat distance , rather than under the Wα flat distance.

Remark 2.2. Suppose k = 0 or 1 and {Pi} is a sequence of polyhedral k-chains
with uniformly bounded mass and boundary mass. Then, {Pi} → T under flat
1-distance W 1 is equivalent to {Pi} → T weakly as signed measures or vector
measures. (See [9, 31.2] and [11].)
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2.1. Measures of finite Mα mass

Since every signed measure onX can be approximated weakly by atomic measures,
every signed measure is a real flat 0-chain. However, for any α < 1, not every
signed measure has finite Mα mass. In fact, as shown in [11] by White, we have
the following proposition:

Proposition 2.3. Suppose 0 ≤ α < 1. For any signed measure µ on X of finite
Mα mass, there exists two sequences {xi} ⊆ X and {ai} ⊆ (−∞,+∞), such
that

µ =
∞∑

i=1

aiδxi
with

∞∑
i=1

|ai|α = Mα (µ) < +∞. (2.3)

Proof. We may assume µ is a Radon measure, for every signed measure is the
difference of two Radon measures. We will apply induction on the dimension n of
R

n ⊃ X . The case n = 0 is trivial. We assume it is true whenever X ⊂ R
k for

some integer k. Now, suppose X ⊂ R
k+1. Let

ν = µ− µ�{x : µ ({x}) > 0} .
For every hyperplane H of R

k+1, by induction, ν�H = 0.
Assume ν �= 0 so that ν (X) > 0.
Let L : R

k+1 → R be the projection map to its first coordinate. We consider a
map

γ : [a, b] → (R, ||·||α)

defined by

γ (t) = ν ({x = {x1, · · · , xk+1} ∈ X : x1 ≤ t}) ,

where [a, b] is an interval whose interior containsL (spt (ν)) and ||·||α is the metric
given by ||x||α = |x|α for any x ∈ R. Here |x| is the absolute value of x.

Now, for any s < t,

||γ (s) − γ (t)||α = (ν ({x = {x1, · · · , xk+1} ∈ X : s < x1 ≤ t}))α

≤ Mα (ν�{x = {x1, · · · , xk+1} ∈ X : s < x1 ≤ t}) .

This implies that

lim
t→s+

||γ (t) − γ (s)||α = 0,

and

lim
s→t− ||γ (s) − γ (t)||α = (ν ({x = {x1, · · · , xk+1} ∈ X : x1 = t}))α = 0,

since {x1 = t} is a hyperplane of R
k+1. Thus, γ : [a, b] → (R, ||·||α) is an increas-

ing continuous function with γ (a) = 0 and γ (b) = ν (X) > 0.
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Now, we calculate the length of the curve γ under the metric ||·||α. On one
hand, for any partition a = t0 ≤ · · · ≤ tm = b, we have∑

||γ (ti) −γ (ti−1)||α =
∑

(ν ({x= {x1, · · · , xk+1} ∈X : ti−1<x1≤ti}))α

≤
∑

Mα (ν�{x= {x1, · · · , xk+1} ∈X : ti−1<x1≤ti})

≤ Mα (ν�{x = {x1, · · · , xk+1} ∈ X : a < x1 ≤ b})
= Mα (ν) < +∞.

This implies that γ has finite length.
However, on the other hand, γ ([a, b]) = [0, ν (X)] ⊂ (Rn, ||...||α) has length

infinity unless ν (X) = 0. A contradiction! Therefore, ν = 0 and

µ = µ�{x : µ ({x}) > 0} .

Hence µ must be of the form

µ =
∞∑

i=1

aiδxi

for some ai ∈ R and xi ∈ X . 	

Remark 2.4. Proposition 2.3 is not true for α = 1, since every Radon measure µ
on X has finite M1 mass.

Any signed measure of the form (2.3) is called an infinite atomic measure. Let

AΛ (X)

be the space of all infinite atomic measures inX with total massΛ. Some properties
of infinite atomic measures will be studied in Section 4.3.

2.2. Rectifiability of real flat chains

As in [9], a subset M ⊂ R
m is called (countably) k−rectifiable if M =

∞⋃
i=0

Mi,

where Hk (M0) = 0 under the k−Hausdorff measure Hk and each Mi, for i =
1, 2, · · · , is a subset of a k−dimensional C1 submanifold in R

m.
It is well known that a real flat chain with finite mass may not be rectifiable.

However, it satisfies the following rectifiable slicing theorem ([4,11]):

Proposition 2.5. Let A be a k-flat chain of finite mass in R
m. Then the following

two conditions are equivalent:

1. A is rectifiable.
2. For almost every (m− k)-plane P parallel to a coordinate plane, the slice
A ∩ P is a rectifiable 0-chain.

Remark 2.6. In [11], the above theorem actually holds for flat chains with coeffi-
cients in more general normed groups. We only need the simplest case here, namely
the group is the real line with Euclidean metric.
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The main result of this section is the following rectifiability theorem:

Theorem 2.7. Given any 0 ≤ α < 1. Any real flat k-chain A of finite M1 mass
and finite Mα mass is rectifiable.

Proof. Let Π : R
m → L be an orthogonal projection onto an affine k-plane L.

Then, we have ∫
L

Mα
(
A ∩Π−1 (x)

)
dx ≤ Mα (A) < +∞.

This is obvious when A is a polyhedral chain, and by Fatou’s lemma, we know it
is also true when A is a real flat chain. Therefore,

Mα
(
A ∩Π−1 (x)

)
< +∞

for a.e. x ∈ L. By Proposition (2.3),A∩Π−1 (x) is an infinite atomic measure for
a.e. x ∈ L. On the other hand, A is a flat chain of finite M1 mass. By Proposition
2.5, A is rectifiable. 	


3. Tangent cone properties of rectifiable Mα mass minimizers

The goal of this section is to achieve the tangent cone properties of any one dimen-
sional Mα mass minimizer. This result will be used in the next section for optimal
transport paths. We first recall some terminology about rectifiable currents as in [4]
or [9].

Let Ω ⊂ R
m be an open subset and Dk(Ω) be the set of all C∞ differential

k-forms in Ω with compact support with the usual Fréchet topology [4].
A k-dimensional current T in Ω is a continuous linear functional on Dk(Ω).

Let Dk(Ω) denote the set of all k-dimensional currents inΩ. Motivated by Stokes’
theorem, the boundary of a current T ∈ Dk(Ω) with k ≥ 1 is the current ∂T ∈
Dk−1(Ω) defined by

∂T (ψ) := T (dψ)

for any ψ ∈ Dk−1(Ω). When k = 0, one defines ∂T := 0.
A rectifiable current T is a current coming from an oriented rectifiable set

with multiplicities. More precisely, T ∈ Dk(Ω) is a rectifiable current if it can be
expressed as

T (ω) =
∫

M

< ω (x) , ξ (x) > θ (x) dHk (x) , ∀ω ∈ Dk(Ω)

where

– M is an Hk measurable and k−rectifiable subset of Ω,
– θ is an Hk�M integrable positive function,
– ξ : M → Λk (Rm) is a Hk measurable unit tangent k vector field on M .
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The rectifiable current T described as above is often denoted by

T = τ
=
(M, θ, ξ).

Let Rk (Ω) be the space of all rectifiable k-currents in Ω.
From now on, we always assumeα ∈ [0, 1). For anyT = τ

=
(M, θ, ξ) ∈ Rk (Ω),

its Mα mass is given by

Mα
(
τ
=
(M, θ, ξ)

)
=
∫

M

θαdHk (x) < +∞.

A rectifiable k-current T = τ
=
(M, θ, ξ) ∈ Rk (Ω) is an Mα mass minimizer if

Mα (T ) ≤ Mα (S)

for any rectifiable current S ∈ Rk (Ω) with ∂S = ∂T .
The upshot here is to show that there exists a tangent cone of any Mα mass

minimizer T = τ
=
(M, θ, ξ) ∈ R1 (Ω) at any fixed point p on spt (T ) \ spt (∂T ).

We will apply this result to an optimal transport path in the next section.

3.1. First Variation

Suppose a rectifiable 1-current T = τ
=
(M, θ, ξ) ∈ R1 (Ω) is an Mα mass mini-

mizing with a fixed point p is spt (T ) \ spt (∂T ).
For any open ball U ⊂ Ω\spt (∂T ), suppose {φt}−ε<t<ε is a 1-parameter

family of diffeomorphisms of U satisfying

φ0 = idU ,∃ compact K ⊂ U such that φt|U ∼ K = idU�K ∀t ∈ (−ε, ε) ;
(x, t) → φt (x) is a smooth map U × (−ε, ε) → U.

Then,

Mα (φt# (T )) =
∫

M

|D(φt�M)|θαdH1.

We can compute the first variation and have

d

dt
Mα (φt# (T )) |t=0 =

∫
M

DξY · ξθαdH1,

where the vector field

Y (x) =
∂

∂t
φ (t, x) |t=0,

DξY is the partial derivative of Y in the direction ξ.
Thus, since T is an Mα mass minimizer, we have∫

M

DξY · ξθαdH1 = 0. (3.1)
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3.2. Monotonicity formula

Let ψ be a smooth function such that

ψ (t) = 1 for t ≤ 1/2, ψ (t) = 0 for t ≥ 1 and ψ′ (t) ≤ 0 for all t.

For any fixed ρ > 0 small enough, choose Y (x) = ψ (r/ρ) (x− p) with
r = |x− p|, and U = Bρ (p) in (3.1), then∫

Bρ(p)
Dξ (ψ (r/ρ) (x− p)) · ξθαdH1 = 0.

Since

Dξ (ψ (r/ρ) (x− p)) · ξ

= ψ (r/ρ) + r
∂

∂r
(ψ (r/ρ))

(
x− p

r
· ξ
)2

= ψ (r/ρ) − ρ
∂

∂ρ
(ψ (r/ρ))

(
x− p

r
· ξ
)2

.

Therefore,∫
Bρ(p)

[
ψ (r/ρ) − ρ

∂

∂ρ
(ψ (r/ρ))

(
x− p

r
· ξ
)2
]
θαdH1 = 0.

d

dρ

∫
Bρ(p)

ψ (r/ρ)
ρ

θαdH1 =
1
ρ

d

dρ

∫
Bρ(p)

ψ (r/ρ)

[
1 −

(
x− p

r
· ξ
)2
]
θαdH1.

Now, letting ψ increase to the characteristic function of the interval (−∞, 1), we
obtain the following monotonicity formula, in the sense of distribution,

d

dρ

(∫
Bρ(p) θ

α (x) dH1 (x)

ρ

)

=
d

dρ

∫
Bρ(p)

1
|x− p|

(
1 − x− p

|x− p| · ξ
)
θα (x) dH1 (x) . (3.2)

Corollary 3.1.
∫

Bρ(p) θα(x)dH1(x)

ρ is a nondecreasing function of ρ for 0 < ρ <

dist (p, spt (∂T )).

Proof. This is because
∫

Bρ(p)
1

|x−p|
(
1 − x−p

|x−p| · ξ
)
θα (x) dH1 (x) is nondecreas-

ing in ρ . 	


Corollary 3.2. If
∫

Bρ(p) θα(x)dH1(x)

ρ is constant in ρ, then

ξ (x) =
x− p

|x− p| .
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Proof. Since
∫

Bρ(p) θα(x)dH1(x)

ρ is constant, by the monotonicity formula (3.2),

d

dρ

∫
Bρ(p)

1
|x− p|

(
1 − x− p

|x− p| · ξ
)
θα (x) dH1 (x) = 0.

Thus, ∫
Bρ(p)

1
|x− p|

(
1 − x− p

|x− p| · ξ
)
θα (x) dH1 (x)

is constant and equals to
∫

B0(p)
1

|x−p|
(
1 − x−p

|x−p| · ξ
)
θα (x) dH1 (x) = 0. Since

1 − x−p
|x−p| · ξ is nonnegative in Bρ (p), we have

1 − x− p

|x− p| · ξ = 0, i.e. ξ (x) =
x− p

|x− p| ,

for any x ∈ M . 	


3.3. Tangent cone

For any λ > 0, consider a map

ηp,λ : R
m → R

m

y → y − p

λ
.

For each λ, and the rectifiable 1−current T = τ
=
(M, θ, ξ) ∈ R1 (Ω), let

Tλ = ηp,λ#T �B̄ρλ(p).

Note that Tλ = τ
=
(ηp,λ#M ∩Bρ, θ ◦ ηp,λ−1 , ξ◦ηp,λ−1) is also rectifiable. Since T

is an Mα mass minimizer, so is Tλ for each λ.

Proposition 3.3. Suppose M (T )+Mα (T ) < +∞. There exists a sequence {λj}
approaching zero such that

{
Tλj

}
converges to some locally rectifiable 1−current

C in both Wα flat metric and W 1 flat metric. Moreover C is a cone as well as an
Mα mass minimizer.

Proof. Since M (T ) + Mα (T ) < +∞, there exists a sequence of positive num-
bers {λj} converges to zero such that the slicing

{
Tλj

}
of T by the sphere

{x : |x− p| = λj} satisfies the condition:

sup
{
Mα

(
∂Tλj

)
, Mα

(
Tλj

)
, M

(
∂Tλj

)
, M

(
Tλj

)}
< +∞.

Thus, by the compactness theorem of flat chains,
{
Tλj

}
is subsequently convergent

to some flat current C in both Wα flat metric and W 1 flat metric. C is a rectifiable
current τ

=
(W, θC , ξC) because it has finite Mα mass and finite M1 mass. By a proof

similar to [9, 34.5], we know that C = τ
=
(W, θC , ξC) is an Mα mass minimizer
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because it is a limit of a sequence of Mα mass minimizers
{
Tλj

}
. Moreover, for

a subsequence, without changing notations, H1�θj ⇀ H1�θC weakly as Radon
measures, where θj = θ ◦ ηp,λ−1

j
. Now,∫

Bρ(0) θ
α
C (x) dH1 (x)

ρ
= lim

j

∫
Bρ(p) θ

α
j

(x) dH1 (x)

ρ

= lim
j

∫
Bλjρ(p) θ

α (x) dH1 (x)

λjρ
(by Corollary 3.1)

= lim
ρ→0+

∫
Bρ(p) θ

α (x) dH1 (x)

ρ
,

which is constant in ρ. By Corollary 3.2, we have

ξC (x) =
x

|x|
for any x ∈ spt (C). By an argument similar to that in the proof of [9, 19.3], this
fact implies that C is a cone, in the sense that

η0,λ#C = C

for any λ > 0. 	

The above cone is called a tangent cone of T at p. From our main Theorem

4.10, we will see that such a cone is in fact unique, i.e. independent of the choice
of the sequence {λj}.

4. Regularity of optimal transport paths

4.1. Transport paths between Radon measures

Given two fixed Radon measures µ+, µ− ∈ MΛ (X) of equal total mass Λ. Let
0 ≤ α < 1 be fixed.

Definition 4.1. A transport path from µ+ to µ− is a real flat 1-chain T with

∂T = µ− − µ+

as real flat chains. The Mα mass of T is also called the Mα cost of T .

Remark 4.2. Note that the definition here of transport paths is a restatement of a
previous definition of transport paths in [12].

Let

Path
(
µ+, µ−) =

{
T ∈ F1 (X) : ∂T = µ− − µ+}

be the space of all transport paths from µ+ to µ−.
In [12], we showed that for any polyhedral 1-chain P , there exists a polyhedral

1-chain P̃ with ∂P̃ = ∂P such that P̃ contains no 1-cycles in its support and

Mα
(
P̃
)

≤ Mα (P ).
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Definition 4.3. An optimal transport path T from µ+ to µ− is an element in
Path (µ+, µ−) of least Mα mass such that there exists a sequence of polyhedral
1-chains {Pi} containing no cycles with {Pi} → T in flat W 1 metric.

In [12], for anyα ∈ (1− 1
m , 1], we showed that there exists an optimal transport

path from µ+ to µ− with finite Mα cost. We also verified that

dα

(
µ+, µ−) := min

{
Mα (T ) : T ∈ Path

(
µ+, µ−)} , (4.1)

defines a metric on MΛ (X) , which metrizies the weak * topology of Radon
measures.

For any Radon measure µ ∈ MΛ (X) of total mass Λ, we showed in [12] that

dα (µ,Λδc) ≤ Km,αΛ
α diam (spt (µ))

2
, (4.2)

where dα is the distance on MΛ (X) given in (4.1), Km,α is the constant
1

21−m(1−α)−1 independent of µ, and c is the center of the cubeQ containing spt (µ).
Now, suppose T ∈ Path (µ+, µ−) is an optimal transport path of finite Mα

mass. In [12], we also verified that

M1 (T ) ≤ Λ1−αMα (T ) .

Thus, T is automatically of finite M1 mass. By the rectifiability Theorem 2.7, T is
rectifiable.

4.2. Tangent cone

Let {Pi} be a sequence of polyhedral 1-chains containing no cycles and converg-
ing to an optimal transport path T in flat metric. Note that each Pi determines a
polyhedral 1-current. Since

M1 (Pi) + M1 (∂Pi) ≤ Λ1−αMα (Pi) + 2 → Λ1−αMα (T ) + 2 < +∞

is uniformly bounded, by the compactness theorem of currents, {Pi} converges to
a current in flat metric. Thus, T is also a current. Since T is optimal, T becomes an
Mα mass minimizer. Put everything together, we get the following

Proposition 4.4. Any optimal transport path T ∈ Path (µ+, µ−) with finite Mα

cost is a rectifiable 1−current τ
=
(M, θ, ξ) with

Mα (T ) =
∫

M

θαdHk (x) < +∞.

Moreover, T is Mα mass minimizing.

Now, we have the following proposition about the tangent cone of any optimal
transport path:
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Proposition 4.5. Suppose T ∈ Path (µ+, µ−) is an optimal transport path. For
any p ∈ spt (T ) \ (spt (µ+) ∪ spt (µ−)), there exists a tangent cone Cp of T at p.
Moreover, the intersection of Cp with the closed unit ball is a finite union of line
segments:

Cp =
k∑

i=1

mi[|pi, 0|]

for some {pi} ⊂ Sm−1
1 (0), some suitable multiplicities mi ∈ R satisfying a

balance equation

k∑
i=1

mi

|mi|1−α
pi = 0, (4.3)

and some positive integer k ≤ C for some constant C = C (m,α) depends only
on m and α. Here k and the minimum angle between distinct pi depend only on α
and m.

Proof. The existence of a tangent cone Cp comes from Proposition 3.3. Let l1 and
l2 be any two outward (or inward) segments on Cp of weightsm1 andm2 from the
cone vertex O. Since Cp is also optimal, by simple computation as in the example
1 of [12], one can see that the angle between l1 and l2 is at least

arccos

(
(m1 +m2)

2α −m2α
1 −m2α

2

2mα
1m

α
2

)
≥ arccos

(
22α−1 − 1

)
,

which is positive for α < 1. This uniform lower bound forces the number of
segments on Cp from the same cone vertex O to be finite. Therefore, Cp must be a
finite union of line segments. Since Cp is optimal, these line segments must satisfy
the balance equation (4.3). 	


4.3. The normalized maximum atomic mass of an infinite atomic measure

Now, we study an important quantity of infinite atomic measures, which plays a
key role in the following subsections for comparing the cost of different transport
paths.

For any infinite atomic measure µ =
∞∑

i=1
aiδxi ∈ AΛ (X), let

χ (µ) :=
max

{
|ai| : µ =

∞∑
i=1

aiδxi

}
M (µ)

Note that 0 < χ (µ) ≤ 1 and spt (µ) has at least 1/χ (µ) points. Also, χ is scalar
invariant since χ (λµ) = χ (µ) for any λ �= 0. The following two lemmas about χ
will be used later.
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Lemma 4.6.

Mα (µ) ≥ χ (µ)α−1
Λα

for any µ ∈ AΛ (X).

Proof. By choosing an order on {ai}, one may assume that {|ai|} is nonincreasing.
Thus,

Mα (µ) =
∞∑

i=1

|ai|α = |a1|α
∞∑

i=1

∣∣∣∣ ai

a1

∣∣∣∣
α

≥ |a1|α
∞∑

i=1

∣∣∣∣ ai

a1

∣∣∣∣ = |a1|α−1
Λ

= χ (µ)α−1
Λα.

	

Lemma 4.7. Given c ∈ (0, 1] and a small number 0 < ε < c

3 with

(1 − ε2

c
)α > 1 − 2α

c
ε2.

For any infinite atomic measure µ ∈ AΛ (X), if

c− ε2 < M(µ) < c+ ε2

cα − ε2 < Mα(µ) < cα + ε2,

then

χ(µ) ≥ (1 − ε)
1

1−α .

Proof. By Lemma 4.6,

χ(µ)1−α ≥ [M(µ)]α

Mα(µ)
≥ (c− ε2)α

cα + ε2

≥ cα(1 − 2α
c ε

2)
cα + ε2

> 1 − ε,

by some easy calculation. 	
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4.4. Regularity of optimal transport paths

Let Sm−1
ρ denotes the sphere in R

m with radius ρ and centered at the origin.

Lemma 4.8. For any µ ∈ AΛ

(
Sm−1

ρ

)
and any optimal transport path

T ∈ Path (µ,Λδ0) ,

we have

χ
(
T �Sm−1

rρ

) ≥
(

1 − r

Km,α

) 1
1−α

for every r ∈ [0, 1]. In particular,

χ
(
T �Sm−1

ρ/2

)
≥ (2Km,α)

−1
1−α

has a universal lower bound for any µ, ρ and T .

Proof. We have known from (4.2) that

dα (µ, δ0) ≤ Km,αΛ
αρ

for any µ ∈ MΛ

(
Sm−1

ρ

)
.

Now, let

f (r) = χ
(
T �Sm−1

rρ

)
.

Then, since the optimal transport path T contains no loops, we know f is an de-
creasing function of r ∈ [0, 1]. Also, by Lemma 4.6,

Mα
(
T �Sm−1

rρ

) ≥ (f (r))α−1
Λα.

Now,

Km,αΛ
αρ ≥ Mα (T )

≥
∫ ρ

0
Mα

(
T �Sm−1

s

)
ds

≥
∫ 1

0
Mα

(
T �Sm−1

rρ

)
ρdr

≥
∫ 1

0
(f (r))α−1

Λαρdr

≥
∫ 1

r

(f (s))α−1
Λαρds

≥ (f (r))α−1 (1 − r)Λαρ.

Therefore,

f (r) ≥
(

1 − r

Km,α

) 1
1−α

.
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The following lemma is the key lemma to get our regularity result:

Lemma 4.9. Suppose µ =
∞∑

i=1
aiδxi ∈ A1

(
Sm−1

1

)
with

∞∑
i=k

|ai|α ≤ 1
2

min
i=1,··· ,k

{|ai|} .

Let T ∈ Path (µ, δ0) be an optimal transport path. Thus, for any i, there is a real
flat chain Ti ∈ Path (aiδxi , aiδ0) such that

T =
∞∑

i=1

Ti.

Suppose also that {Ti}k
i=1 are disjoint in B1(0) \ {0}, then there exists a number

ρ > 0 such that

T �Bρ (0)

is a cone consists of k line segments with {0} being a common endpoint.

Proof. Let the set Γ be the support of the flat chain
k∑

i=1
Ti and consider a map

g : {k + 1, k + 2, · · · } → Γ

by sending each i > k to the first intersection point of Ti and Γ .
Now, it is sufficiently to show that the set

A = B1/8 (0) ∩ {g (i) : i = k + 1, k + 2, · · · }
is bounded away from {0} by some small positive number ρ.

In fact, for any p ∈ A, let

Γp =
∑

i∈g−1(p)

Ti�(B1 (0) \ Γ ) .

Then, Γp ∈ Path

( ∑
i∈g−1(p)

aiδxi , (
∑

i∈g−1(p)
ai)δp

)
is an optimal transport path.

Since

B3/4 (p) ⊂ B1 (0) and B1/4 (0) ⊂ B3/8 (p) ,

by Lemma 4.8, we have

χ
(
Γp ∩ S1/4 (0)

) ≥ χ
(
Γp ∩ S3/8 (p)

) ≥ D

where D = (2Km,α)
−1
1−α .
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Choose ε < 1/8 small enough so that(
1 +

1
D

)α

−
(

1
D

)α

≥ 64ε.

For any p ∈ A, let µp = Γp ∩ S1/4 (0) be the slicing of Γp with the sphere

S1/4 (0) . Suppose µp = λpδyp + µ
′
p with yp ∈ S1/4 (0) and

|λp| = χ(µp)M(µp) ≥ DM(µp).

If A is not bounded away from 0, then one of Γ ’s branch, say T1, must contain
a sequence {pi} of disjoint points inA∩T1 such that {pi} converges to 0 and {ypi}
converges to some point y ∈ S1/4 (0). One may also choose {λpi} to be of the
same sign. For convenience, we assume {λpi} to be positive.

From this sequence, we first fix a point p ∈ Bε (0) ∩ {pi} ⊂ A∩ T1 with yp ∈
Bε (y)∩S1/4 (0). Since M(T ) < +∞, we may assume M(T ∩S1/4 (0)) < +∞,
otherwise one can replace 1/4 by some number very close to 1/4. Since there are
infinitely many {ypi} contained in Bε (y) ∩ S1/4 (0), and∑

i

λpi ≤
∑

i

M(µp) ≤ M(T ∩ S1/4 (0)) < +∞,

there exists a yq among them corresponding to some q ∈ Bε(0) ∩ {pi} with

λ1−α
q <

4Uε
Mα (T )

,

where U = χ (up).
Now, we construct a new path R ∈ Path (µ, δ0) as follows. Namely, let γp be

the unique flat chain from yp to q and γq be the unique flat chain from yq to q. Both
γp and γq are of multiplicity 1. Now let

R = T + λq (γp − γq) + λq [[yp, yq]]

where [[yp, yq]] denotes the line segment from yp to yq. We still have R ∈
Path (µ, δ0). We begin to compare the Mα costs of R and T as follows. Since

(1 + x)α − 1 ≤ αx

on x ∈ [0, 1], by the Definition (2.1) of Mα mass, we easily have

Mα (Γp + λqγp) − Mα (Γp) ≤ α

(
λq

U

)
Mα (Γp) .

Also, since (x+ 1)α − xα is a decreasing function on x ∈ [0, 1
D ], we get

Mα (Γq) − Mα (Γq − λqγq) ≥
[(

1 +
1
D

)α

−
(

1
D

)α]
λα

q length(γq) ≥ 8λα
q ε
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Thus,

Mα (R) − Mα (T )
≤ λα

q ε+Mα (Γp+λqγp) +Mα (Γq−λqγq) +|p− q|λα
q − Mα (Γp) −Mα (Γq)

≤ 2λα
q ε+ αMα (Γp)

(
λq

U

)
− 8λα

q ε

≤ Mα(T )
(
λq

U

)
− 6λα

q ε < 0 .

A contradiction to the optimality of T . 	

Now, we have our main theorem about the regularity of optimal transport paths:

Theorem 4.10. Suppose T ∈ Path (µ+, µ−) is an optimal transport path with
finite Mα cost. For any point p ∈ spt (T ) \ spt (µ+ ∪ µ−), there is an open
neighborhood Bp of p, such that

T �Bp

is a cone consists of finitely many line segments with suitable multiplicities.

Proof. For any p ∈ spt(T ) \ [spt(µ+) ∪ spt(µ−)], by Proposition 3.3, there exists
a sequence {λj}, λj → 0 such that

Tj = ηp,λj#(T �B̄λj (p)) → Cp, (4.4)

the tangent cone ofT at p, in bothWα flat metric andW 1 flat metric. By Proposition
4.5, the cone Cp must be of the form

Cp = Σk
i=1mi[|pi, 0|]

satisfying a balance equation

Σk
i=1

mipi

|mi|1−α
= 0,

where {pi} ⊂ Sm−1
1 (0) and [|pi, 0|] denotes the line segment from pi to 0.

Let Ii ⊂ Sm−1
1 be a fixed small open neighborhood of pi... Choose

0 < ε <
1
3

min
i=1,··· ,k

{|mi|}

small enough so that

(1 − ε2

|mi| )
α > 1 − 2α

|mi|ε
2,

for each i.
Let

µi = Ti ∩ Sm−1
1 (0)
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be an infinite atomic measure. By (4.4), when j large enough, we have

M(miδpi) − ε2 < M(µi) < M(miδpi) + ε2

M(miδpi)
α − ε2 < Mα(µi) < M(miδpi)

α + ε2.

Thus, by Lemma 4.7,

χ(µi) ≥ (1 − ε)
1

1−α

for each i. This means that Ii contains a dominated Dirac measure δp′
i

of µi with
multiplicity χ(µi)M(µi). From each p′

i, there is a unique path Γi from p′
i to 0.

Choose j large enough, we may assume Γi \{0} are disjoint (except at 0). Thus, by
our key Lemma 4.9,Tj is a finite sum of line segments nearby a small neighborhood
of 0. Thus, we proved the theorem. 	
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