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The beauty of tree leaves

Observation:Tree leaves have diverse and elaborate venation patterns and
shapes.
Question:Why tree leaves grow in such an amazing way?
What determines it?
What is the mathematics behind it?

To understand this, we need to understand BASIC functions of leaves.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Basic functions of tree leaves
A leaf will

• transportresources like water and solutes
from its root to its tissues viaxylem,

• absorb solar energy at its cells through
photosynthesis, and then

• transportthe chemical products (carbohy-
drates) synthesized in the leaf back to its
root viaphloem.
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Thus, a leaf tends to

•maximize metabolic capacityby increasingthe surface areaas large as
possible.
Result: A leaf is a 2 dimensional flat surface.

•Maximize internal efficiencyby building an efficienttransport systemfor
transporting water and others.
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Thus, a leaf tends to

•maximize metabolic capacityby increasingthe surface areaas large as
possible.
Result: A leaf is a 2 dimensional flat surface.

•Maximize internal efficiencyby building an efficienttransport systemfor
transporting water and others.

Claim: From a mathematical viewpoint, the shapes and venation patterns
of tree leaves are mainly determined by the second factor.
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Thus, a leaf tends to

•maximize metabolic capacityby increasingthe surface areaas large as
possible.
Result: A leaf is a 2 dimensional flat surface.

•Maximize internal efficiencyby building an efficienttransport systemfor
transporting water and others.

Claim: From a mathematical viewpoint, the shapes and venation patterns
of tree leaves are mainly determined by the second factor.

Tree leaves have different shapes and venation patterns because they have
adopted different but similar efficient transport systems.
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Questions

•What is a mathematical leaf?

•What are transport systems on a leaf?

•What is an efficient transport system?– cost functional?

•Given an efficient transport system, how does a leaf grow?

• Is it really the case???
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A mathematical model

For simplicity, a leaf may be viewed as a finite union of square cells, centered
on a given grid.
Let

Γh = {(mh, nh) : m, n ∈ Z}

be the grid inR2 of sizeh.
The originO = (0, 0) is called the root.
Let ~eO = (0, 1) be the initial direction ofO.
That is, water initially flows out ofO in the
direction~eO.

O

~eO

Γh

A leaf will be a subset ofΓh. However, not every subset ofΓh gives a leaf.
One aim is to understand the speciality of a reasonable tree leaf.
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Let

Ω = {x1, x2, · · · , xn} ⊂ Γh

be any finite subset representing a
prospective leaf. O

x1 x2 x3

x4
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Let

Ω = {x1, x2, · · · , xn} ⊂ Γh

be any finite subset representing a
prospective leaf. O

x1 x2 x3

x4

To sustain and reproduce life, water needs to be transported from the root
O to cells centered atxi’s.
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Let

Ω = {x1, x2, · · · , xn} ⊂ Γh

be any finite subset representing a
prospective leaf. O

x1 x2 x3

x4

To sustain and reproduce life, water needs to be transported from the root
O to cells centered atxi’s.

The amount of water needed at each cell is
proportional to its area (= h2). Without los-
ing generality, we may assume it ish2. So,
eachxi ∈ Ω corresponds to a particle of
massh2 located atxi.

x4

x2 x3x1

O
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Let

Ω = {x1, x2, · · · , xn} ⊂ Γh

be any finite subset representing a
prospective leaf. O

x1 x2 x3

x4

To sustain and reproduce life, water needs to be transported from the root
O to cells centered atxi’s.

The amount of water needed at each cell is
proportional to its area (= h2). Without los-
ing generality, we may assume it ish2. So,
eachxi ∈ Ω corresponds to a particle of
massh2 located atxi.

x4

x2 x3x1

O

AIM: Transport these particles toO in some cost efficient way.
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Given Ω ⊂ Γh, a transport systemof
Ω is a weighted directed graphG =
{V (G), E(G), w} consists of a finite vertex set
V (G) ⊂ Γh, a setE(G) of directed edges and a
weight function

w : E(G) → (0, +∞)

such that

x4

x2 x3x1

O

h2

h2 h2

3h2

4h2

• Ω ∪ {O} ⊂ V (G);

•G is connected and contains no cycles;

• For each vertexv ∈ V (G), the total mass flows intov equals to the total
mass flows out ofv. That is,∑

e∈E(G)
e+=v

w (e) =
∑

e∈E(G)
e−=v

w (e) +

{
h2, if v ∈ Ω.
0, otherwise.
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Cost functions on transport systems
Note: The collection of all transport systems ofΩ may be a pretty large set.
So, need some reasonablecostfunctionals.
First Observation:Ramified transportation
Example:What is the best way to ship two items from nearby cities to the
same destination far away.

µ+

µ−
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Cost functions on transport systems
Note: The collection of all transport systems ofΩ may be a pretty large set.
So, need some reasonablecostfunctionals.
First Observation:Ramified transportation
Example:What is the best way to ship two items from nearby cities to the
same destination far away.

µ+

µ−

First Attempt: Move them directly to their destination.
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Cost functions on transport systems
Note: The collection of all transport systems ofΩ may be a pretty large set.
So, need some reasonablecostfunctionals.
First Observation:Ramified transportation
Example:What is the best way to ship two items from nearby cities to the
same destination far away.

µ+

µ−

Another way: put them on the same truck and transport together!
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µ+

µ−

A V-shaped path

µ+

µ−

A Y-shaped path
Answer: Transporting two items together might be cheaper than the total
cost of transporting them separately. A “Y-shaped” path is preferable to a
“V-shaped” path.

In general, a ramified structure might be more efficient than a “linear”
structure consisting of straight lines.

Note:Ramified structuresare very common in living and non-living systems.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examples of Ramified Structures
• Trees

•Circulatory systems

•Cardiovascular systems

•Railways, Airlines

• Electric power supply

•River channel networks

• Post office mailing system

•Urban transport network

•Marketing

•Ordinary life

•Communications

• Superconductor

Conclusion: Ramified structures
are very common in living and
non-living systems. It deserves a
more general theoretic treatment.
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To model such kinds of phenomenon in mass transportation, I introduced the
cost functional

Mα (G) :=
∑

e∈E(G)

(w (e))α length (e)

with 0 ≤ α < 1.

In general, one can define“optimal transport paths”between any two proba-
bility measures. Optimal transport paths have some nice properties.
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From Lebesgue to Dirac
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Transporting general measures



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
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•Qinglan Xia, Optimal paths related to transport problems.Communica-

tions in Contemporary Mathematics.Vol. 5, No. 2 (2003) 251-279.

•Qinglan Xia, Interior regularity of optimal transport paths.Calculus of
Variation and PDE.Vol. 20, No. 3 (2004) 283 - 299.

•Qinglan Xia, Boundary regularity of optimal transport paths.

•Qinglan Xia, An application of optimal transport paths to urban transport
networks.To Appear.

•Qinglan Xia, The formation of tree leaves.

• F. Maddalena, S. Solimini and J.M. Morel. A variational model of irriga-
tion patterns, Interfaces and Free Boundaries, Volume 5, Issue 4, (2003),
pp. 391-416.

Main Tool: Geometric Measure Theory
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The 2nd Observation

When there exists a given transport direction, it is
cheaper to transport items in the given direction than
transport them in any other direction.

O

A
B

θ

The cost expenses will be an increasing function of the angle rotated.
For anyβ > 0, we let

Hβ (u, v) =

{
|u · v|−β = 1

cosβ(θ)
, if u · v > 0

+∞, otherwise

for two unit vectorsu, v.
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For any givenβ > 0, set
mβ (O) = 1,

and eachv ∈ V (G), we set

mβ (v) = mβ (p (v)) Hβ

(
~ev, ~ep(v)

)
,

wherep(v) is the “parent vertex” ofv.

O

θ2

θ1

m1 = 1
cosβ(θ1)

m2 = 1
cosβ(θ1)

1
cosβ(θ2)
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Cost functional on Transport systems
Supposeα ∈ [0, 1) andβ > 0 be two fixed real numbers. For any transport
systemG = {V (G) , E (G) , w} as above, the cost ofG is defined by

F (G) :=
∑

e∈E(G)

mβ

(
e+)

(w (e))α length (e)

Optimal transport system
Given Ω ⊂ Γh finite, the set of all possible transport systems ofΩ is also
finite. Thus, there exists an “optimalF transport system”.

How to get it from a given one?
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A local algorithm for optimal transport paths
GivenG = {V (G), E(G), w}, we fix the vertex setV (G), modify the edge
setE(G) by finding a ”better parent” for each vertex ofG around the vertex
as well as its current parent.

Remark: Since the growing of a leave is an evolution process, we want to
keep the modified transport system not far away from that of the previous
stage. A locally optimized transport system is suitable here.
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Growth of tree leaves
A leaf grows by generating new cells nearby its boundary.
Let

Ah :=

{
(Ω, G) : Ω ⊂ Γh, G is an optimal transport

system ofΩ under theF cost

}
.

Question: For any (Ω, G) ∈ Ah, how to generate new cells around its
boundary?

The choice of the positions of those new cells are not random. One would
like to distribute them in a way to minimize the total transporting cost.

Since the cost for transporting the same amount of water from the root to
every cell outsideΩ varies with the position of the cell, the priority of select-
ing new cells is given to those having smaller transporting costs.
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Selection principle:a new cell is generated only if the expense is less
than the revenue it produces.
For anyx ∈ Γh\Ω, and any “boundary point”b ∈ B, we define “the transport
cost ofx via b” to be

CΩ (x, b) := h2α |x− b|mβ (b) Hβ

(
x− b

|x− b|
, ~eb

)
+ PG

(
h2, b

)
,

where

PG (y, v) =
∑

u∈Pv\{O}
mβ (u) [(w (eu) + y)α − (w (eu))α]leng(eu)

measures “the increment of the total cost” if one
adds an extra mass of weighty to the pointv ∈
V (G). Then, theexpensefor generating a new cell
atx is mainly given by the transport cost

CΩ (x) := min
b∈B

CΩ (x, b) = CΩ (x, b (x)) .

x
b

b(x)

O

Ω
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On the other hand, therevenuethat a new cell produces is proportional to its
area. That is,

revenue = εh2

for some constantε.
Thus, based on the selection principle, for any givenε > 0, we set

Ω̃ =
{

x ∈ Γh\Ω : CΩ (x) ≤ εh2
}
∪ Ω.

Let
Ṽ = V (G) ∪ Ω̃,

Ē = E (G) ∪
{
[x, b (x)] : x ∈ Ω̃\Ω

}
and G̃ be the optimal transport system ofΩ̃ achieved by modifyingḠ =
{Ṽ , Ē, w̄} as before.
Therefore, we get a mapLε,h : Ah → Ah by letting

Lε,h (Ω, G) =
(
Ω̃, G̃

)
.
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Note: G̃ might reduce the transporting costs for cells
outsideΩ̃. It is possible that

CΩ (x) > εh2

but
CΩ̃ (x) ≤ εh2.

X

By our selection principle, we should also select such cells as new cells.
Thus, we need to consider further:

L2
ε,h (Ω, G) = Lε,h ◦ Lε,h (Ω, G) ,

L3
ε,h (Ω, G) , · · ·

and so on.

Question:will Ln
ε,h (Ω, G) stop growing and stay in a bounded domain when

n is large enough?
Answer: Yes, ifα ∈ (1/2, 1).
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Proposition 1For anyΩ ⊂ Γh and anyx ∈ Γh\Ω, we have

CΩ (x) ≥ α (1 + α)

2

|x|
||Ω||1−α

h2α

where||Ω|| denotes the number of elements inΩ.
Moreover, if|x| > max {|y| : y ∈ Ω}, then

CΩ (x) ≥ Cα |x|2α−1 h2

whereCα =
α(1+α)

2(4π)1−α.
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Forα > 1/2, let

Rε =

(
ε

Cα

) 1
2α−1

and
Aε,h =

{
(Ω, G) ∈ Ah : Ω ⊂ BRε

(O)
}

.

Proposition 2Supposeα ∈ (1/2, 1). Then,Lε,h mapsAε,h into itself. That
is, for any(Ω, G) ∈ Aε,h, we have

(
Ω̃, G̃

)
:= Lε,h (Ω, G) ∈ Aε,h.

Proof. For anyx ∈ Γh with |x| > Rε, by the above proposition, we have

CΩ (x) ≥ Cαh2 |x|2α−1

> Cαh2 |Rε|2α−1 = εh2

wheneverα > 1/2. Thus,x /∈ Ω̃ for anyx /∈ BRε
(O). Hence

Ω̃ ⊂ BRε
(O) ∩ Γh.
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The generation map
Thus, forα ∈ (1/2, 1) and(Ω0, G0) ∈ Aε,h, we define

(Ωn, Gn) = Lε,h (Ωn−1, Gn−1) ∈ Aε,h

Then,
Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ · · · ⊂ BRε

(O) ∩ Γh

Therefore,
ΩN = ΩN+1 = · · ·

whenN is large enough.
Definegε,h : Aε,h → Aε,h by sending

gε,h (Ω0, G0) = (ΩN , GN ) .

This map is calledthe generation map.
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Mathematical leaves
The initial stage of any leaf is given by

Ω0 = {O} andG0 = {{O} , ∅,−} . (1)

So,Ω0 consists only the rootO, andG0 contains no edges.
This element(Ω0, G0) generates a subset ofAh by using generation maps.
Each element of this subset is called amathematical leaf. More precisely,

Definition 3 For any ε > 0 and h > 0, a pair (Ω, G) ∈ Aε,h is called an

(ε, h) leaf if there exists a list{(Ωn, Gn)}kn=1 of elements inAh such that for
eachn = 1, 2, · · · , k,

(Ωn, Gn) = gεn,h (Ωn−1, Gn−1)

and
(Ω, G) = (Ωk, Gk)

for some positive numbersεi’s satisfying

0 < ε1 < ε2 < · · · < εk = ε.
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Let
0 < ε1 ≤ ε2 ≤ · · · εk ≤ εk+1 ≤ · · ·

be any nondecreasing sequence~ε. For anyk, let

(Ωk, Gk) = gεk,h
(Ωk−1, Gk−1).

What happens whenk approaches∞?

Case 1. If~ε has an upper boundε, then since

Ωk ⊂ BRε
(O) ∩ Γh,

for anyk, we know that(Ωk, Gk) is fixed whenk is large enough. (i.e. stop
growing).
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Case 2.~ε is unbounded.
Idea: EachΩk corresponds to a Radon measure

µΩ = Σx∈Ωh2δx,

andGk corresponds to a vector measure

ΘG = Σe∈E(G)w(e)H1be~e.

Then,divΘG = M(µ)δO − µΩ.

Let (µk, Θk) = (ϕλk
)#(µΩk

, ΘGk
) with λk = ε

1
1−2α
k . Then

supkM(µk) + M(Θk) < ∞.
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Proposition 4
µnk → µ

and
Θnk → Θ

weakly onBR1
(O) such that

divΘ = M(µ)δO − µ.

Moreover,spt(µ) is connected, compact, and contained inBR1
(O).
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Some historical models
Ramifying structures are common phenomenon in living and non-living sys-
tems. There are at least three well known attempts to model the formation of
ramified structures.

•Reaction-diffusion model

• L-systems

•Diffusion-limited aggregation
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Reaction-diffusion model
Reaction-diffusion model was developed by Turing (1952), and extended by
Meinhardt (1976, 1982) and others.

The patterns result from the interaction be-
tween two or more morphogens that diffuse
in the medium and enter into chemical reac-
tions with each other. These patterns appear
as spatially non-uniform stationary solutions
of coupled reaction-diffusion equations on a
predetermined domain.
In this model, however, the shape of the leaf (or the domain of the variables)

is predetermined.
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L-systems
L-systems is introduced by the biologist Aristid Lindenmayer.

With some conditional rule selec-
tion, it uses a context-free rewrit-
ing expression to model a realistic
plant form. The computer graph-
ical output from computer soft-
ware that uses L-systems resem-
bles some real plants very well.

However, some parts of the plants such as leaves and flowers cannot be de-
rived by a rewriting expression. In some computer softwares, predefined leaf
or flower shapes are used to compose a plant. Also, it is not easy to deal with
environment change here.
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Diffusion-limited aggregation—Random Walk

It captures diffusion of nutrients by simulat-
ing random movement of particles in a grid.
The growing structure originates with a sin-
gle cell. Free particles move in the grid, with
the displacement direction chosen at random
at each simulation step. Once a moving par-
ticle touches the structure formed up to the
stage, it sticks to it rigidly.

Diffusion-limited aggregation has attracted considerable research interest,
due in part to the fractal character of the emerging branching structures. It
is a faithful model of many physical phenomena. However, it neglects the
active role of the organism using to build its body, and thus its application is
also limited.
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Our model

There are several advantages of our model over the above well known mod-
els.

• The shapes of tree leaves are not predetermined here, which is neither the
case in the reaction-diffusion model nor in the L-systems.

• It is also possible to use this model to classify leaves by their correspond-
ing cost functionals.

• Easy to deal with environment change.

•Moreover, unlike the diffusion-limited aggregation model which neglects
the active role of the organism, our model is a functional driven aggrega-
tion model. The aggregation of cells is driven by the aim of building an
efficient transport systems on the leaves to maximize internal efficiency,
which is one of the basic functions of the leaves.
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Thank You and Enjoy the Nature


