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Observation: Tree leaves have diverse and elaborate venation patterns
shapes.

Question:Why tree leaves grow in such an amazing way?

What determines it?

What is the mathematics behind it?

To understand this, we need to understand BASIC functions of leaves.



A leaf will

e fransportresources like water and solutes
from its root to its tissues viaylem,

e absorb solar energy at its cells throug!
photosynthesis, and then

e transporthe chemical products (carbohy-
drates) synthesized in the leaf back to it
root viaphloem.



Thus, a leaf tends to

e maximize metabolic capacitlpy increasingthe surface areas large as
possible.
Result: A leaf is a 2 dimensional flat surface.

e Maximize internal efficiencyy building an efficientransport systenfor
transporting water and others.



Thus, a leaf tends to

e maximize metabolic capacitlpy increasingthe surface areas large as
possible.
Result: A leaf is a 2 dimensional flat surface.

e Maximize internal efficiencyy building an efficientransport systenfor
transporting water and others.

Claim: From a mathematical viewpoint, the shapes and venation patte
of tree leaves are mainly determined by the second factor.



Thus, a leaf tends to

e maximize metabolic capacitlpy increasingthe surface areas large as
possible.

Result: A leaf is a 2 dimensional flat surface.

e Maximize internal efficiencyy building an efficientransport systenfor
transporting water and others.

Claim: From a mathematical viewpoint, the shapes and venation patte
of tree leaves are mainly determined by the second factor.

Tree leaves have different shapes and venation patterns because they
adopted different but similar efficient transport systems.



¢ \What is a mathematical leaf?
e \What are transport systems on a leaf?

e \What is an efficient transport system?— cost functional?
e Given an efficient transport system, how does a leaf grow?
e IS it really the case???



For simplicity, a leaf may be viewed as a finite union of square cells, centetr

on a given grid.
Let

[y, = {(mh,nh) :m,n € Z}

be the grid inR? of sizeh. %
The originO = (0, 0) is called the root.
Letép = (0, 1) be the initial direction of).
That Is, water Initially flows out o) in the
directioné.

A leaf will be a subset of';,. However, not every subset bf, gives a leaf.
One aim Is to understand the speciality of a reasonable tree leaf.
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be any finite subset representing ¢
prospective leaf. i

To sustain and reproduce life, water needs to be transported from the |
O to cells centered at;’s.

The amount of water needed at each cell is® ® =
proportional to its area={ 12). Without los- D

ing generality, we may assume itis. So, g
eachz; € () corresponds to a particle of

massh? located atc;. .

O
AIM: Transport these particles @ in some cost efficient way.



Given 0 C I, a transport systemof

(0 Is a weighted directed graphG =" = 3
{V(G), E(G),w)} consists of a finite vertex set \ b2
V(G) c Ty, asetE(Q) of directed edges and a 7

weight function -

w: B(G) — (0,400)

4h?

O g—s

such that
SIMVEIOL @ V(G);

e (G IS connected and contains no cycles;

e For each vertex € V(G), the total mass flows into equals to the total

mass flows out of. That is,

he  if v e Q.
Z A Z w(€)+{ 0, otherwise.
ecE(G) ecE(G)

€+:U © =



Note: The collection of all transport systems{ofmay be a pretty large set.
So, need some reasonabtestfunctionals.

First ObservationRamified transportation

Example:What is the best way to ship two items from nearby cities to th

same destination far away.
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Note: The collection of all transport systems{omay be a pretty large set.
So, need some reasonablastfunctionals.

First ObservationRamified transportation

Example:What is the best way to ship two items from nearby cities to th

same destination far away.

it

-
First Attempt: Move them directly to their destination.



Note: The collection of all transport systems{omay be a pretty large set.
So, need some reasonablastfunctionals.

First ObservationRamified transportation

Example:What is the best way to ship two items from nearby cities to th

same destination far away.
/ N

+

= Iu_
Another way: put them on the same truck and transport together!
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A V-shaped path A Y-shaped path
Answer: Transporting two items together might be cheaper than the tc

cost of transporting them separately. A “Y-shaped” path is preferable tc
“V-shaped” path.

In general, a ramified structure might be more efficient than a “linea
structure consisting of straight lines.

Note: Ramified structureare very common in living and non-living systems.



e [rees

e Circulatory systems

e Cardiovascular systems
¢ Railways, Airlines

e Electric power supply

e River channel networks
e Post office mailing system
e Urban transport network
e Marketing

e Ordinary life

e Communications

e Superconductor

Conclusion: Ramified structures
are very common in living and
non-living systems. It deserves a
more general theoretic treatment.



To model such kinds of phenomenon in mass transportation, | introduced
cost functional

ME(G) = Y (wle)) lengiae
ecFE(G)
with 0 < a < 1.

In general, one can defirieptimal transport pathsbetween any two proba-
bility measures. Optimal transport paths have some nice properties.
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Main Tool: Geometric Measure Theory
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When there exists a given transport direction, It Is /d
cheaper to transport items in the given direction than p
transport them in any other direction. NN

The cost expenses will be an increasing function of the angle rotated.
For anys > 0, we let

Hﬁ(u,v){

for two unit vectorsu, v.

1
cos?(6)’
+00, otherwise

u - o] = it u o=



For any given3 > 0, set
mﬁ (O) S 1,

and eachy € V (G), we set
mg (v) = mg (p (v) Hg (&0, &y )

wherep(v) is the “parent vertex” ob.

N

-/

1 Il

12 = cos?(61) cosP(6;)




Supposex € [0,1) andg > 0 be two fixed real numbers. For any transpor
systemG = {V (G) E (G),w} as above, the cost @éf is defined by

Z mﬁ (€))% length (e)

ecE (G

Given () C I’y finite, the set of all possible transport systems?of also
finite. Thus, there exists an “optimBltransport system”.

How to get it from a given one?



GivenG = {V(G), E(G),w}, we fix the vertex seV (G), modify the edge
set £ (G) by finding a "better parent” for each vertex Gfaround the vertex
as well as its current parent.

Remark: Since the growing of a leave is an evolution process, we want
keep the modified transport system not far away from that of the previo
stage. A locally optimized transport system is suitable here.



A leaf grows by generating new cells nearby its boundary.

Let
N (2, G) : Q C Iy, G is an optimal transport
B system of) under thel cost |

Question: For any (2, G) € A;, how to generate new cells around its
boundary?

The choice of the positions of those new cells are not random. One wol
like to distribute them in a way to minimize the total transporting cost.

Since the cost for transporting the same amount of water from the root
every cell outsidé? varies with the position of the cell, the priority of select-
Ing new cells is given to those having smaller transporting costs.



Selection principle:

Foranyx € I';\ (2, and any “boundary poin¥y € B, we define “the transport
cost ofx viab” to be

T —
Cq (z,b) == h2® |z — b| mg (b) Hy (m - b‘,eb> N (hQ,b) |

where

Paly,v)= >,  mg(u)|(wlen)+y)* — (w(es))lleng(en)
ueP,\{O}

measures “the increment of the total cost” if one
adds an extra mass of weightto the pointv &
V (G). Then, theexpensdor generating a new cell
atx Is mainly given by the transport cost

Cq(x) = z%% e Co (x,b(x)).



On the other hand, thevenudhat a new cell produces Is proportional to its
area. That s,
revenue = eh?

for some constant
Thus, based on the selection principle, for any giwen0, we set

~

Q::{xe;rngzcb(x)gem?}LJQ.
Let

~

V=V(@)UQ,
EENEE L) ([, 5 ()] : z € Q\Q]

and G be the optimal transport system @fachieved by modifyingz =
{V,E,w} as before.
Therefore, we getamap, j, : A;, — Ay, by letting

NG — (O, G) .



Note: C?Nmight reduce the transporting costs for cells
outsidef). It is possible that

Co (z) > eh?

but

@ \() < ch?
By our selection principle, we should also select such cells as new ce
Thus, we need to consider further:

Lah (Q7 G) N Le,h R Le,h (Qa G) )

L}, (Q,G), -
and so on.

Questionwill L, (€2, G) stop growing and stay in a bounded domain whe
n is large enough?
Answer: Yes, ifa € (1/2,1).



Proposition 1For any(2 C I';, and anyz € I';,\(2, we have

a(l+a) |o| 2
>
S = .

wherel|€2|| denotes the number of element$in
Moreover, if|z| > max {|y| : y € €1}, then

Clollo) XAk
a(l+a)

2(4m) o

whereC,, =



Fatiar > 1/2, let

and
Acp = {(Q,G) c Ay  ONENES (O)}

Proposition 2Supposer € (1/2,1). Then,L, ;, mapsA, j into itself. That
is, for any(Q2, G) € A, we have(, G) := L. ;, (2, G) € A,

Proof. For anyz € I';, with |z| > R, by the above proposition, we have

Ol = oo
e R 2Y ! = eh?

whenever > 1/2. Thus,z ¢ Q) for anyx ¢ B (O). Hence
Q @ BRE (O) A Fh'



Thus, fora € (1/2,1) and(£, Go) € A, j,, we define
(S, Gn) = Le p (Sn—1,Gn—1) € Ac py
Then,
MIRE ) C (2o C - CBRE<O)ﬂFh
Therefore,
Oy = Qg1 =+

whenN is large enough.
Defineg, j, : Acj, — Ac j, by sending

9e.1, (20, Go) = (O, G ) -
This map is calledhe generation map.



The Initial stage of any leaf is given by
(g ={0} andGqy = {{O},0,—}. (1)

So,()y consists only the roa®, andG( contains no edges.
This element )y, G) generates a subset gf;, by using generation maps.
Each element of this subset is callethathematical leaf More precisely,

Definition 3 For anye > 0 andh > 0, a pair (2,G) € A,y is called an

(¢, h) leafif there exists a lis{ (2, Gn)}ﬁzl of elements i4;, such that for
eachn=1,2,--- ,k,

(Qna Gn) — dleld (Qn—la Gn—l)

and
(Q7 G) S (ka Gk)

for some positive numbeess satisfying

O ) < L — €.
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0=0.68, B=0.38, totalcost=49.5418




a=0.55, P=0.6,e=5 a=0.65, P=0.6,e=7
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Let
O<€1§€2§€k§€k+1§

be any nondecreasing sequeaceor anyk, let

(ka Gk) N gek,h(Qk—la Gk—l)‘
What happens whehapproacheso?

Case 1. lfe€ has an upper bound then since
Qk S BRG(O) N,

for any k, we know that((;., GG;.) is fixed whenk is large enough. (i.e. stop
growing).



Case 2£'Is unbounded.
ldea: Eacli);. corresponds to a Radon measure

2
po = 2geh™ox,
andG. corresponds to a vector measure
N =
Sle\ = Z€€E<G>w(e)H €.

Then,diw©g = M (u)dp — po-
1

Let (g, Or) = (0, ) (10, Og,) With A, = e,.7>*. Then
supgM () + M(Oy) < oo.



Proposition 4
Hng — K

and
Op, — O

weakly onBg (O) such that
div© = M (u)do — p.

Moreover,spt(u) is connected, compact, and containeddp, (O).



Ramifying structures are common phenomenon in living and non-living sy
tems. There are at least three well known attempts to model the formatior
ramified structures.

e Reaction-diffusion model
e L-systems
e Diffusion-limited aggregation



Reaction-diffusion model was developed by Turing (1952), and extended
Meinhardt (1976, 1982) and others.

The patterns result from the interaction b[_
tween two or more morphogens that diffu:
In the medium and enter into chemical ree| H ¢ I
tions with each other. These patterns app| H.H § B, = B&
as spatially non-uniform stationary solutior| B
of coupled reaction-diffusion equations on
predetermined domain. :
In this model, however, the shape of the leaf (or the domaln of the variabl

IS predetermined.



L-systems is introduced by the biologist Aristid Lindenmayer.

Plant development

With some conditional rule seleg
tion, It uses a context-free rewrit
Ing expression to model a realist
plant form. The computer grap
ical output from computer soft
ware that uses L-systems rese
bles some real plants very well.

productions

However, some parts of the plants such as leaves and flowers cannot be
rived by a rewriting expression. In some computer softwares, predefined |
or flower shapes are used to compose a plant. Also, it is not easy to deal \

environment change here.



It captures diffusion of nutrients by simula
Ing random movement of particles in a gri
The growing structure originates with a si
gle cell. Free particles move in the grid, wi
the displacement direction chosen at rand
at each simulation step. Once a moving p
ticle touches the structure formed up to t
stage, it sticks to it rigidly.

TRk

Diffusion-limited aggregation has attracted considerable research inter
due in part to the fractal character of the emerging branching structures
IS a faithful model of many physical phenomena. However, it neglects t
active role of the organism using to build its body, and thus its application
also limited.



There are several advantages of our model over the above well known m
els.

e The shapes of tree leaves are not predetermined here, which is neithel
case In the reaction-diffusion model nor in the L-systems.

e It IS also possible to use this model to classify leaves by their correspol
Ing cost functionals.

e Easy to deal with environment change.

e Moreover, unlike the diffusion-limited aggregation model which neglec
the active role of the organism, our model is a functional driven aggrec
tion model. The aggregation of cells is driven by the aim of building a
efficient transport systems on the leaves to maximize internal efficien
which is one of the basic functions of the leaves.



Thank You and Enjoy the Nature




