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THE FORMATION OF A TREE LEAF ∗

Qinglan Xia
1

Abstract. In this article, we build a mathematical model to understand the formation of a tree
leaf. Our model is based on the idea that a leaf tends to maximize internal efficiency by developing an
efficient transport system for transporting water and nutrients. The meaning of “the efficient transport
system” may vary as the type of the tree leave varies. In this article, we will demonstrate that tree
leaves have different shapes and venation patterns mainly because they have adopted different efficient
transport systems. The efficient transport system of a tree leaf built here is a modified version of
the optimal transport path, which was introduced by the author in [Comm. Cont. Math. 5 (2003)
251–279; Calc. Var. Partial Differ. Equ. 20 (2004) 283–299; Boundary regularity of optimal transport
paths, Preprint] to study the phenomenon of ramifying structures in mass transportation. In the
present paper, the cost functional on transport systems is controlled by two meaningful parameters.
The first parameter describes the economy of scale which comes with transporting large quantities
together, while the second parameter discourages the direction of outgoing veins at each node from
differing much from the direction of the incoming vein. Under the same initial condition, efficient
transport systems modeled by different parameters will provide tree leaves with different shapes and
different venation patterns. Based on this model, we also provide some computer visualization of tree
leaves, which resemble many known leaves including the maple and mulberry leaf. It demonstrates
that optimal transportation plays a key role in the formation of tree leaves.
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1. Introduction

Plant leaves have diverse and elaborate shapes and venation patterns. The beauty of them has attracted
curiosity of many people involving biologists, physicists, mathematician, artists, computer scientists, etc., for
a long time. Since the patterns of different species exhibit a large variety of structures, leaf venation has been
investigated for its possible use in the systematic determination of species. Also, in palaeobotany, macrofossils
showing leaf venation patterns are very helpful in identifying fossil taxa [9]. Current knowledge about leaf
venation patterns mainly focus on their classification [4, 7, 10], function [11] and their formation.

The aim of this article is to develop a geometric variational model for leaf shapes and leaf venation patterns.
To understand the formation of a tree leaf, it is necessary to understand the main tasks of the tree leaf. A tree
leaf will transport resources like water and solutes from its root to its tissues via xylem, absorb solar energy at
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their cells through photosynthesis, and then transport the chemical products (carbohydrates) synthesized in the
leaf back to its root by phloem. Thus, a leaf tends to increase the surface area as large as possible to maximize
metabolic capacity, because metabolism produces the energy and materials required to sustain and reproduce
life. On the other hand, more importantly, the leaf tends to maximize internal efficiency by developing an
efficient transporting system. One of the main tasks here is to describe this efficient biological transport system.
In this article, a leaf is viewed as a union of square cells centered on a grid, and a transport system for the
leaf is modeled by a weighted directed graph from the centers of the cells to the root. The cost function on the
transport systems is modeled by a function of two reasonable parameters. One of them governs the phenomenon
that transporting two items together might be cheaper than the total cost of transporting them separately. The
other parameter says that transporting items along with the existing direction might be cheaper than rotating
the angle and transporting them in different directions. In general, the cost function usually depends on the
species of the tree leaf.

With a given cost function on transport systems, the formation of a leaf is mainly governed by a selection
principle. As we know, the growing of a tree leaf is a dynamic process of generating new cells. It originates from
a bud with a given initial growing direction. At every stage, the leaf will develop an optimal transport system
to transport water between the root and the existing cells with respect to the given transport cost function.
Also, as the environment changes, the leaf may generate some new cells nearby its boundary. The selection
of those new cells is not random. Under the same environmental conditions, each potential new cell outside
the existing leaf produces about the same amount of revenue such as the absorbed solar energy. However,
the expense corresponding to each potential new cell varies with respect to the position of the cell. Here, the
expense is mainly the transport cost of water and nutrients between the cell and the root. A selection principle
says that a new cell is generated only if the expense is less than the revenue it produces. This simple rule
determines the selection of new cells during the generation process. When the environmental conditions change,
the corresponding revenue that a cell can produce also changes. When the corresponding revenue of each cell
increased to a certain degree, it becomes benefit to produce some new cells, and thus the leaf will grow. Due to
limited resources, the revenue that a cell can possibly produce is bounded above. This fact forces the leaf to stop
growing after some time. As a result, the final shape and venation pattern of a leaf are mainly determined by
the cost function defined on the collection of all possible transport systems, as well as the actual environment.

The article is organized as follows. We first discuss transport systems for an arbitrary subset of a given
grid in Section 2. A transport system for such a subset is defined by a weighted directed graph satisfying a
balancing equation at its vertices. Then we provide a reasonable two parameter family of cost functionals on the
collection of all possible transport systems. We also provide a simple local algorithm on how to get an optimal
transport system from an existing transport system. After that, we begin to study the growth of a tree leaf in
Section 3. It originates from a bud with a given growing direction. At every stage, as environment changes,
it generates new cells nearby its boundary. The selection of new cells is governed by the selection principle
discussed above. Based on these ideas, some computer visualization of various leaves are provided in the end of
the section. It turns out that this model provides the shapes and venation patterns of many well-known leaves.
Changing the values of the parameters will give us different leaves. It demonstrates that internal efficiency plays
a fundamental role in the formation of leaf shapes and associated venation patterns. In the end, we discuss a
limiting process for our model by letting the size of the grid approach zero. The limiting leaf will correspond to
a Radon measure with connected compact support, and its transport system becomes a vector measure whose
divergence is the difference of the leaf (viewed as a measure) and the Dirac measure located at the root in the
sense of distribution.

2. Optimal transport systems

For simplicity, a leaf may be viewed as a finite union of distinct squares, centered on a given grid. The centers
of these squares form a subset of the grid, but of course, not every subset of the grid comes from a leaf. The
speciality of such subsets is closely related to the transport systems it adapted. For this reason, we first study
the transport system on any subset of a given grid.
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Let h > 0 be a fixed number. For any m, n ∈ Z, the square

Cm,n = [mh − h/2, mh + h/2) × [nh − h/2, nh + h/2) (2.1)

is called a cell of size h, centered at the point (mh, nh). Let

Γh = {(mh, nh) : m, n ∈ Z}

be the grid in R2 of size h representing all possible locations of the centers of cells. The origin O = (0, 0) ∈ Γh

is called the root. Let the unit vector �eO = (0, 1) be the initial direction of O. That is, water initially follows
out of the root O in the direction �eO.

Let Ω = {x1, x2, . . . , xk} ⊂ Γh be any finite subset representing a prospective leaf. To sustain and reproduce
life, water needs to be transported from the root O to cells centered at x′

is. The amount of water needed at each
cell is proportional to its area. Without losing generality, we may assume it is h2. So, each xi ∈ Ω corresponds
to a particle of mass h2 located at xi. We are looking for a way to transport water from the root O, flowing
initially in the direction �eO, to these particles.

To build a transport system for Ω, we first recall some basic concepts from classical graph theory. As in [6], a
directed graph G consists of two finite sets V (G) and E (G). Each element of V (G) is called a vertex and each
element of E (G), called an edge, is an ordered pair of vertices (u, v). For each edge e = (u, v) ∈ E (G), the unit
directional vector of e is denoted by �e, the vertex u is denoted by e−, and the vertex v is denoted by e+. A path
in G is a sequence of distinct vertices {v1, v2, . . . , vk} such that (vi, vi+1) ∈ E (G) for i = 1, 2, . . . , k−1. A cycle
in G is a sequence of vertices w1, . . . , wr such that w1, . . . , wr−1 is a path, w1 = wr and (wr−1, wr) ∈ E (G).

Now we may introduce the following definition of transport systems of Ω:

Definition 2.1. A transport system of Ω is a weighted directed graph G = {V (G) , E (G) , w} consists of a
finite vertex set V (G) ⊂ Γh, a set E (G) of directed edges and a weight function

w : E (G) → (0, +∞)

such that

(1) Ω ∪ {O} ⊂ V (G).
(2) G is connected and contains no cycles.
(3) The weight function w : E (G) → (0, +∞) satisfies a balancing equation

∑
e∈E(G)

e+= v

w (e) =
∑

e∈E(G)

e−= v

w (e) +
{

h2, if v ∈ Ω
0, otherwise (2.2)

at every vertex v ∈ V (G) \ {O}. That is, the total mass flows into v equals to the total mass flows out
of v.

Note that, for each vertex v ∈ V (G) \ {O}, since G is connected and contains no cycles, there is a unique path

Pv = {v0, v1, . . . , vl−1, vl} (2.3)

from O to v such that v0 = O and vl = v for some l ∈ N. The vertex vl−1 ∈ V (G) is called the parent of the
vertex v, and denoted by p (v). The directed edge (p (v) , v) ∈ E (G) is denoted by ev. Thus, e−v = p (v) and
e+

v = v. Also, one simply has

E (G) = {ev : v ∈ V (G) \ {O}}
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and the balancing equation (2.2) becomes

w (ev) =
∑

e∈E(G)

e−= v

w (e) +
{

h2, if v ∈ Ω
0, otherwise (2.4)

for each v ∈ V (G) \ {O}. Hence, the weight function w is in fact determined whenever V (G) and E (G) are
known.

For each vertex v ∈ V (G), the set

Cv = {u ∈ V (G) \ {O} : p (u) = v} (2.5)

is called the children set of v.

2.1. Cost functional

For a given Ω ⊂ Γh, the collection of all transport systems of Ω may be a pretty large set, especially when
the size of Ω is large. Among them, we are interested in finding a cost efficient one, which will be adapted by
tree leaves as their venation. Thus, we need to find reasonable cost functionals on the collections of all possible
transport systems. To find these cost functionals, we first make the following two crucial observations.

The first observation is that transporting two items together might be cheaper than the total cost of trans-
porting them separately. For example in shipping two items from nearby cities to the same far away city, it
may be less expensive to first bring them to a common location and put them on a single truck for most of
the transport. In this case, a “Y shaped” path is preferable to a “V shaped” path. In general, a ramified
structure might be more efficient than a straight line structure. Partially due to this reason, ramified structures
are commonly adapted in many living and non-living systems. The author have modeled this phenomenon in
[12–14] in terms of optimal transport paths. Over there, the author used the cost

Mα (G) :=
∑

e∈ E(G)

(w (e))α length (e)

for any weighted directed graph G = {V (G) , E (G) , w} between two atomic measures with a parameter α ∈
(0, 1), where length (e) denotes the length of the edge e. Under this cost functional, a “Y shaped” path is
preferable to a “V shaped” path, and ramified structures are preferable than straight line structures. Such an
approach is meaningful and has many nice properties. For details, please see [12–14]. Some related work in this
field maybe found in [1–3,5, 8].

The second observation is that when there exists a given transport direction, it is cheaper to transport items
in the given direction than transport them in any other direction. That is, transportation tends to keep the
existing flowing direction if any. For transporting the same amount of masses, it is cheaper to flow in the
direction of the existing one than rotating the angle and move in other directions. The cost expenses will be an
increasing function of the angle rotated. When angle rotates to more than 90◦ degree, the cost becomes infinity.
To take such reasonings into account, we introduce the following helping function. For any β > 0, we consider
the function

Hβ : S
1 × S

1 → (0, +∞],
defined by

Hβ (u, v) =
{ |u · v|−β , if u · v > 0

+∞, otherwise
for any pair of unit vectors (u, v) ∈ S1 × S1, where · is the usual dot product between vectors, and S is the unit
circle in R2.

Thus, to model the growth of tree leaves, we modify the cost functional Mα by adding some nonnegative
scalar multiples to edges of transport systems.
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Let G = {V (G) , E (G) , w} be any transport system of Ω. For any given β > 0, set

mβ (O) = 1 and �eO = (0, 1) .

For each v ∈ V (G), we set
mβ (v) = mβ (p (v)) Hβ

(
�ev, �ep(v)

)
, (2.6)

where p(v) is the parent vertex of v defined after (2.3). Since V (G) is finite and G contains no cycles, such kind
of recursive definition is well defined for all vertices v ∈ V (G).

Based on the above observations, we introduce the following cost functional on the collection of transport
systems.

Definition 2.2. Suppose α ∈ [0, 1) and β > 0 be two fixed real numbers. For any transport system G =
{V (G) , E (G) , w} as above, the cost of G is defined by

F (G) :=
∑

e∈E(G)

mβ

(
e+
)
(w (e))α length (e)

=
∑

v ∈V (G)\{O}
mβ (v) (w (ev))

α length (ev) .

From now on, we fix α and β, thus F is a fixed well defined functional on the collection of all possible transport
systems. We are interested to see how a leaf grows from a single cell, after adapting the cost functional F on
transport systems.

The following function measures the increment of the total cost if one add an extra mass of weight x to the
vertex v ∈ V (G). Such a function is crucial in the dynamic process of generating new cells, and we will use it
later.

Definition 2.3. Let G be a transport system for Ω. The potential function

PG : [0, +∞) × V (G) → (0, +∞]

of Ω is defined by

PG (x, v) =
∑

u∈Pv\{O}
mβ (u) [(w (eu) + x)α − (w (eu))α]length (eu) , (2.7)

for any x ∈ [0, +∞) and v ∈ V (G) \ {O}, where Pv is the unique path in G from O to v as in (2.3). Also, we
set PG (x, O) = 0 for any x ∈ [0, +∞).

2.2. Optimal transport systems

Let Ω be any finite subset of Γh as above, we are interested in looking for an optimal transport system for Ω,
which is a minimizer of F among all possible transport systems G of Ω. Since Ω is finite and the set of all possible
transport systems of Ω is also finite, there exists an optimal transport path with least F cost. In general, it is still
open to find an efficient algorithm which will give us the global (absolute) minimizer of F, especially when the
size of Ω is very large. Here, we provide a way to modify an existing transport system G = {V (G) , E (G) , w}.
Since the growing of a leaf is a dynamic process, we want to keep the modified transport system not far away
from that of the previous stage. A locally optimized transport system is suitable here.

The idea of the modification is straight forward: we fix the vertex set V (G), and modify the edge set E (G)
by finding a “better parent” for each vertex of G around the vertex as well as its current parent. To carrying
on this idea, we provide the following algorithm:
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Step 1. For each vertex v ∈ V (G), calculate the multiple mβ (v) by (2.6) as well as the cost of its “children”

child (v) =
∑

ch∈Cv

(child (ch) + w (ech)α mβ (ch) length (ech)) ,

where Cv is the children set of v as defined in (2.5), and ech is the edge (v, ch) ∈ E (G). If Cv = ∅, then
child (v) = 0. Since V (G) is finite and G contains no cycles, such a recursive definition is well defined for all
v ∈ V (G).

Step 2. For any given v ∈ V (G) \ {O}, let

weight = w (ev) (2.8)

denote the weight of the edge ev.
Substep 1. We remove the edge ev from G by defining

w̃ (e) =
{

w (e) − w (ev) , if e+ ∈ Pv

w (e) , otherwise

for each e ∈ E (G) \ {ev}, where Pv is defined in (2.3). That is, we simply change the values of w for all edges
e with e+ ∈ Pv. Let G0 be the modified graph.
Substep 2. Let

Qv = {u : |v − u| < 2h or |v − p (v)| < 2h} \Cv

be the admissible parent set of v, where |·| is the standard Euclidean distance in R2. We will choose a new
parent in Qv for v as follows.

For any u ∈ Qv, we add an edge (u, v) to the graph G0 by set

Gu = {V (G) , (E (G) \ {ev}) ∪ {(u, v)} , w̄} ,

where

w̄ (e) =

⎧⎨
⎩

w̃ (e) + w (ev) , if e+ ∈ Pu

w (ev) , e = (u, v)
w̃ (e) , otherwise

for each e ∈ (E (G) \ {ev}) ∪ {(u, v)}. Note that Gu is again a transport system of Ω. Let

nu =
{ v−u

|v−u| , if v �= u

�eu, otherwise

be the unit directional vector of the edge (u, v) and define

K (u) := F (Gu) − F
(
Ḡ
)

= mβ (u)Hβ (�nu, �eu)
[ ∑

ch∈Cv

(
child (ch)
mβ (ch)

+ w (ech)α |v − ch|
)

Hβ (�nu, �ech)

+ (weight)α |v − u| ]+ PGu (weight, u) ,

where the number weight is given in (2.8). Here K (u) measures the increment of cost to Ḡ if we reset the
parent of v to u. The second identity follows from a direct calculation of the F costs.

Suppose K achieves its minimum at u0 ∈ Qv. Then, we reset the parent of v to be u0. Thus, we get a new
graph Gu0 . We still denote Gu0 by G.

Step 3. Repeat Step 2 for all v ∈ V (G). Denote the final modified graph by Ḡ.

Step 4. Repeat the above procedure until the cost F (G) = F
(
Ḡ
)
.
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3. The growth of a tree leaf

3.1. The selection principle

When a leaf grows, it tends to enlarge its surface area as large as possible. The biological process may be
done by separating original cells into new cells in some complicated way. However, its mathematical result is
to generate some additional area nearby the boundary in some clever way. As a result, we may assume these
additional areas are represented by some new cells that are generated nearby the boundary of the previous
stage. The question is: how to select these new cells?

Let

Ah :=
{

(Ω, G) : Ω ⊂ Γh, G is an optimal transport
system of Ω under the F cost

}
. (3.1)

For any (Ω, G) ∈ Ah, how should it generate new cells around its boundary? The choice of the positions of
those new cells is not random. For each potential new cell outside the existing leaf Ω, if it is selected as a new
cell, it will produce some solar energy. The amount of such kind of revenue is about the same, and proportional
to its area. However, the expense corresponding to each potential new cell varies with respect to the position
of the cell. Here, the expense is mainly the transport cost of water and nutrients between the cell and the root.
Our selection principle says that a new cell is generated only if the expense is less than the revenue it produces.
This simple rule determines the selection of new cells during the generation process.

To perform this idea, we first quantify the transporting cost for each cell outside Ω.
For any (Ω, G) ∈ Ah, a point q ∈ Ω is called a boundary point of Ω if at least one of its eight neighboring

cells in Γh is not in Ω. Let
B = {boundary points of Ω} ∪ {O} .

For any x ∈ Γh \ Ω, and b ∈ B, we define

CΩ (x, b) := h2α |x − b|mβ (b)Hβ

(
x − b

|x − b| , �eb

)
+ PG

(
h2, b

)
, (3.2)

and set

CΩ (x) : = min
b∈B

CΩ (x, b)

= CΩ (x, b (x)) ,

for some b (x) ∈ B, where PG is the potential function of G defined in (2.7) and |·| is the standard Euclidean
distance in R2. The function CΩ (x) measures the additional transporting cost it needed if one adds a cell
located at x and of mass h2 to the original existing transport system G.

Now, we generate new cells from (Ω, G) by choosing those cells whose transporting cost is less than a given
number. For any given ε > 0, let

Ω̃ =
{
x ∈ Γh\Ω : CΩ (x) ≤ εh2

} ∪ Ω. (3.3)

That is, we add those cells to Ω whose transporting cost CΩ (x) is less than a given number εh2. Here CΩ (x)
plays the role of “expense” while εh2 plays the role of “revenue”. So, Ω̃ contains those new cells at which
revenue exceeds expense.

After selecting these new cells, the leaf tends to develop an efficient transport system for Ω̃. Let

Ṽ = V (G) ∪ Ω̃,

Ē = E (G) ∪
{
[x, b (x)] : x ∈ Ω̃\Ω

}
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and w̄ : Ē → (0, +∞) be the weight function determined by Ē and Ṽ as in (2.4). Then Ḡ =
{
Ṽ , Ē, w̄

}
is a

transport system of Ω̃, but not necessarily an optimal one. Using the algorithm stated in the previous section,
we may get an optimal transport system G̃ =

{
Ṽ , Ē, w̄

}
of Ω̃ from Ḡ.

Now, for any given ε > 0, we get a map Lε,h : Ah → Ah by letting

Lε,h (Ω, G) =
(
Ω̃, G̃

)
(3.4)

for any (Ω, G) ∈ Ah, where Ω̃, G̃ are constructed as above.

3.2. The generation map

We also note that the optimal transport system G̃ might reduce the transporting costs of cells outside Ω̃.
That is, one might have

CΩ̃ (x) < CΩ (x) ,

for some x ∈ Γh\Ω̃ ⊂ Γh\Ω. Thus, it is possible that CΩ̃ (x) ≤ εh2 even though originally CΩ (x) > εh2.
Therefore, under our selection principle, it is also reasonable to select such cells as new cells. This means that
we should consider further L2

ε,h (Ω, G) = Lε,h◦Lε,h (Ω, G), L3
ε,h (Ω, G) , . . . , and so on. A natural question arises:

will Ln
ε,h (Ω, G) stop growing and stay in a bounded domain when n is large enough? The answer is yes for

α ∈ (1/2, 1).
To see this, we first give an estimate of the transport cost function CΩ (x) as follows.

Proposition 3.1. For any Ω ⊂ Γh and any x ∈ Γh\Ω, we have

CΩ (x) ≥ α (1 + α)
2

|x|
||Ω||1−α h2α

where ||Ω|| denotes the number of elements in Ω, and |·| is the standard Euclidean distance in R2. Moreover, if
|x| > max {|y| : y ∈ Ω}, then

CΩ (x) ≥ Cα |x|2α−1
h2

where Cα = α(1+α)

2(4π)1−α ·

Proof. It is easy to check that for any t ≥ 1, we have the inequality

(1 + t)α − tα ≥ α (1 + α)
2t1−α

· (3.5)

Also, for any x ∈ Γh\Ω, by the balancing equation (2.2), the maximal weight

max
u∈E(G)

w (eu) ≤ ||Ω||h2.
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Thus,

CΩ (x) ≥ h2α |x − b (x)| +
∑

u∈Pb(x)

mβ (u) [
(
w (eu) + h2

)α − (w (eu))α] length (eu)

≥ h2α |x − b (x)| + α (1 + α)
2

h2α
∑

u∈Pb(x)

(
h2

w (eu)

)1−α

length (eu) , by (3.5)

≥ h2α |x − b (x)| + α (1 + α)
2

h2α
∑

u∈Pb(x)

1
||Ω||1−α length (eu)

≥ α (1 + α)
2

h2α 1

||Ω||1−α

⎛
⎝|x − b (x)| +

∑
u∈Pb(x)

length (eu)

⎞
⎠

≥ α (1 + α)
2

h2α |x|
||Ω||1−α ·

Moreover, if |x| > max {|y| : y ∈ Ω}, then

||Ω||h2 ≤ 4π |x|2 ,

which follows from a comparison on area. Therefore,

CΩ (x) ≥ α (1 + α)
2

h2α |x|
||Ω||1−α

≥ α (1 + α)
2

h2 |x|(
4π |x|2

)1−α =
α (1 + α)
2 (4π)1−α h2 |x|2α−1

. �

Let BRε (O) be the closed ball in R2 centered at the origin O and of radius

Rε =
(

ε

Cα

) 1
2α−1

,

which is independent of h. Let

Aε,h = {(Ω, G) ∈ Ah : Ω ⊂ BRε (O)} .

The following proposition says that Lε,h maps Aε,h to itself when α ∈ (1/2, 1).

Proposition 3.2. Suppose α ∈ (1/2, 1). For any (Ω, G) ∈ Aε,h, if
(
Ω̃, G̃

)
= Lε,h (Ω, G), then

(
Ω̃, G̃

)
∈ Aε,h

and

F
(
G̃
)
≤ F (G) + εh2

∣∣∣∣∣∣Ω̃\Ω
∣∣∣∣∣∣ .

Proof. For any x ∈ Γh with |x| > Rε, by the above proposition, we have

CΩ (x) ≥ Cαh2 |x|2α−1

> Cαh2 |Rε|2α−1 = εh2
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whenever α > 1/2. Thus, x /∈ Ω̃ for any x /∈ BRε (O). Hence Ω̃ ⊂ BRε (O) ∩ Γh. Also, using the notations
above (3.4),

F
(
G̃
)
≤ F

(
Ḡ
)

≤ F (G) +
∑

x∈ Ω̃\Ω
CΩ (x)

≤ F (G) + εh2
∣∣∣∣∣∣Ω̃\Ω

∣∣∣∣∣∣ . �

From now on, we assume α ∈ (1/2, 1). For any (Ω0, G0) ∈ Aε,h, we may recursively define

(Ωn, Gn) = Lε,h (Ωn−1, Gn−1)

for each n ≥ 1. Since Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ . . . ⊂ BRε (O) ∩Γh and BRε (O)∩Γh is finite, we know that there exists
an N such that

ΩN = ΩN+1 = . . .

Definition 3.3. Suppose α ∈ (1/2, 1). For any ε > 0, h > 0, the generation map

gε,h : Aε,h → Aε,h

is defined by setting
gε,h (Ω0, G0) = (ΩN , GN ) (3.6)

for any (Ω0, G0) ∈ Aε,h, where ΩN , GN are given as above.

Thus, if (Ω, G) = gε,h (Ω0, G0), then
(Ω, G) = Lε,h (Ω, G)

is a fixed point of the map Lε,h : Aε,h → Aε,h.

Proposition 3.4. Suppose for any (Ω0, G0) ∈ Aε,h and (Ω, G) = gε,h (Ω0, G0). Then the total cost of G is
bounded by

F (G) ≤ F (G0) + εh2 ||Ω\Ω0|| .
Proof. By recursively using Proposition 3.2, for each n,

F (Gn) ≤ F (Gn−1) + εh2 ||Ωn\Ωn−1||
≤ F (G0) + εh2 ||Ωn\Ω0|| .

Since Ω = Ωn when n is large enough, we have

F (G) ≤ F (G0) + εh2 ||Ω\Ω0|| . �

3.3. A mathematical model of a tree leaf

Now, we can discuss the growth of a leaf as follows. The initial stage of any leaf is given by

Ω0 = {O} and G0 = {{O} , ∅,−} . (3.7)

That is, Ω0 consists only the root O, and G0 does not have any edge. Let F be a fixed cost functional on the
collection of all possible transport systems as before.
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Definition 3.5. For any ε > 0 and h > 0, a pair (Ω, G) ∈ Aε,h is called an (ε, h) leaf if there exists a list
{(Ωn, Gn)}k

n=1 of elements in Ah such that for each n = 1, 2, . . . , k,

(Ωn, Gn) = gεn,h (Ωn−1, Gn−1)

and
(Ω, G) = (Ωk, Gk)

for some positive numbers εi’s satisfying

0 < ε1 < ε2 < · · · < εk = ε.

3.4. Computer visualization

Based on the algorithms discussed in (3.4) and (3.6), we provide the following computer visualization of
different leaves. Also, we representing each x = (mh, nh) ∈ Ω by the corresponding 2 dimensional cell Cm,n,
given in (2.1).

Example 1. Let α = 0.6, β = 0.5. Then a (5, 1) leaf is growing as in Figure 1.

Example 2. Let α = 0.5, β = 0.8. Then a (5, 1) leaf is growing as in Figure 2.

Example 3. The mathematical leaf on the left side of Figure 3 has a typical maple shape. It has 5 lobes
radiating out like fingers from the palm of a hand with sinuses between the lobes. It is a typical example
of leaves with palmate venation patterns. We also provide a photo of a nature maple leaf on the right side
of Figure 3 to give a comparison. There are several similarities between the nature maple leaf and the leaf
generated by our algorithm. The shapes of them are similar. Both of them have 5 bigger lobes and two smaller
lobes. Also, relative positions of veins as well as their directions are also similar.

Example 4. The mathematical leaf on the left side of Figure 4 is also generated by the above algorithm. It
has a typical cordate shape, which is enjoyed by many leaves in nature such as some mulberry leaves. As for
its venation pattern, it is a typical example of leaves with pinnate venation patterns. It has one large central
vein (midrib) presented with smaller lateral veins that diverge in pairs manner, each on the opposite side of
the midrib. These facts agree with the leaf structures we observed in nature. For comparison purpose, we also
provide a photo of a nature mulberry leaf on the right side of Figure 4. We actually measured both leaves in
Figure 4 and obtain the following data.

The nature maple leaf The generated leaf
Area (cm2) 10.75 11
Length(cm) 4.5 4.5
Width (cm) 3.5 3.2
Length of the midrib (cm) 4.3 4.2

Here we rescaled the photo so that both leaves in Figure 4 have the same length. Note that their area, width
and even the length of the midribs are all very close. We also noticed that both leaves have 5 pairs of veins of
second order. The length of those veins from the bottom to the top are listed (in centimeters) as follows:

No. 1 No. 2 No. 3 No. 4 No. 5
The The left side veins 2.84 2.45 1.89 1.53 1.14
nature The right side veins 2.68 2.52 1.93 1.50 0.95
leaf Average of both sides 2.76 2.48 1.91 1.52 1.05
Generated leaf Both sides 2.2 2.0 1.7 1.2 0.9
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A plot of these data is given in Figure 6.
From these data, we can compute the ratio of length of adjacent veins. For the photoed leaf, we use the

average data of both sides.

No. 1/No. 2 No. 2/No. 3 No. 3/No. 4 No. 4/No. 5 Average
Nature leaf 1.11 1.29 1.26 1.46 1.28

Generated leaf 1.10 1.18 1.42 1.33 1.26

Note that the average ratio of them are very close to each other.

Example 5. The final shape of a leaf depends on the cost functional F one chooses for transport systems.
Changing the values of the parameters α and β will give us leaves of different shapes. The Figure 5 illustrates
this phenomenon by changing the values of α while fixing the values of β.

Remark 3.6. Recall that εh2 in (3.3) plays the role of “revenue” generated at each cell. Here, for simplicity,
we assume ε to be constant on all cells at a given time. The above process gives us a “symmetric leaf”. If one
would like to take the environment factor into consideration, he may also allow ε to have a noising term. For
instance, cells on the leaf may be exposed under the sun unevenly. Some of them maybe shadowed. In such
cases, ε should not be treated as a constant. The same process as above will provide a usually “non-symmetric”
leaf. Moreover, if one let ε to be a periodic function of time, we may get leaves in different seasons. The above
process may be used to predict which cells will die first, and then predict a dynamic coloring process of the leaf
in seasons.

Remark 3.7. Under the same conditions (i.e. same β, same ε), leaves will become rounder as the parameter
α increase. For α nearby 0, one would get a “grass-like” leaf. As α approaches 1, one would get a more round
leaf.

The following two simple lemmas will be useful in the following sections.

Lemma 3.8. For each (ε, h) leaf (Ω, G), we have

F (G) ≤ εh2 ||Ω|| .

Proof. It follows from repeatedly using Proposition 3.4 and the fact F (G0) = 0. �
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Lemma 3.9. For each (ε, h) leaf (Ω, G), there is no decomposition of Ω such that Ω = X ∪ Y for some subsets
X, Y ⊂ Γh with

dist (X, Y ) >
√

2h,

where dist(X, Y ) = min {|x − y| : x ∈ X and y ∈ Y }.
Proof. This follows from the construction of the (ε, h) leaf. �

3.5. A limit process

Let h > 0 be a fixed number. For any nondecreasing sequence �ε :

0 < ε1 ≤ ε2 ≤ · · · ≤ εk ≤ εk+1 ≤ · · · (3.8)

of positive numbers, we can get a sequence of (εk, h) leaves by letting

(Ωk, Gk) = gεk,h (Ωk−1, Gk−1)

for each k. We are interested in the asymptotic behavior of the shapes of (Ωk, Gk) as k approaches ∞.
By Propositions 3.2 and 3.4, we have

Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ωk ⊂ Ωk+1 ⊂ . . . ,

Ωk ⊂ BRεk
(0)

and
F (Gk) ≤ εkh2 ||Ωk|| .

If the sequence �ε in (3.8) is bounded above by a finite number ε, then for any k, Ωk is contained in the finite
set BRε (0) ∩ Γh. Thus, the nested sets Ωk’s are ultimately equal to each other as sets. That is,

Ωk = Ωk+1 = . . .

when k is large enough. In this case, (Ωk, Gk) is fixed when k is large enough and the leaf will stop growing.
Indeed, in realty, �ε should be bounded. This explains why tree leaves will stop growing.

In the case �ε is unbounded, the situation is no longer so simple, for the radius Rεk
will approach ∞ as k

approaches ∞. Later, we will see that this case is also corresponding to the problem of fixing ε but let the step
size h approaches 0. To understand this situation, we first view each Ωk (or Gk) as a Radon measure (or vector
measure) on R2, rescale it into a fixed ball, and then take the limit as Radon measure in that ball.

Let M be the space of Radon measures on R2, and let M2 be the space of vector measures µ = (µ1, µ2) on
R2. We consider the map

φh : Ah → M×M2

(Ω, G) → (µ, Θ)

for each (Ω, G) ∈ Ah, where

µ :=
∑
x∈Ω

h2δx

is an atomic Radon measure on R2, and

Θ =
∑

e∈E(G)

w (e)H1e
−→e
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is a vector measure on R2. Here H1e is the one dimensional Hausdorff measure on e for each edge e ∈ E (G) with
unit directional vector −→e . The system of balancing equations (2.2) can be simplified to be a single divergence
condition on the vector measure Θ

div (Θ) = M (µ) δO − µ (3.9)
in the sense of distribution, where M (µ) = µ(R2) denotes the total mass of µ.

Lemma 3.10. Suppose (Ω, G) is an (ε, h) leaf and (µ, Θ) = φh (Ω, G). Then the total mass of the Radon
measure is bounded above by

M (µ) ≤ π (Rε + h)2

and the total variation of the vector measure Θ is bounded by

M (Θ) ≤ επ2−α (Rε + h)4−2α
.

Proof. Since Ω ⊂ BRε (O), the mass of µ is given by

M (µ) = ||Ω||h2

= area

(⋃
x∈Ω

{
x +

[
−h

2
,
h

2

]
×
[
−h

2
,
h

2

]})

≤ area (BRε+h (0)) = π (Rε + h)2 .

Also, since w (e) ≤ ||Ω||h2 for each e ∈ E (G), the total variation of Θ is given by

M (Θ) =
∑

e∈E(G)

w (e) length (e)

≤ (||Ω||h2
)1−α ∑

e∈E(G)

mβ

(
e+
)
(w (e))α length (e)

=
(||Ω||h2

)1−α
F (G) ≤ ε

(||Ω||h2
)2−α

, by Lemma 3.8

≤ επ2−α (Rε + h)2(2−α) . �

On the other hand, we also consider the rescaling of (ε, h) leaf as follows. For each λ > 0, let ϕλ (x) = λx
for each x ∈ R2 be the scaling map. Then ϕλ induces a push forward map ϕλ# : Ah → Aλh by sending each
(Ω, G) to ϕλ# (Ω, G) =

(
Ωλ, Gλ

)
, where

Ωλ = {λx : x ∈ Ω} ⊂ Γλh

and Gλ =
{
V λ, Eλ, wλ

}
with

V λ = {λu : u ∈ V (G)} ,

Eλ = {(λu, λv) : (u, v) ∈ E (G)}
and wλ (λu, λv) = λ2w (u, v) for each (u, v) ∈ E (G) .

This push forward map is consistent with the push forward map (ϕλ)# of Radon measures in the sense that

φλh ◦ (ϕλ)# (Ω, G) = (ϕλ)# ◦ φh (Ω, G) .

Lemma 3.11. For any ε > 0 and λ > 0, we have

ϕλ# ◦ gε,h = gλ2α−1ε,λh ◦ ϕλ#.
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Proof. For any (Ω, G) ∈ Ah and any x ∈ Γh\Ω, we have

Cϕλ#(Ω,G) (λx) = λ1+2αCΩ (x) .

Thus, for any ε > 0,

CΩ (x) ≤ εh2 ⇔ Cϕλ#(Ω,G) (λx) ≤ λ1+2αεh2 =
(
λ2α−1ε

)
(λh)2 ,

which implies that

ϕλ# (Lε,h (Ω, G)) = Lλ2α−1ε,λh (ϕλ# (Ω, G))

and hence

ϕλ# ◦ gε,h (Ω, G) = gλ2α−1ε,λh ◦ ϕλ# (Ω, G) . �

Using this lemma and Definition 3.5 of (ε, h) leaves, we have

Corollary 3.12. For any λ > 0, ϕλ# maps any (ε, h) leaf (Ω, G) to another
(
λ2α−1ε, λh

)
leaf (ϕλ)# (Ω, G).

Now, let 0 < ε1 < ε2 < · · · < εk < εk+1 < · · · be any unbounded increasing sequence of real numbers, and let

(Ωk, Gk) = gεk,h (Ωk−1, Gk−1) (3.10)

for each k = 1, 2, . . . as before. To understand the asymptotic behavior of the shapes of the (εk, h) leaves
(Ωk, Gk) as k approaches ∞, we let (

Ω̃k, G̃k

)
= ϕλk# (Ωk, Gk) (3.11)

for each k, where λk = ε
1

1−2α

k → 0 as k approaches ∞.

Lemma 3.13. For each k,
(
Ω̃k, G̃k

)
satisfies the following properties:

(1)
(
Ω̃k, G̃k

)
is a (1, λkh) leaf.

(2) Ω̃k ⊂ BR1 (0) is uniformly bounded.
(3)

(
Ω̃k, G̃k

)
is a rescale of (Ωk, Gk), thus their shapes are similar.

(4)
(
Ω̃k+1, G̃k+1

)
= g1,λk+1h

(
ϕλk+1

λk

)
#

(
Ω̃k, G̃k

)
.

Proof. (1) follows from the previous corollary. (2) follows from (1). (3) follows from Definition 3.11 and (4)
follows from Lemma 3.11 and(

Ω̃k+1, G̃k+1

)
= ϕλk+1# (Ωk+1, Gk+1)

= ϕλk+1#gεk+1,h (Ωk, Gk)

= ϕλk+1#gεk+1,hϕλ−1
k #

(
Ω̃k, G̃k

)
= gλ2α−1

k+1 εk+1,λk+1hϕλk+1#ϕλ−1
k #

(
Ω̃k, G̃k

)
= g1,λk+1h

(
ϕλk+1

λk

)
#

(
Ω̃k, G̃k

)
. �
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Thus, to understand the final shapes of (εk, h) leaves (Ωk, Gk) as k → ∞, it is sufficient to understand the
final shapes of (1, λkh) leaves

(
Ω̃k, G̃k

)
as k → ∞. To take the limit of (1, λkh) leaves

(
Ω̃k, G̃k

)
, we consider

the associated Radon measures

(µk, Θk) = φλkh

(
Ω̃k, G̃k

)
= (ϕλk

)# (φh (Ω, G)) (3.12)

for each k. By Lemma 3.10, for each k,

M (µk) ≤ π (R1 + λkh)2 → πR2
1

as k → +∞ and

M (Θk) ≤ π (R1 + λkh)2(2−α) → πR
2(2−α)
1

as k → +∞. Therefore,

M (µk) + M (Θk)

is uniformly bounded above.

Proposition 3.14. Let (Ωn, Gn) be defined as in (3.10), and let (µn, Θn) be the corresponding measures and
vector measures as in (3.12). Then µn is weakly subconvergent to a Radon measure µ on BR1 (O) and Θn is
weakly subconvergent to a vector measure Θ on BR1 (O) such that

div (Θ) = M(µ)δO − µ

in the sense of distribution. Moreover, the support of µ is a connected compact set contained in BR1 (0).

Proof. As discussed above, the total mass of µn and the total variation of Θn are uniformly bounded. Thus,
by the compactness of Radon measures and vector measures, Θn and µn are weakly subconvergent to a vector
measure Θ and a Radon measure µ on BR1 (0). Moreover, by (3.9), we have

div (Θ) = M(µ)δO − µ

in the sense of distribution. Also, by definition, the support spt(µ) of µ is a compact subset of BRε (0).
Assume spt(µ) is not connected, then one can decompose spt(µ) as the union of two closed subsets X, Y :

spt (µ) = X ∪ Y

such that

dist (X, Y ) ≥ t

for some t > 0, where dist(X, Y ) = min {|x − y| : x ∈ X and y ∈ Y }. For any n with λn < t
2h , since Ωn ⊂

spt (µ),

Ωn = (Ωn ∩ X) ∪ (Ωn ∩ Y )

and

dist (Ωn ∩ X, Ωn ∩ Y ) ≥ t >
√

2λnh,

which is impossible by Lemma 3.9. Therefore, spt(µ) is connected. �
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