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MAP-COMPATIBLE DECOMPOSITION OF TRANSPORT PATHS.

QINGLAN XIA, HAOTIAN SUN

Abstract. In the Monge-Kantorovich transport problem, the transport cost is expressed in terms of trans-
port maps or transport plans, which play crucial roles there. A variant of the Monge-Kantorovich problem
is the ramified (branching) transport problem that models branching transport systems via transport paths.
In this article, we showed that any cycle-free transport path between two atomic measures can be decom-
posed into the sum of a map-compatible path and a plan-compatible path. Moreover, we showed that each
stair-shaped transport path can be decomposed into the difference of two map-compatible transport paths.

1. Introduction

The aim of this article is to provide a map-compatible decomposition of transport paths. In the well-known
Monge-Kantorovich transport problem (see [10, 1, 8] and references therein), the transport cost is expressed
in terms of transport maps or transport plans. The existence of optimal transport maps, especially the
Brenier map in the case of quadratic cost, leads to numerous applications of optimal transportation theory
in PDEs, Probability theory, Machine learning, etc. A variant of the Monge-Kantorovich transport problem
is ramified (also called branched) optimal transportation (see [11, 2, 13] and references therein). Through
the lens of economy of scales, ramified optimal transportation aims at studying the branching structures that
appeared in many living or non-living transport systems. In contrast to the classical Monge-Kantorovich
transport problems, where the transport cost relies on transport maps and plans, the transport cost in the
ramified transport problem is assessed across the entire branching transport system, referred to as transport
paths.

Since transport maps/plans only utilize information from the initial/target measures, knowing only trans-
port maps/plans is insufficient for describing the transport cost that appears in ramified optimal transporta-
tion problem. In general, two transport paths (e.g. a “Y-shaped” and a “V-shaped” path) may have different
transportation costs while sharing the same transport map/plan. Nevertheless, motivated by the significance
of transport maps in the context of the Monge-Kantorovich problem, when a transport path is given, one
may wonder if there exists a hidden transport map or plan that is compatible with this specific transport
path. This compatible transport map/plan tells one how the initial measure is distributed to the target
measure via the given transport path. For simplicity, this article only considers the case of atomic measures,
deferring the exploration of other scenarios for future endeavors. We want to provide a decomposition of
transport paths such that each component in the decomposition is compatible with some transport map or
transport plan.

Roughly speaking, our main results are :

• Theorem 4.8: Every cycle-free 1 transport path T can be decomposed as a sum of subcurrents
T = T0 + T1 + · · · + TN such that each T1, T2, · · · , TN has a single target and T0 has at most

(

N
2

)

sources2.
• Theorem 5.5: Every cycle-free transport path T can be decomposed as a sum of subcurrents
T = Tϕ+Tπ such that Tϕ is compatible with some transport map ϕ and Tπ is compatible with some
transport plan π.

• Theorem 6.8: Every stair-shaped transport path T can be decomposed as a sum of subcurrents
T = T1 + T2 such that both T1 and −T2 are compatible with some transport maps.

2020 Mathematics Subject Classification. 49Q22.
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transport map, stair-shaped matrix, compatible.
1A transport path T is called cycle-free if there are no nonzero cycles on T . See Definition 4.2.
2Here, N is the number of targets in the target measure µ+.
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This article is organized as follows: We first recall in §2 some related concepts in geometric measure the-
ory, the classical Monge-Kantorovich transport problem, and the ramified optimal transport problem. In
particular, the good decomposition (i.e., Smirnov decomposition) of acyclic normal 1-currents.

In general, the family of atoms (i.e., supporting curves) of a good decomposition is not necessarily linearly
independent. This fact brings a non-unique representation of vanishing currents and causes a technical
obstacle for the proof of Theorem 4.8. To overcome this, we generalize the notion of “good decomposition”
to “better decomposition” (Definition 3.1) of transport paths in §3. A better decomposition η of a transport
path T prohibits combinations of any four supporting curves of η to form a non-trivial cycle on the support of
T . We showed in Theorem 3.3 that any good decomposition of a transport path has a better decomposition
that is absolutely continuous with respect to the original good decomposition.

In §4, we introduce the concept of cycle-free transport paths, which are transport paths with no non-trivial
cycles on3 them. Then, we use the “better decomposition” achieved in Theorem 3.3 to give a decomposition
of cycle-free transport paths, described in Theorem 4.8.

In §5, we consider the concept of “compatibility” between transport paths and transport plans/maps.
This concept was first introduced in [11, Definition 7.1] for cycle-free transport paths to describe whether
a given transport plan is practically possible for transportation along the given transport path. We first
generalize this concept, in a more general setting, to the compatibility between transport paths and transport
plans/maps. Then, using Theorem 4.8, we decompose a cycle-free transport path into the sum of a map-
compatible path and a plan-compatible path, which gives Theorem 5.5.

In §6, we proceed to study stair-shaped transport paths. We first show in Theorem 6.4 that each matrix4

with non-negative entries can be transformed into a stair-shaped matrix, and in Algorithm 6.5, we provide
an algorithm for calculating the stair-shaped matrix. A transport path is called stair-shaped if it has a good
decomposition that is represented by a stair-shaped matrix. A stair-shaped transport path is not necessarily
cycle-free, but it still has a better decomposition. Our main result for the section is Theorem 6.8, which says
that any stair-shaped transport path can be decomposed into the difference of two map-compatible transport
paths. Note that some cycle-free transport paths are also stair-shaped. They can be decomposed not only as
the sum of a map-compatible path and a plan-compatible path by Theorem 5.5, but also as the sum of two
map-compatible transport paths by Theorem 6.8. We further investigate some sufficient conditions under
which cycle-free transport paths are stair-shaped. An illustrating example is provided at the end.

2. Preliminaries

2.1. Basic concepts in geometric measure theory.
We first recall some related terminologies from geometric measure theory [7, 5]. Suppose U is an open

set in Rm and k ≤ m, the set of all C∞ k-forms with compact support in U is denoted by Dk(U). The dual
space of Dk(U), Dk(U), is called the space of k-currents. The mass of T ∈ Dk(U) is defined by

M(T ) = sup{T (ω) : ‖ω‖ ≤ 1, ω ∈ Dk(U)}.

The boundary of a current T ∈ Dk(U), ∂T ∈ Dk−1(U) is defined by

∂T (ω) = T (dω) for ω ∈ Dk−1(U).

A set M ⊂ Rm is said to be countably k-rectifiable if

M ⊂M0 ∪





∞
⋃

j=1

Fj(Rk)



 ,

where Hk(M0) = 0 under the k-dimensional Hausdorff measure Hk, and Fj : Rk → Rm are Lipschitz
functions for j = 1, 2, · · · . For any T ∈ Dk(U), we say that T is a rectifiable k-current if for each ω ∈ Dk(U),

T (ω) =

∫

M

〈ω(x), ξ(x)〉θ(x) dHk (x),

3The concept cycle-free is different to the concept “acyclic” defined using subcurrents. As in Definition 4.1, a current S is
“on” another current T does not mean that S is a subcurrent of T . When S is on T , unlike being a subcurrent, it is possible
that S has a reverse orientation with T on their intersections.

4The size of this matrix may be countably infinite.
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where M is an Hk-measurable countably k-rectifiable subset of U , θ(x) is a locally Hk-integrable positive
function, and ξ :M → Λk(Rm) is a Hk-measurable function such that for Hk-a.e. x ∈M , ξ(x) = τ1∧. . .∧τk,
where τ1 . . . τk is an orthonormal basis for the approximate tangent space TxM . We will denote T by
τ (M, θ, ξ). When T is a rectifiable k-current, its mass

M(T ) =

∫

M

θ(x) dHk(x).

A current T ∈ Dk(U) is said to be normal if M(T )+M(∂T ) <∞. In [6], Paolini and Stepanov introduced
the concept of subcurrents: For any T, S ∈ Dk(U), S is called a subcurrent of T if

M(T − S) +M(S) = M(T ).

A normal current T ∈ Dk(Rm) is acyclic if there is no non-trivial subcurrent S of T such that ∂S = 0.
In [9], Smirnov showed that every acyclic normal 1-current can be written as the weighted average of

simple Lipschitz curves in the following sense. Let Γ be the space of 1-Lipschitz curves γ : [0,∞) → Rm,
which are eventually constant. For γ ∈ Γ, we denote

t0(γ) := sup{t : γ is constant on [0, t]}, t∞(γ) := inf{t : γ is constant on [t,∞)},

and p0(γ) := γ(0), p∞(γ) := γ(∞) = limt→∞ γ(t). A curve γ ∈ Γ is simple if γ(s) 6= γ(t) for every
t0(γ) ≤ s < t ≤ t∞(γ). For each simple curve γ ∈ Γ, we may associate it with the following rectifiable
1-current,

(2.1) Iγ := τ

(

Im(γ),
γ′

|γ′|
, 1

)

,

where Im(γ) denotes the image of γ in Rm.

Definition 2.1. Let T be a normal 1-current in Rm and let η be a finite positive measure on Γ such that

(2.2) T =

∫

Γ

Iγ dη(γ)

in the sense that for every smooth compactly supported 1-form ω ∈ D1(Rm), it holds that

(2.3) T (ω) =

∫

Γ

Iγ(ω) dη(γ).

We say that η is a good decomposition of T (see [3], [4], [9]) if η is supported on non-constant, simple curves
and satisfies the following equalities:

(a) M(T ) =
∫

Γ
M(Iγ)dη(γ) =

∫

Γ
H1(Im(γ))dη(γ);

(b) M(∂T ) =
∫

Γ
M(∂Iγ)dη(γ) = 2η(Γ).

Moreover, if η is a good decomposition of T , the following statements hold [3, Proposition 3.6] :

•

(2.4) µ− =

∫

Γ

δγ(0) dη(γ), µ
+ =

∫

Γ

δγ(∞) dη(γ).

• If T = τ (M, θ, ξ) is rectifiable, then

(2.5) θ(x) = η({γ ∈ Γ : x ∈ Im(γ)})

for H1-a.e. x ∈M.

• For every η̃ ≤ η, the representation

T̃ =

∫

Γ

Iγdη̃(γ)

is a good decomposition of T̃ . Moreover, if T = τ (M, θ, ξ) is rectifiable, then T̃ can be written as

T̃ = τ (M, θ̃, ξ) with

(2.6) θ̃(x) ≤ min{θ(x), η̃(Γ)}

for H1-a.e. x ∈M .
3



In the following contexts, we adopt the notations: for any points x, y ∈ Rm and subset A ⊆ Rm, denote

Γx = {γ ∈ Γ : x ∈ Im(γ)},(2.7)

Γx,y = {γ ∈ Γ : p0(γ) = x, p∞(γ) = y},(2.8)

ΓA,y = {γ ∈ Γ : p0(γ) ∈ A, p∞(γ) = y}.(2.9)

2.2. Basic concepts in optimal transportation theory.
We now recall some basic concepts in optimal transportation theory that are related to this article.

Suppose X is a convex compact subset of Rm, the source µ− and the target µ+ are two measures supported
on X of equal mass.

• A map ϕ : X → X is called a transport map from µ− to µ+ if the push-forward measure ϕ#µ
− = µ+.

Let Map(µ−, µ+) be the set of all transport maps from µ− to µ+.
• A Borel measure π on X × X is called a transport plan from µ− to µ+ if (p1)#π = µ− and
(p2)#π = µ+, where p1, p2 are respectively the first and the second orthogonal projection maps from
X ×X to X . Let Plan(µ−, µ+) be the set of all transport plans from µ− to µ+.

• A rectifiable 1-current T is called a transport path from µ− to µ+ if its boundary ∂T = µ+ − µ−.
Let Path(µ−, µ+) be the set of all transport paths from µ− to µ+.

Let C(x, y) be a non-negative Borel function, called the cost function, on X ×X . For any transport map
ϕ ∈Map(µ−, µ+), the transport C−cost of ϕ is

IC(ϕ) :=

∫

X

C(x, ϕ(x))dµ−(x).

Similarly, for any transport plan π ∈ Plan(µ−, µ+), the transport C−cost of π is

JC(π) :=

∫

X×X
C(x, y)dπ(x, y).

For any transport path T = τ (M, θ, ξ) ∈ Path(µ−, µ+), and any 0 ≤ α < 1, the transport Mα-cost of T is

Mα(T ) :=

∫

M

θ(x)α dH1.

The corresponding optimal transport problems are:

• Monge: Minimize IC(ϕ) among all transport maps ϕ ∈Map(µ−, µ+);
• Kantorovich: Minimize JC(π) among all transport maps π ∈ Plan(µ−, µ+);
• Ramified/Branched: Minimize Mα(T ) among all transport paths T ∈ Path(µ−, µ+).

For theoretic results such as existence/regularity and their applications, we refer to [10, 1, 8] for Monge-
Kantorovich transport theory and [11, 2, 13] for ramified/branched transportation.

In this article, we mainly focus on transportation between atomic measures. Let

(2.10) µ− =

M
∑

i=1

m′
iδxi

and µ+ =

N
∑

j=1

mjδyj with

M
∑

i=1

m′
i =

N
∑

j=1

mj <∞

be two finite atomic measures on X of equal mass with M,N ∈ N ∪ {∞}. In this case, the above concepts
have simplified forms:

• A transport map ϕ ∈ Map(µ−, µ+) corresponds to a map ϕ : {1, 2, · · · ,M} → {1, 2, · · · , N} such
that for each j = 1, 2, · · · , N ,

mj =
∑

i∈ϕ−1({j})
m′
i.

The corresponding transport cost is

IC(ϕ) =
M
∑

i=1

C(xi, yϕ(i))m
′
i.
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• A transport plan π ∈ Map(µ−, µ+) corresponds to an M × N matrix π = [πij ] such that for each
i, j, it holds that

∑

i

πij = mj and
∑

j

πij = m′
i.

The corresponding transport cost is

JC(π) =

M
∑

i=1

N
∑

j=1

cijπij

where cij = C(xi, yj).
• A transport path T ∈ Path(µ−, µ+) corresponds to a weighted directed graph T consisting of a vertex
set V , a directed edge set E and a weight function w : E → (0,+∞) such that {x1, x2, . . . , xM} ∪
{y1, y2, . . . , yN} ⊆ V and for any vertex v ∈ V , there is a balance equation:

∑

e∈E,e−=v

w(e) =
∑

e∈E,e+=v

w(e) +







mi if v = xi for some i = 1, . . . ,M
−nj if v = yj for some j = 1, . . . , N
0 otherwise,

where e− and e+ denote the starting and ending point of the edge e ∈ E. The corresponding
transport Mα-cost of T is

Mα(T ) =
∑

e∈E
w(e)αlength(e)

where the length length(e) of the edge e equals to H1(e).

3. Better decomposition of acyclic transport paths

Let µ− and µ+ be two atomic measures as given in (2.10), T be an acyclic transport path from µ− to
µ+, and let η be a good decomposition (i.e., Smirnov decomposition) of T . Observe that as shown in the
following example, with respect to the good decomposition η, it is possible that the family

{Iγ : η({γ}) > 0}

is linearly dependent.

Example 3.1. Let T be a transport path from µ− = 4δx1
+ 2δx2

to µ+ = 3δy1 + 3δy2 , as shown in the
following figure

x1

x2

y1

y2

4

2

3

3
6

T =

.

For each (i, j), let γxi,yj be the corresponding curve from xi to yj on T :

x1 y1

γx1,y1

x1

y2

γx1,y2

x2

y1

γx2,y1

x2 y2

γx2,y2

Then

η = 2δγx1,y1
+ 2δγx1,y2

+ δγx2,y1
+ δγx2,y2

is a good decomposition of T . But

Iγx1,y1
− Iγx1,y2

− Iγx2,y1
+ Iγx2,y2

is the zero 1-current.
5



The linear dependence of the family {Iγ : η({γ}) > 0} brings a non-unique representation of vanishing
currents and causes an obstacle later for the proof of Theorem 4.8. To overcome this, we introduce the
concept of “better decomposition” of T as follows.

For each i = 1, 2, · · · ,M , j = 1, 2, · · · , N , as given in (2.8), let Γxi,yj denote all 1-Lipschitz curves in Γ
from xi to yj . Also, for any finite positive measure η on Γ, denote

(3.1) Si,j(η) :=

{

1
η(Γxi,yj

)

∫

Γxi,yj

Iγdη, if η(Γxi,yj) > 0

0, if η(Γxi,yj) = 0.

Definition 3.1. Let T be a transport path from µ− to µ+ where µ− and µ+ are given in (2.10). Suppose η
is a good decomposition of T . We say that η is a better decomposition of T if for any pairs 1 ≤ i1 < i2 ≤M

and 1 ≤ j1 < j2 ≤ N ,

Si1,j1(η)− Si1,j2(η) − Si2,j1(η) + Si2,j2(η) = 0

implies that

η(Γxi1
,yj1

) = η(Γxi1
,yj2

) = η(Γxi2
,yj1

) = η(Γxi2
,yj2

) = 0.

Example 3.2. In Example 3.1,

η = 2δγx1,y1
+ 2δγx1,y2

+ δγx2,y1
+ δγx2,y2

is a good but not better decomposition of T . Indeed,

S1,1(η)− S1,2(η)− S2,1(η) + S2,2(η) = Iγx1,y1
− Iγx1,y2

− Iγx2,y1
+ Iγx2,y2

= 0,

but

η(Γx1,y1) = 2, η(Γx1,y2) = 2, η(Γx2,y1) = 1, and η(Γx2,y2) = 1.

To realize T using η, all four transportation need to be used.
On the other hand,

η̃ = 3δγx1,y1
+ δγx1,y2

+ 2δγx2,y2

is a better decomposition of T . In this case,

S1,1(η̃)− S1,2(η̃)− S2,1(η̃) + S2,2(η̃) = Iγx1,y1
− Iγx1,y2

+ Iγx2,y2
6= 0

despite that

η̃(Γx1,y1) = 3, η̃(Γx1,y2) = 1, η̃(Γx2,y1) = 0, η̃(Γx2,y2) = 2.

Using this new decomposition, to realize the same T , one only needs to arrange three transportation.

Definition 3.2. For any two finite measures η and η̃ on Γ, we say η̃ ≺≺ η if for each pair (i, j),

(3.2)

∫

Γxi,yj

Iγdη̃ = ai,j

∫

Γxi,yj

Iγdη

for some ai,j ≥ 0.

Our main result for this section is the following theorem:

Theorem 3.3. Let T be a transport path from µ− to µ+ where µ− and µ+ are given in (2.10). For any
good decomposition η of T , there exists a better decomposition η∞ of T such that η∞ ≺≺ η.

We first give an equivalent definition of η̃ ≺≺ η as follows.

Lemma 3.4. For any two finite measures η and η̃ on Γ, η̃ ≺≺ η if and only if they satisfy the condition

(3.3) if η̃(Γxi,yj) > 0 for some (i, j), then η(Γxi,yj) > 0 and Si,j(η̃) = Si,j(η).

Remark 3.5. By Lemma 3.4, it follows that η̃(Γxi,yj ) = 0 whenever η(Γxi,yj ) = 0. We use the notation
η̃ ≺≺ η to mimic the absolute continuity notation ≪ of measures.

6



Proof. Suppose η̃ ≺≺ η. By taking the boundary operator on both sides of (3.2), it follows that
∫

Γxi,yj

(δyj − δxi
)dη̃ = ai,j

∫

Γxi,yj

(δyj − δxi
)dη.

That is,
η̃(Γxi,yj )(δyj − δxi

) = ai,jη(Γxi,yj )(δyj − δxi
),

which implies that η̃(Γxi,yj ) = ai,jη(Γxi,yj ). Thus, η̃(Γxi,yj) > 0 implies aij > 0 and η(Γxi,yj ) > 0.Moreover,

Si,j(η̃) =
1

η̃(Γxi,yj )

∫

Γxi,yj

Iγdη̃ =
1

ai,jη(Γxi,yj )
· ai,j

∫

Γxi,yj

Iγdη = Si,j(η).

On the other hand, suppose (3.3) holds. If η̃(Γxi,yj) = 0, then ai,j = 0 will give (3.2). If η̃(Γxi,yj) > 0,
then (3.3) implies η(Γxi,yj) > 0 and Si,j(η̃) = Si,j(η). By setting

ai,j =
η̃(Γxi,yj)

η(Γxi,yj)
,

equation (3.1) gives that
∫

Γxi,yj

Iγdη̃ = η̃(Γxi,yj )Si,j(η̃) = (ai,jη(Γxi,yj ))Si,j(η) = ai,j

∫

Γxi,yj

Iγdη.

�

Note that, by using the sign function

(3.4) sgn(x) =







1, if x > 0
0, if x = 0
−1, if x < 0,

equation (3.1) gives

(3.5) ∂Si,j(η) =

{

δyj − δxi
, if η(Γxi,yj ) > 0,

0, if η(Γxi,yj ) = 0
= sgn(η(Γxi,yj ))(δyj − δxi

).

For any pairs 1 ≤ i1 < i2 ≤M and 1 ≤ j1 < j2 ≤ N , define

(3.6) C[(i1, j1), (i2, j2), η] := Si1,j1(η)− Si1,j2(η) − Si2,j1(η) + Si2,j2(η).

Direct calculation gives

∂C[(i1, j1), (i2, j2), η] =
(

sgn(η(Γxi1
,yj2

)− sgn(η(Γxi1
,yj1

)
)

δxi1
+
(

sgn(η(Γxi2
,yj1

)− sgn(η(Γxi2
,yj2

)
)

δxi2

+
(

sgn(η(Γxi1
,yj1

)− sgn(η(Γxi2
,yj1

)
)

δyj1 +
(

sgn(η(Γxi2
,yj2

)− sgn(η(Γxi1
,yj2

)
)

δyj2 .

Hence, it follows that ∂C[(i1, j1), (i2, j2), η] = 0 if and only if

(3.7) sgn(η(Γxi1
,yj1

)) = sgn(η(Γxi1
,yj2

)) = sgn(η(Γxi2
,yj1

)) = sgn(η(Γxi2
,yj2

)) = c,

where c = 0 or 1. We denote this common value, c, by s[(i1, j1), (i2, j2), η].

Definition 3.6. For any finite positive measure η on Γ, define

Aη(i
∗, j∗) = {(i, j) : i∗ < i ≤M, j∗ < j ≤ N, C[(i∗, j∗), (i, j), η] = 0 and s[(i∗, j∗), (i, j), η] = 1}.

Using this definition, saying a good decomposition η of T is a better decomposition of T is equivalent to
Aη(i, j) = ∅ for all pairs (i, j).

We now consider the graded lexicographical order on N2, namely

(a, b) < (c, d) if a+ b < c+ d or a = c but b < d.

Under this order, N2 is listed in the order of

(3.8) {(in, jn)}
∞
n=1 = {(1, 1), (1, 2), (2, 1), (1, 3), . . . , (in, jn), (in+1, jn+1), . . .}.

Lemma 3.7. For any good decomposition η of T , there exists a good decomposition η̃ of T such that η̃ ≺≺ η

and Aη̃(1, 1) = ∅.
7



Proof. When η(Γx1,y1) = 0, by (3.7), the condition C[(1, 1), (i, j), η] = 0 implies s[(1, 1), (i, j), η] = 0, and
hence Aη(1, 1) = ∅. Setting η̃ := η gives us the desired results.

When η(Γx1,y1) 6= 0, we inductively define a sequence of good decomposition {ηn} of T with ηn(Γx1,y1) > 0,
and whose limit is our desired measure η̃. Set η1 = η.

If Aηn(1, 1) = ∅ for some n ≥ 1, set ηm = ηn for all m ≥ n and set η̃ = ηn as well.
If Aηn(1, 1) is non-empty for all n ≥ 1, we construct η̃ from {ηn} via the following steps.
Step 1: Construct a sequence of good decomposition {ηn} of T .
For each n ≥ 1, assume that ηn is a good decomposition of T with ηn(Γx1,y1) > 0. Let (in, jn) be the

minimum element in Aηn(1, 1) which is a subset of N2 with the graded lexicographical order. Define

ηn+1 := ηn +min{ηn(Γx1,yjn
), ηn(Γxin ,y1

)}

(

ηn⌊Γx1,y1

ηn(Γx1,y1)
−

ηn⌊Γx1,yjn

ηn(Γx1,yjn
)
−

ηn⌊Γxin
,y1

ηn(Γxin ,y1
)
+

ηn⌊Γxin
,yjn

ηn(Γxin ,yjn
)

)

.

Here, the denominators in the above equation are positive because s[(1, 1), (in, jn), ηn] = 1. Without loss of
generality, we may assume that

0 < ηn(Γx1,yjn
) ≤ ηn(Γxin ,y1

).

Under this construction, we have for each i, j,

(3.9) ηn+1⌊Γxi,yj
= (1 + λn,i,j)ηn⌊Γxi,yj

for some real number λn,i,j ≥ −1. In particular, it follows that

(3.10) ηn+1(Γx1,y1) > ηn(Γx1,y1) > 0, ηn(Γx1,yjn
) > ηn+1(Γx1,yjn

) = 0,

(3.11) ηn(Γxin ,y1
) > ηn+1(Γxin ,y1

) ≥ 0, ηn+1(Γxin ,yjn
) > ηn(Γxin ,yjn

) > 0,

and

(3.12) ηn+1(Γxi,yj) = ηn(Γxi,yj) for all other i, j.

Since ηn is a good decomposition of T , we have

T =

∫

Γ

Iγdηn, M(T ) =

∫

Γ

M(Iγ)dηn(γ) and M(∂T ) =

∫

Γ

M(∂Iγ)dηn(γ).

In particular, M(T ) =
∫

Γ
M(Iγ)dηn(γ) implies that

M(S1,1(ηn) + Sin,jn(ηn)) = M(S1,1(ηn)) +M(Sin,jn(ηn)),

and

M(S1,jn(ηn) + Sin,1(ηn)) = M(S1,jn(ηn)) +M(Sin,1(ηn)).

By assumption,

C[(1, 1), (in, jn), ηn] = S1,1(ηn)− S1,jn(ηn)− Sin,1(ηn) + Sin,jn(ηn) = 0,

i.e., S1,1(ηn) + Sin,jn(ηn) = S1,jn(ηn) + Sin,1(ηn). Thus,

M(S1,1(ηn)) +M(Sin,jn(ηn)) = M(S1,1(ηn) + Sin,jn(ηn))

= M(S1,jn(ηn) + Sin,1(ηn)) = M(S1,jn(ηn)) +M(Sin,1(ηn)).

Now, by the construction of ηn+1,
∫

Γ

Iγdηn+1 −

∫

Γ

Iγdηn = min{ηn(Γx1,yjn
), ηn(Γxin ,y1

)} · C[(1, 1), (in, jn), ηn] = 0,

and
∫

Γ

M(Iγ)dηn+1(γ)−

∫

Γ

M(Iγ)dηn(γ)

= min{ηn(Γx1,yjn
), ηn(Γxin ,y1

)} (M(S1,1)−M(S1,jn)−M(Sin,1) +M(Sin,jn)) = 0.
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Moreover,
∫

Γ

M(∂Iγ)dηn+1(γ)−

∫

Γ

M(∂Iγ)dηn(γ)

= min{ηn(Γx1,yjn
), ηn(Γxin ,y1

)} (M(∂S1,1)−M(∂S1,jn)−M(∂Sin,1) +M(∂Sin,jn))

= min{ηn(Γx1,yjn
), ηn(Γxin ,y1

)} (2− 2− 2 + 2) = 0.

As a result, since ηn is a good decomposition of T , ηn+1 is a good decomposition of T as well.
Step 2: Show that the sequence {ηn} converges to a good decomposition η̃ of T .
Note that for each 1 ≤ i ≤ M and 1 ≤ j ≤ N , the sequence {ηn⌊Γxi,yj

}∞n=1 is a monotonic sequence of

measures with bounded mass. Indeed, by the construction above and by equations (3.10), (3.11) and (3.12),

• if i = 1, j = 1, then {ηn⌊Γxi,yj
}∞n=1 is monotone increasing;

• if i = 1, j > 1, then {ηn⌊Γxi,yj
}∞n=1 is monotone decreasing;

• if i > 1, j = 1, then {ηn⌊Γxi,yj
}∞n=1 is monotone decreasing;

• if i > 1, j > 1, then {ηn⌊Γxi,yj
}∞n=1 is monotone increasing, and eventually constant.

As a result, the sequence, {ηn⌊Γxi,yj
}∞n=1, converges to some measure ηij for each (i, j). Define

η̃ :=

M
∑

i=1

N
∑

j=1

ηij .

Hence, as n→ ∞,

ηn =
M
∑

i=1

N
∑

j=1

ηn⌊Γxi,yj
−→ η̃ =

M
∑

i=1

N
∑

j=1

ηij .

Since each ηn is a good decomposition of T , it follows that
∫

Γ

Iγdη̃ = lim
n→∞

∫

Γ

Iγdηn = T,

∫

Γ

M(Iγ)dη̃ = lim
n→∞

∫

Γ

M(Iγ)dηn = M(T ),

∫

Γ

M(∂Iγ)dη̃ = lim
n→∞

∫

Γ

M(∂Iγ)dηn = M(∂T ).

As a result, η̃ is also a good decomposition of T .
Step 3: Show that η̃ ≺≺ η .
Suppose η̃(Γxi,yj) > 0 for some pair (i, j). Then, ηn(Γxi,yj) > 0 when n is large enough. By (3.9),

ηn⌊Γxi,yj
=

n−1
∏

k=1

(1 + λk,i,j)η⌊Γxi,yj
, for some λk,i,j ≥ −1 for each k.

That is,

ηn =

(

n−1
∏

k=1

(1 + λk,i,j)

)

η on Γxi,yj .

As a result, ηn(Γxi,yj) > 0 implies η(Γxi,yj) > 0 and Si,j(ηn) = Si,j(η). Since η̃ is the limit of ηn,

Si,j(η̃) = lim
n→∞

Si,j(ηn) = Si,j(η).

This proves η̃ ≺≺ η.
Step 4: Show that Aηn+1

(1, 1) $ Aηn(1, 1) for each n.
Note that (in, jn) ∈ Aηn(1, 1) \ Aηn+1

(1, 1). Indeed, if (in, jn) ∈ Aηn+1
(1, 1), then

C[(1, 1), (in, jn), ηn+1] = 0 and s[(1, 1), (in, jn), ηn+1] = 1.

This implies sgn(ηn+1(Γx1,yjn
)) = 1, which contradicts with ηn+1(Γx1,yjn

) = 0 as given in (3.10).
We now show that Aηn+1

(1, 1) ⊆ Aηn(1, 1). For any (i0, j0) ∈ Aηn+1
(1, 1), by definition,

C[(1, 1), (i0, j0), ηn+1] = 0 and s[(1, 1), (i0, j0), ηn+1] = 1.
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The condition s[(1, 1), (i0, j0), ηn+1] = 1 indicates that

ηn+1(Γx1,y1) > 0, ηn+1(Γx1,yj0
) > 0, ηn+1(Γxi0

,y1) > 0, ηn+1(Γxi0
,yj0

) > 0.

By equations (3.10)–(3.12), and (i0, j0) 6= (in, jn),

ηn(Γx1,y1) > 0, ηn(Γx1,yj0
) ≥ ηn+1(Γx1,yj0

) > 0,

ηn(Γxi0
,y1) ≥ ηn+1(Γxi0

,y1) > 0, ηn(Γxi0
,yj0

) = ηn+1(Γxi0
,yj0

) > 0.

By (3.9), for each i, j, when both ηn(Γxi,yj ) > 0 and ηn+1(Γxi,yj) > 0, then

Si,j(ηn) = Si,j(ηn+1).

As a result,
C[(1, 1), (i0, j0), ηn] = C[(1, 1), (i0, j0), ηn+1] = 0.

Therefore, (i0, j0) ∈ Aηn(1, 1) and hence Aηn+1
(1, 1) ⊆ Aηn(1, 1).

Step 5: Show that Aη̃(1, 1) = ∅.
Assume that there exists (i′, j′) ∈ Aη̃(1, 1), i.e. C[(1, 1), (i

′, j′), η̃] = 0 and s[(1, 1), (i′, j′), η̃] = 1. For any
(i, j) ∈ {(1, 1), (1, j′), (i′, 1), (i′, j′)}, since s[(1, 1), (i′, j′), η̃] = 1, it follows that

lim
n→∞

ηn(Γxi,yj) = η̃(Γxi,yj) > 0.

Thus, there exists an N0 ∈ N such that ηn(Γxi,yj ) > 0 for all n ≥ N0. By (3.9), this implies that the
normalized current Si,j(ηn) is independent of n, and hence Si,j(ηn) = Si,j(η̃) for all n ≥ N0. As a result, for
each n ≥ N0,

C[(1, 1), (i′, j′), ηn] = C[(1, 1), (i′, j′), η̃] = 0 and s[(1, 1), (i′, j′), ηn] = s[(1, 1), (i′, j′), η̃] = 1.

This shows that (i′, j′) ∈ Aηn(1, 1). On the other hand, since {Aηn(1, 1)} is a sequence of nested subsets in
N2 with Aηn+1

(1, 1) $ Aηn(1, 1) for each n. When n is larger than the order of the fixed element (i′, j′), it
is not possible for (i′, j′) ∈ Aηn(1, 1). A contradiction.

�

We now extend Lemma 3.7 to a more general case:

Lemma 3.8. For any good decomposition η of T , there exists a sequence of good decomposition {ηn}
∞
n=0 of

T with η0 = η such that for each n ≥ 1, ηn ≺≺ ηn−1 and Aηn(ik, jk) = ∅ for all 1 ≤ k ≤ n, where {(ik, jk)}
is given in (3.8).

Proof. We will prove these results by induction. Lemma 3.7 provides the base case when n = 1. For each
n ≥ 2, assume that there exists a good decomposition ηn−1 of T such that ηn−1 ≺≺ ηn−2 andAηn−1

(ik, jk) = ∅
for all 1 ≤ k ≤ n− 1. Using ηn−1, we construct ηn as follows.

Denote
Γ̃n =

⋃

in≤i,jn≤j
Γxi,yj .

Let η̃n be the measure η̃ achieved in Lemma 3.7 with η being replaced by ηn−1⌊Γ̃n
and T being replaced by

T̃ :=
∫

Γ̃n
Iγdηn−1. Define

ηn := ηn−1⌊Γ\Γ̃n
+η̃n.

We first claim that ηn is a good decomposition of T . Indeed, since both η̃n and ηn−1⌊Γ̃n
are good decompo-

sitions of T̃ ,
∫

Γ

Iγdηn −

∫

Γ

Iγdηn−1 =

∫

Γ

Iγdη̃n −

∫

Γ̃n

Iγdηn−1 = 0,

∫

Γ

M(Iγ)dηn(γ)−

∫

Γ

M(Iγ)dηn−1(γ) =

∫

Γ

M(Iγ)dη̃n −

∫

Γ̃n

M(Iγ)dηn−1 = 0,

and
∫

Γ

M(∂Iγ)dηn(γ)−

∫

Γ

M(∂Iγ)dηn−1(γ) =

∫

Γ

M(∂Iγ)dη̃n −

∫

Γ̃n

M(∂Iγ)dηn−1 = 0.

As a result, since ηn−1 is a good decomposition of T , ηn is also a good decomposition of T .
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We now show that ηn ≺≺ ηn−1. Suppose ηn(Γxi,yj) > 0 for some 1 ≤ i ≤M, 1 ≤ j ≤ N .

• When i < in or j < jn, definition of ηn gives ηn⌊Γxi,yj
= ηn−1⌊Γxi,yj

. Therefore,

ηn−1(Γxi,yj ) = ηn(Γxi,yj ) > 0 and Si,j(ηn−1) = Si,j(ηn).

• When i ≥ in and j ≥ jn, definition of ηn gives ηn⌊Γxi,yj
= η̃n⌊Γxi,yj

, so that

η̃n(Γxi,yj ) = ηn(Γxi,yj ) > 0.

Since η̃n ≺≺ ηn−1⌊Γ̃n
by Lemma 3.7, it follows that

ηn−1(Γxi,yj) > 0 and Si,j(ηn−1) = Si,j(η̃n) = Si,j(ηn).

In both cases, ηn−1(Γxi,yj) > 0 and Si,j(ηn−1) = Si,j(ηn). That is, ηn ≺≺ ηn−1.
We now show that Aηn(ik, jk) = ∅ for all 1 ≤ k ≤ n. When k = n, Aηn(in, jn) = ∅ by Lemma 3.7.

Suppose k < n, and for contradiction, we assume Aηn(ik, jk) 6= ∅. Thus, there exists (i∗, j∗) ∈ Aηn(ik, jk),
i.e.,

C[(ik, jk), (i
∗, j∗), ηn] = 0 and s[(ik, jk), (i

∗, j∗), ηn] = 1.

Now, for any (i, j) ∈ {(ik, jk), (ik, j
∗), (i∗, jk), (i∗, j∗)}, since s[(ik, jk), (i

∗, j∗), ηn] = 1, it follows that
ηn(Γxi,yj) > 0. By the definition of ηn, when i < in or j < jn, ηn = ηn−1 on Γxi,yj . Thus,

(3.13) ηn−1(Γxi,yj ) = ηn(Γxi,yj ) > 0 and Si,j(ηn) = Si,j(ηn−1).

When i ≥ in and j ≥ jn,
η̃n(Γxi,yj ) = ηn(Γxi,yj ) > 0.

Since η̃n ≺≺ ηn−1⌊Γ̃n
, then equations in (3.13) still hold. As a result,

C[(ik, jk), (i
∗, j∗), ηn−1] = C[(ik, jk), (i

∗, j∗), ηn] = 0 and s[(ik, jk), (i
∗, j∗), ηn−1] = 1.

Therefore, (i∗, j∗) ∈ Aηn−1
(ik, jk), which contradicts with Aηn−1

(ik, jk) = ∅ whenever k ≤ n− 1. �

We now give the proof of Theorem 3.3 by showing that for any good decomposition η of T , there exists a
good decomposition η∞ of T such that η∞ ≺≺ η and Aη∞(i, j) = ∅ for all 1 ≤ i ≤M, 1 ≤ j ≤ N .

Proof of Theorem 3.3. Let {ηn} be the sequence of good decomposition of T constructed in the proof of
Lemma 3.8. Observe that by the construction of the sequence {ηn}, it follows that for any k ∈ N,

(3.14) ηn⌊Γxik
,yjk

= ηk⌊Γxik
,yjk

for all n ≥ k. Define η∞ : Γ → R by setting

(3.15) η∞ := ηk on Γxik
,yjk

, ∀k ∈ N.

We first show that {ηn} converges to η∞ with respect to the total variation distance ‖ · ‖. Indeed, by
(3.14),

‖ηn − η∞‖ = ‖
∑

k≥1

(ηn − ηk)⌊Γxik
,yjk

‖ = ‖
∑

k≥n+1

(ηn − ηk)⌊Γxik
,yjk

‖

≤
∑

k≥n+1

ηn(Γxik
,yjk

) +
∑

k≥n+1

ηk(Γxik
,yjk

)

≤
∑

ik+jk≥in+jn
ηn(Γxik

,yjk
) +

∑

k≥n+1

ηk(Γxik
,yjk

)

≤
∑

ik≥
√
injn

N
∑

jk=1

ηn(Γxik
,yjk

) +
∑

jk≥
√
injn

M
∑

ik=1

ηn(Γxik
,yjk

) +
∑

k≥n+1

ηk(Γxik
,yjk

)

=
∑

ik≥
√
injn

m′
ik
+

∑

jk≥
√
injn

mjk +
∑

k≥n+1

ηk(Γxik
,yjk

),

and

η∞(Γ) =
∞
∑

k=1

ηk(Γxik
,yjk

) = lim
n→∞

n
∑

k=1

ηk(Γxik
,yjk

) = lim
n→∞

n
∑

k=1

ηn(Γxik
,yjk

) ≤ lim
n→∞

ηn(Γ) = η(Γ) <∞.
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Thus, since limn→∞ injn = ∞ and
∑M
i=1m

′
i =

∑N
j=1mj <∞, it follows that limn→∞ ‖ηn − η∞‖ = 0. Since

ηn is a good decomposition for each n, it follows that its limit η∞ is also a good decomposition of T .
Moreover, if η∞(Γxik

,yjk
) > 0 for some k, then ηk(Γxik

,yjk
) > 0 by (3.15). Thus, by Lemma 3.8 and

transitivity of “≺≺”, we have ηk ≺≺ η, which implies

η(Γxik
,yjk

) > 0 and Sik,jk(η∞) = Sik,jk(ηk) = Sik,jk(η).

Therefore, η∞ ≺≺ η.
We now show that Aη∞(ik, jk) = ∅ for each k. Assume that for some k, Aη∞(ik, jk) contains an element

(in, jn). Then the definition of Aη∞(ik, jk) implies n > k and

C[(ik, jk), (in, jn), η∞] = 0 and s[(ik, jk), (in, jn), η∞] = 1.

By (3.14) and (3.15), since (in, jn) has the largest order among the elements

{(ik, jk), (ik, jn), (in, jk), (in, jn)},

it follows that η∞ = ηn on Γxi,yj for each (i, j) of these four elements. Thus,

C[(ik, jk), (in, jn), ηn] = 0 and s[(ik, jk), (in, jn), ηn] = 1.

This shows (in, jn) ∈ Aηn(ik, jk), a contradiction with Aηn(ik, jk) = ∅ due to Lemma 3.8. �

4. Decomposition of cycle-free transport paths

In this section, we will prove the decomposition theorem in Theorem 4.8 using the better decomposition
η∞ achieved from Theorem 3.3.

We first recall a concept that was introduced in [12, Definition 4.6].

Definition 4.1. Let T = τ (M, θ, ξ) and S = τ (N,φ, ζ) be two real rectifiable k-currents. We say S is on T

if Hk(N \M) = 0, and φ(x) ≤ θ(x) for Hk almost all x ∈ N .

Note that when S = τ (N,φ, ζ) is on T = τ (M, θ, ξ), then ξ(x) = ±ζ(x) for Hk almost all x ∈ N , since two
rectifiable sets have the same tangent almost everywhere on their intersection. Using it, we now introduce
the concept of “cycle-free” currents as follows:

Definition 4.2. Let T and S be two real rectifiable k-currents. S is called a cycle on T if S is on T and
∂S = 0. Also, T is called cycle-free if except for the zero current, there is no other cycle on T .

The zero current is called the trivial cycle on T .

Remark 4.3. The concept of “cycle-free” is different from “acyclic”. A cycle-free current is automatically
acyclic, but not vice versa. For instance, let T be a transport path (which is a 1-current) from µ− = δx1

+δx2

to µ+ = δy1 + δy2 as shown below.

x1 y1

x2 y2
1

1

T

Then T is acyclic but not cycle-free.
As an example, we first show that each optimal transport path is cycle-free. To do so, we start with an

analogous result to [12, Theorem 4.7] as follows.

Proposition 4.4. Let T ∈ Path(µ−, µ+) with Mα(T ) < ∞ for some 0 < α < 1. Suppose there exists a
rectifiable 1-current S such that S is on T and ∂S = 0, then for any ǫ ∈ [−1, 1], T + ǫS ∈ Path(µ−, µ+) and

min {Mα(T + S),Mα(T − S)} ≤ Mα(T )

with the equality holds only when S = 0.
12



Proof. The statements clearly hold if S = 0. Thus, in the following, we may assume that S is non-zero.
Since T ∈ Path(µ−, µ+) and ∂S = 0, it holds that ∂(T + ǫS) = ∂T + ǫ∂S = ∂T = µ+ − µ−. That is,
T + ǫS ∈ Path(µ−, µ+).

Let T = τ(M, θ, ξ) and S = τ (N,φ, ζ). Since S is on T , we have H1(N \M) = 0, and φ(x) ≤ θ(x) for H1

almost all x ∈ N . One may assume that N =M by extending φ(x) = 0 and ζ(x) = ξ(x) for x ∈M \N .
For ǫ ∈ [−1, 1], we now consider the function

g(ǫ) = Mα(T + ǫS) =

∫

M

(θ(x) + ǫφ(x)〈ξ(x), ζ(x)〉)α dH1(x).

Here, the value of the inner product is 〈ξ(x), ζ(x)〉 = ±1 forH1−a.e. x ∈M . SinceMα(T ) =
∫

M
θαdH1 <∞

and φ(x) ≤ θ(x) for H1 almost all x ∈M , we have for any ǫ ∈ (−1, 1),

g′(ǫ) = α

∫

M

(θ(x) + ǫφ(x)〈ξ(x), ζ(x)〉)α−1
φ(x)〈ξ(x), ζ(x)〉dH1(x)

and

g′′(ǫ) = α(α − 1)

∫

M

(θ(x) + ǫφ(x)〈ξ(x), ζ(x)〉)α−2
φ(x)2dH1(x) < 0,

because 0 < α < 1 and S is non-zero. This shows that g(ǫ) is a strictly concave function on (−1, 1). By the
lower semi-continuity of Mα, g(ǫ) is lower semi-continuous at ǫ = ±1. Thus, min{g(−1), g(1)} < g(0). That
is, min{Mα(T + S),Mα(T − S)} <Mα(T ) whenever S is on T , nonzero and ∂S = 0. �

Corollary 4.5. Suppose T is an α-optimal transport path from µ− to µ+ for 0 < α < 1. Then T is
cycle-free.

Proof. Since T is α-optimal, it is acyclic and hence it has a good decomposition. Suppose S is on T and
∂S = 0. Assume S is non-zero, then min{Mα(T + S),Mα(T − S)} < Mα(T ), which contradicts with the
Mα optimality of T . Therefore, S must be zero. Hence, T is cycle-free. �

To characterize cycle-free transport paths, we consider their better decomposition.

Proposition 4.6. Each cycle-free transport path T ∈ Path(µ−, µ+) has at least a better decomposition.

Proof. By definition, each cycle-free transport path is acyclic and hence has a good decomposition. By
Theorem 3.3, it has a better decomposition. �

Proposition 4.7. Let T ∈ Path(µ−, µ+) be a cycle-free transport path, and let η be a better decomposition
of T . For each yj ∈ {y1, y2, . . . , yN}, denote

(4.1) Xj(η) := {xi ∈ X : η(Γxi,yj) > 0}.

Then for each pair 1 ≤ j1 < j2 ≤ N ,

(4.2) |Xj1(η) ∩Xj2(η)| ≤ 1,

i.e., the intersection Xj1(η) ∩Xj2(η) is either empty or a single point.

Proof. Assume |Xj1(η) ∩Xj2(η)| > 1. Then there exist two distinct points xi1 , xi2 ∈ Xj1(η) ∩Xj2(η) with
i1 < i2. Thus,

(4.3) η(Γxi1
,yj1

) > 0, η(Γxi1
,yj2

) > 0, η(Γxi2
,yj1

) > 0, and η(Γxi2
,yj2

) > 0.

By (3.7), this implies that C[(i1, j1), (i2, j2), η] defined in (3.6) is a cycle. Since η is a better decomposition
of T , by (4.3), it follows that C[(i1, j1), (i2, j2), η] is non-vanishing. Pick

0 < ǫ0 ≤
1

4
min{η(Γxi1

,yj1
), η(Γxi1

,yj2
), η(Γxi2

,yj1
), η(Γx2,yj2

)},

and observe that

S = ǫ0 · C[(i1, j1), (i2, j2), η]
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is a non-vanishing cycle on T . Indeed, assume T = τ(M, θ, ξ) and S = τ(N,φ, ζ), then N ⊆ M and for

H1-a.e. x,

φ(x) ≤ ǫ0

(

η⌊Γxi1
,yj1

η(Γxi1
,yj1

)
+

η⌊Γxi1
,yj2

η(Γxi1
,yj2

)
+

η⌊Γxi2
,yj1

η(Γxi2
,yj1

)
+

η⌊Γxi2
,yj2

η(Γxi2
,yj2

)

)

({γ ∈ Γ : x ∈ Im(γ)})

≤ ǫ0

(

1

η(Γxi1
,yj1

)
+

1

η(Γxi1
,yj2

)
+

1

η(Γxi2
,yj1

)
+

1

η(Γxi2
,yj2

)

)

η ({γ ∈ Γ : x ∈ Im(γ)})

≤ η ({γ ∈ Γ : x ∈ Im(γ)}) = θ(x),

by equation (2.5). This shows that S is a non-vanishing cycle on T . A contradiction with T is cycle-free. �

Theorem 4.8. Let T be a cycle-free transport path from µ− to µ+, where µ− and µ+ are given in (2.10).
Then there exists a decomposition

(4.4) T =

N
∑

j=0

Tj

such that

(a) The set {x1, x2, · · · , xM} can be expressed as the disjoint union of its subsets {Bj}
N
j=0 with the

cardinality |B0| ≤
(

N
2

)

;
(b) For each j = 1, 2, · · · , N , Tj is a single-target transport path from

µ−
j := µ−⌊Bj

to µ+
j = m̃jδyj

for some 0 ≤ m̃j := µ−(Bj) ≤ mj. Each Tj is a subcurrent of T .
(c) T0 is a transport path from

µ−
0 := µ−⌊B0

to µ+
0 =

N
∑

j=1

(mj − m̃j)δyj .

T0 is also a subcurrent of T .

Note that, by Theorem 4.8 , it follows that

(4.5) µ− =

N
∑

j=0

µ−
j and µ+ =

N
∑

j=0

µ+
j .

Proof. Let η be a better decomposition of T , and Xj(η) be the set as defined in (4.1). Denote

(4.6) B0 :=
⋃

1≤j1<j2≤N
(Xj1(η) ∩Xj2(η))

and for each 1 ≤ j ≤ N , denote

Bj := Xj(η) \B0.

Then {Bj}Nj=0 are pairwise disjoint. Moreover, by (4.2), |B0| ≤
(

N
2

)

.
Define

T0 :=

N
∑

j=1

∑

xi∈B0

∫

Γxi,yj

Iγ dη,

and for each 1 ≤ j ≤ N , denote

Tj :=
∑

xi∈Bj

∫

Γxi,yj

Iγ dη.
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Then each Tj is a subcurrent of T for 0 ≤ j ≤ N and

T =

N
∑

j=1

M
∑

i=1

∫

Γxi,yj

Iγ dη =

N
∑

j=1





∑

xi∈Bj

∫

Γxi,yj

Iγ dη +
∑

xi∈B0

∫

Γxi,yj

Iγ dη





=

N
∑

j=1

∑

xi∈Bj

∫

Γxi,yj

Iγ dη +

N
∑

j=1

∑

xi∈B0

∫

Γxi,yj

Iγ dη

=

N
∑

j=1

Tj + T0 =

N
∑

j=0

Tj .

For each 1 ≤ j ≤ N , Tj is a single-target transport path with

∂Tj =
∑

xi∈Bj

∫

Γxi,yj

(δyj − δxi
) dη =





∑

xi∈Bj

η(Γxi,yj)



 δyj −
∑

xi∈Bj

η(Γxi,yj )δxi
.

Note that when xi ∈ Bj , since {Bk}’s are pairwise disjoint, it follows that η(Γxi,yk) = 0 for all k 6= j. So,

∑

xi∈Bj

η(Γxi,yj )δxi
=
∑

xi∈Bj

(

N
∑

k=1

η(Γxi,yk)

)

δxi
=
∑

xi∈Bj

µ−({xi})δxi
= µ−⌊Bj

= µ−
j ,

and




∑

xi∈Bj

η(Γxi,yj)



 δyj = µ−(Bj)δyj = µ+
j .

As a result, ∂Tj = µ+
j − µ−

j .
Moreover, we have the result,

∂T0 =
N
∑

j=1

∑

xi∈B0

∫

Γxi,yj

(δyj − δxi
) dη(4.7)

=
N
∑

j=1

(

∑

xi∈B0

η(Γxi,yj)

)

δyj −
∑

xi∈B0





N
∑

j=1

η(Γxi,yj )



 δxi

=

N
∑

j=1





∑

xi∈B0∩Xj(η)

η(Γxi,yj )



 δyj −
∑

xi∈B0

µ−({xi})δxi

=

N
∑

j=1





∑

xi∈Xj(η)

η(Γxi,yj)−
∑

xi∈Bj

η(Γxi,yj )



 δyj − µ−⌊B0

=

N
∑

j=1





M
∑

i=1

η(Γxi,yj )−
∑

xi∈Bj

η(Γxi,yj)



 δyj − µ−⌊B0

=
N
∑

j=1

(

mj − µ−(Bj)
)

δyj − µ−⌊B0

= µ+
0 − µ−

0 .

�

5. Transport Paths induced Transport Maps and Transport Plans

In this section, we will decompose a cycle-free transport path into the sum of two transport paths, the first
one is induced by a compatible transport map, while the second one is induced by a compatible transport
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plan. We first recall the concept of compatibility introduced in [11, Definition 7.1], and rewrite it in terms
of our current contexts.

Suppose µ− and µ+ are two atomic measures of equal finite mass as given in (2.10). Let Path0(µ
−, µ+)

denote the family of all cycle-free transport paths from µ− to µ+.

Remark 5.1. In [11, Definition 7.1], we used Path0(µ
−, µ+) to denote the family of all “acyclic” transport

paths from µ− to µ+. In [11], a transport path G is called “acyclic” if it satisfies the following condition:

for any polyhedral 1-chain G̃ with the support of G̃ contained in the support of G, if ∂G̃ = 0 then G̃ = 0. In
the current context, G is an “acyclic” transport path simply means that it is cycle-free. To avoid confusion
between the term “acyclic” used in [11] and the acyclic concept defined using subcurrents in [6], we opt for
the term “cycle-free” to name the term “acyclic” used in [11].

Observe that for any G ∈ Path0(µ
−, µ+) and for each xi and yj , there exists at most one directed poly-

hedral curve gij from xi to yj , supported on the support of G. Thus, we associate each G ∈ Path0(µ
−, µ+)

with a M ×N polyhedral 1-chain valued matrix g =
[

Igij
]

, such that Igij = 0 when gij does not exist.

Definition 5.2. ([11, Definition 7.1]) LetG ∈ Path0(µ
−, µ+) and q ∈ Plan(µ−, µ+) with associated matrices

[

Igij
]

and
[

qij
]

respectively. The pair (G, q) is called compatible if qij = 0 whenever Igij = 0 and

(5.1) G =

M
∑

i=1

N
∑

j=1

qijIgij and q =

M
∑

i=1

N
∑

j=1

qijδ(xi,yj)

as polyhedral 1-chains.

Example 5.1. For instance, let

µ− =
1

4
δx1

+
3

4
δx2

, µ+ =
5

8
δy1 +

3

8
δy2 ,

and consider the following transport plan,

q =
1

8
δ(x1,y1) +

1

8
δ(x1,y2) +

1

2
δ(x2,y1) +

1

4
δ(x2,y2) ∈ Plan(µ−, µ+).

Let G1 and G2 be two transport paths as illustrated in the following figure.

y1 y2

x1 x2

y1 y2

x1 x2

G1 G2

Then (G1, q) is compatible but (G2, q) is not, since q12 = 1
8 6= 0 and there is no directed curve g12 from x1

to y2 on the support of G2.

Now, we generalize the compatibility of atomic measures µ−, µ+ stated above to those of general measures.

Definition 5.3. Let µ and ν be two Radon measures on X of equal total mass. Given T ∈ Path(µ, ν), and
π ∈ Plan(µ, ν), we say the pair (T, π) is compatible if there exists a finite Borel measure η on Γ such that

T =

∫

Γ

Iγdη, and π =

∫

Γ

δ(p0(γ),p∞(γ))dη.

Moreover, given T ∈ Path(µ, ν) and ϕ ∈ Map(µ, ν), we say the pair (T, ϕ) is compatible if (T, πϕ) is
compatible, where πϕ = (id× ϕ)#µ.

The following Proposition says that Definition 5.3 is a generalization of Definition 5.2.

Proposition 5.4. Let µ− and µ+ be two atomic measures of equal mass as given in (2.10). Let G ∈
Path0(µ

−, µ+) and q ∈ Plan(µ−, µ+). Then (G, q) is compatible in the sense of Definition 5.2 if and only
if (G, q) is compatible in the sense of Definition 5.3.
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Proof. Suppose (G, q) is compatible in the sense of Definition 5.2. By setting

η =

M
∑

i=1

N
∑

j=1

qijδg
ij

over all {1 ≤ i ≤M, 1 ≤ j ≤ N} with gij exists, equation (5.1) gives that

G =

∫

Γ

Iγdη and q =

∫

Γ

δ(p0(γ),p∞(γ))dη.

Therefore, (G, q) is also compatible in the sense of Definition 5.3.
On the other hand, suppose (G, q) is compatible in the sense of Definition 5.3, then there exists a Borel

measure η on Γ such that

G =

∫

Γ

Iγdη and q =

∫

Γ

δ(p0(γ),p∞(γ))dη.

Since q ∈ Plan(a,b), we may write

q =

M
∑

i=1

N
∑

j=1

qijδ(xi,yj)

for some qij ≥ 0. Denote

Jq := {(i, j) : 1 ≤ i ≤M, 1 ≤ j ≤ N, with qij > 0}.

and

Γ̃ :=
⋃

(i,j)∈Jq

Γxi,yj .

Since
∫

Γ\Γ̃
δ(p0(γ),p∞(γ))dη +

∫

Γ̃

δ(p0(γ),p∞(γ))dη =

∫

Γ

δ(p0(γ),p∞(γ))dη = q =

M
∑

i=1

N
∑

j=1

qijδ(xi,yj) =
∑

(i,j)∈Jq

qijδ(xi,yj),

it follows that
∫

Γ\Γ̃
δ(p0(γ),p∞(γ))dη = 0 and

∫

Γ̃

δ(p0(γ),p∞(γ))dη =
∑

(i,j)∈Jq

qijδ(xi,yj).

Thus, η(Γ \ Γ̃) = 0 and

q =
∑

(i,j)∈Jq

∫

Γxi,yj

δ(p0(γ),p∞(γ))dη =
∑

(i,j)∈Jq

qijδ(xi,yj).

Hence for each 1 ≤ i ≤M, 1 ≤ j ≤ N ,

η(Γxi,yj) = qij if (i, j) ∈ Jq and η(Γxi,yj ) = 0 if not.

Now, for each (i, j) ∈ Jq, since η(Γxi,yj) = qij > 0 and

G =

∫

Γ

Iγdη =
∑

(i,j)∈Jq

∫

Γxi,yj

Iγdη,

it follows that there exists a polyhedral 1-curve gij supported on the support of G. Let

G̃ =
∑

(i,j)∈Jq

qijIg
ij
,

then

∂(G− G̃) = ∂





∑

(i,j)∈Jq

∫

Γxi,yj

Iγdη −
∑

(i,j)∈Jq

qijIg
ij



 =
∑

(i,j)∈Jq

(

η
(

Γxi,yj

)

− qij
) (

δyj − δxi

)

= 0,
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so that G − G̃ is a cycle supported on the support of G. Since G ∈ Path0(µ
−, µ+), we have G − G̃ = 0.

Therefore,

G = G̃ =
∑

(i,j)∈Jq

qijIg
ij
.

Note also that whenever Igij = 0, it follows that (i, j) 6∈ Jq, and thus qij = 0. As a result, (G, q) is compatible
in the sense of Definition 5.2. �

By Theorem 4.8, we now have the following theorem:

Theorem 5.5. Let T ∈ Path(µ−, µ+) be a cycle-free transport path, where µ− and µ+ are given in (2.10).
Then there exist

(a) decomposition

µ− = µ−
π + µ−

ϕ , µ
+ = µ+

π + µ+
ϕ , with µ−

π (X) = µ+
π (X), µ−

ϕ (X) = µ+
ϕ (X)

where µ−
π and µ−

ϕ have disjoint supports and |spt(µ−
π )| ≤

(

N
2

)

with |A| denoting the cardinality of the
set A;

(b) T = Tπ+Tϕ for some Tπ ∈ Path (µ−
π , µ

+
π ) and Tϕ ∈ Path

(

µ−
ϕ , µ

+
ϕ

)

. Both Tπ and Tϕ are subcurrents
of T ;

(c) a transport map ϕ ∈Map
(

µ−
ϕ , µ

+
ϕ

)

such that (Tϕ, ϕ) is compatible;

(d) a transport plan π ∈ Plan (µ−
π , µ

+
π ) such that (Tπ, π) is compatible;

(e) For each xi with µ
−
π ({xi}) > 0, there are at least two yj1 , yj2 , such that

π({xi} × {yj1}) > 0, π({xi} × {yj2}) > 0.

Proof. We continue with the same notations used in Theorem 4.8. Part (a),(b) follows from (4.4) and (4.5)
by setting

µ−
π := µ−

0 , µ
−
ϕ :=

N
∑

j=1

µ−
j , µ

+
π := µ+

0 , µ
+
ϕ :=

N
∑

j=1

µ+
j , Tπ := T0, Tϕ :=

N
∑

j=1

Tj .

For part (c), we define

ϕ :=

N
∑

j=1

yjχBj
,

where Bj ’s are subsets of {x1, x2, · · · , xM} given in Theorem 4.8. Since µ−
j = µ−⌊Bj

, µ+
j = m̃jδyj , and Bj ’s

are pairwise disjoint for j = 1, 2, . . . , N , we get

ϕ#(µ
−
ϕ ) = ϕ#





N
∑

j=1

µ−
j



 = ϕ#





N
∑

j=1

µ−⌊Bj



 =

N
∑

j=1

µ−(Bj)δyj =

N
∑

j=1

m̃jδyj = µ+
ϕ .

Therefore, ϕ is a transport map from µ−
ϕ to µ+

ϕ .
We now show that (Tϕ, ϕ) is compatible. Since

Tϕ :=

N
∑

j=1

Tj =

N
∑

j=1

∑

xi∈Bj

∫

Γxi,yj

Iγ dη,

it is sufficient to show that

(5.2) πϕ := (id× ϕ)# µ
− =

N
∑

j=1

∑

xi∈Bj

∫

Γxi,yj

δ(p0(γ),p∞(γ)) dη.
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Indeed, for any measurable rectangle Q×R in X ×X ,

πϕ(Q×R) = (id× ϕ)#µ
−(Q×R) = µ−({x : x ∈ Q,ϕ(x) ∈ R})

=

N
∑

j=1

µ−({x : x ∈ Q,ϕ(x) = yj , yj ∈ R}) =
N
∑

j=1

χR(yj)µ
−({x : x ∈ Q,ϕ(x) = yj})

=

N
∑

j=1

χR(yj)µ
−({x : x ∈ Q, x ∈ Bj}) =

N
∑

j=1

χR(yj)µ
−(Q ∩Bj)

=

N
∑

j=1

χR(yj) ((p0)#η) (Q ∩Bj) =
N
∑

j=1

χR(yj)η(p
−1
0 (Q ∩Bj))

=
N
∑

j=1

χR(yj)η({γ ∈ Γ, p0(γ) ∈ Q ∩Bj}) =
N
∑

j=1

χR(yj)
∑

xi∈Bj

∫

Γxi,yj

χQ(p0(γ))dη

=

N
∑

j=1

∑

xi∈Bj

∫

Γxi,yj

χQ(p0(γ)) · χR(yj)dη =

N
∑

j=1

∑

xi∈Bj

∫

Γxi,yj

χQ(p0(γ)) · χR(p∞(γ))dη

=

N
∑

j=1

∑

xi∈Bj

∫

Γxi,yj
,xi∈Q,yj∈R

δp0(γ) · δp∞(γ)dη =

N
∑

j=1

∑

xi∈Bj

∫

Γxi,yj

δ(p0(γ),p∞(γ)) dη(Q×R).

Therefore, (5.2) holds and hence (Tϕ, ϕ) is compatible.
For part (d), we define

π :=
∑

xi∈B0

N
∑

j=1

η
(

Γxi,yj

)

δ(xi,yj).

As shown in (4.7),

µ+
π − µ−

π = µ+
0 − µ−

0 =

N
∑

j=1

(

∑

xi∈B0

η(Γxi,yj )

)

δyj −
∑

xi∈B0





N
∑

j=1

η(Γxi,yj)



 δxi
.

This shows that π is a transport plan from µ−
π to µ+

π . Note that since

T0 =

N
∑

j=1

∑

xi∈B0

∫

Γxi,yj

Iγ dη

and

π =
∑

xi∈B0

N
∑

j=1

η
(

Γxi,yj

)

δ(xi,yj) =
N
∑

j=1

∑

xi∈B0

∫

Γxi,yj

δ(p0(γ),p∞(γ)) dη,

we have (Tπ, π) is compatible.
For part (e), by definition of µ−

π , xi ∈ B0 which is defined in Theorem 4.8. The result in (e) then follows
from the definition of B0 given in (4.6). �

6. Stair-shaped matrices and Decomposition of stair-shaped transport paths

In Theorem 5.5, we decomposed a cycle-free transport path as the sum of a map-compatible path and a
plan-compatible path. In this section, we aim to decompose some transport paths as the difference of two
map-compatible paths. The family of transport paths that we are interested in are stair-shaped transport
paths. To do this, we start with the study of stair-shaped matrices.
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6.1. Stair-shaped matrices.
Given M,N ∈ N∪ {∞}, let AM,N denote the collection of all M ×N matrices with non-negative entries.

Definition 6.1. A matrix A ∈ AM,N is called stair-shaped if there exists two non-decreasing sequences
of natural numbers {r1, r2, · · · , rM+N−1} and {c1, c2, · · · , cM+N−1} with rk + ck = k + 1 for each k =

1, 2, · · · ,M +N − 2, and entries of A that are not located in the positions {(rk, ck)}
M+N−1
k=1 equal to zero.

Note that when A ∈ AM,N is stair-shaped, then (r1, c1) = (1, 1) and (rM+N−1, cM+N−1) = (M,N).

Definition 6.2. For each k = 1, 2, · · · ,M +N − 1, a matrix A ∈ AM,N is called k-stairable if it is in the
form of

A =































a11 · · · a1,c−1 a1,c 0 · · · 0 · · ·
...

...
...

...
...

ar−1,1 · · · ar−1,c−1 ar−1,c 0 · · · 0 · · ·
ar,1 · · · ar,c−1 ar,c ar,c+1 · · · ar,j · · ·
0 · · · 0 ar+1,c ar+1,c+1 · · · ar+1,j · · ·
...

...
...

...
...

0 · · · 0 ai,c ai,c+1 · · · ai,j · · ·
...

...
...

...
...































,

where the leading (i.e., upper left corner) sub-matrix










a11 · · · a1,c−1 a1,c
...

...
...

ar−1,1 · · · ark−1,c−1 ar−1,c

ar,1 · · · ar,c−1 ar,c











is stair-shaped and k = r + c− 1.

In particular, each matrix A ∈ AM,N is at least 1-stairable, and each stair-shaped matrix A ∈ AM,N is
(M +N − 1)-stairable.

For each 1 ≤ i1 < i2 ≤ M and 1 ≤ j1 < j2 ≤ N , denote E[(i1, j1), (i2, j2)] as the M × N matrix with
1 at (i1, j1) and (i2, j2) entries, with −1 at (i1, j2) and (i2, j1) entries, and 0 at all other entries. Each
E[(i1, j1), (i2, j2)] is called an elementary matrix.

Definition 6.3. For any two matrices A,B ∈ AM,N , we say A ∼= B if there exists a list of real numbers

{tk}Kk=1 and a list of elementary matrices {Ek}Kk=1 such that B = A+
∑K

k=1 tkEk for some K ∈ N ∪ {∞}.

Theorem 6.4. For any matrix A ∈ AM,N , there exists a stair-shaped matrix B ∈ AM,N such that A ∼= B.

Proof. Step 1: Let

A =

















a11 a12 · · · a1j · · ·
a21 a22 · · · a2j · · ·
...

...
...

ai1 ai2 · · · aij · · ·
...

...
...

















,

and

u1 =

M
∑

i=2

ai1 and v1 =

N
∑

j=2

a1j .

If u1 = 0, and since all entries in A are non-negative, then we get

A1 = A =

















a11 a12 · · · a1j · · ·
0 a22 · · · a2j · · ·
...

...
...

0 ai2 · · · aij · · ·
...

...
...

















.
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If u1 6= 0, and u1 ≥ v1 then we do the following transformation and denote

A1 = A+
∞
∑

i=2

∞
∑

j=2

ai1a1j

u1
E[(1, 1), (i, j)].

This implies

A1 =

















a11 +
∑∞

i=2

∑∞
j=2

ai1a1j
u1

a12 −
∑∞

i=2
ai1a12
u1

· · · a1j −
∑∞

i=2
ai1a1j
u1

· · ·
a21 −

∑∞
j=2

a21a1j
u1

a22 +
a21a12
u1

· · · a2j +
a21a1j
u1

· · ·
...

...
...

ai1 −
∑∞

j=2
ai1a1j
u1

ai2 +
ai1a12
u1

· · · aij +
ai1a1j
u1

· · ·
...

...
...

















=





















a11 + v1 0 · · · 0 · · ·
(

1− v1
u1

)

a21 a22 +
a21a12
u1

· · · a2j +
a21a1j
u1

· · ·

...
...

...
(

1− v1
u1

)

ai1 ai2 +
ai1a12
u1

· · · aij +
ai1a1j
u1

· · ·

...
...

...





















.

If u1 6= 0, and u1 ≤ v1, we consider the following transformation:

A1 = A+

∞
∑

i=2

∞
∑

j=2

ai1a1j

v1
E[(1, 1), (i, j)],

and

A1 =

















a11 +
∑∞

i=2

∑∞
j=2

ai1a1j
v1

a12 −
∑∞

i=2
ai1a12
v1

· · · a1j −
∑∞

i=2
ai1a1j
v1

· · ·

a21 −
∑∞
j=2

a21a1j
v1

a22 +
a21a12
v1

· · · a2j +
a21a1j
v1

· · ·
...

...
...

ai1 −
∑∞

j=2
ai1a1j
v1

ai2 +
ai1a12
v1

· · · aij +
ai1a1j
v1

· · ·
...

...
...

















=



















a11 + u1

(

1− u1

v1

)

a12 · · ·
(

1− u1

v1

)

a1j · · ·

0 a22 +
a21a12
v1

· · · a2j +
a21a1j
v1

· · ·
...

...
...

0 ai2 +
ai1a12
v1

· · · aij +
ai1a1j
v1

· · ·
...

...
...



















.

Hence, A ∼= A1 where A1 is of the form:

















a11 a12 · · · a1j · · ·
0 a22 · · · a2j · · ·
...

...
...

0 ai2 · · · aij · · ·
...

...
...

















or

















a11 0 · · · 0 · · ·
a21 a22 · · · a2j · · ·
...

...
...

ai1 ai2 · · · aij · · ·
...

...
...

















and (r1, c1) = (1, 1). Here and in the following steps, for simplicity of notations, we continue using the same
notation, aij ’s, to denote non-negative entries.
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Step 2: Set A1 = f(A), note that A1
∼= A is 1-stairable. For each k ∈ N, if Ak ∼= A is k-stairable, we

construct a (k + 1)-stairable matrix Ak+1
∼= A as follows. Given

Ak =































a11 · · · a1,ck−1 a1,ck 0 · · · 0 · · ·
...

...
...

...
...

ark−1,1 · · · ark−1,ck−1 ark−1,ck 0 · · · 0 · · ·
ark1 · · · arkck−1 arkck ark,ck+1 · · · ark,j · · ·
0 · · · 0 ark+1,ck ark+1,ck+1 · · · ark+1,j · · ·
...

...
...

...
...

0 · · · 0 ai,ck ai,ck+1 · · · aij · · ·
...

...
...

...
...































,

where the upper left corner sub-matrix

S =











a11 · · · a1,ck−1 a1,ck
...

...
...

ark−1,1 · · · ark−1,ck−1 ark−1,ck

ark1 · · · arkck arkck











is stair-shaped (which implies that rk + ck − 1 = k), S ∈ Ark,ck , and let

B = f

































arkck ark,ck+1 · · · ark,j · · ·
ark+1,ck ark+1,ck+1 · · · ark+1,j · · ·

...
...

...
ai,ck ai,ck+1 · · · aij · · ·
...

...
...

































=

















brkck brk,ck+1 · · · brk,j · · ·
brk+1,ck brk+1,ck+1 · · · brk+1,j · · ·

...
...

...
bi,ck bi,ck+1 · · · bij · · ·
...

...
...

















.

Then we define

Ak+1 =































a11 · · · a1,ck−1 a1,ck 0 · · · 0 · · ·
...

...
...

...
...

ark−1,1 · · · ark−1,ck−1 ark−1,ck 0 · · · 0 · · ·
ark1 · · · arkck−1 brkck brk,ck+1 · · · brk,j · · ·
0 · · · 0 brk+1,ck brk+1,ck+1 · · · brk+1,j · · ·
...

...
...

...
...

0 · · · 0 bi,ck bi,ck+1 · · · bij · · ·
...

...
...

...
...































.

By definition of f , two sequences (rk)
∞
k=1 and (ck)

∞
k=1 can be constructed as follows:

(1) If
[

brk,ck+1 . . . brk,j . . .
]

6=
[

0 . . . 0 . . .
]

,

then (rk+1, ck+1) = (rk, ck + 1);
(2) If

[

brk,ck+1 . . . brk,j . . .
]

=
[

0 . . . 0 . . .
]

and
[

brk+1,ck . . . bi,ck . . .
]T

6=
[

0 . . . 0 . . .
]T
,

then (rk+1, ck+1) = (rk + 1, ck);
(3) If

[

brk,ck+1 . . . brk,j . . .
]

=
[

0 . . . 0 . . .
]

and
[

brk+1,ck . . . bi,ck . . .
]T

=
[

0 . . . 0 . . .
]T
,

then (rk+1, ck+1) = (rk, ck + 1).
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This gives (rk)
∞
k=1, (ck)

∞
k=1 are non-decreasing sequences with rk+1 + ck+1 = rk + ck + 1 = k + 2. By doing

so, we get a (k + 1)-stairable matrix Ak+1 with A ∼= Ak ∼= Ak+1. Note that in this construction we have

(6.1) Ak+1(i, j) = Ak(i, j), for i < rk or j < ck.

Moreover,

Ak+1 = Ak +

∞
∑

l=1

tk,lEk,l

for some tk,l ∈ R, and Ek,l’s are elementary matrices. Set

A∞ := A1 +

∞
∑

k=1

∞
∑

l=1

tk,lEk,l,

then

A∞ ∼= A1
∼= A.

Note that for each i = 1, . . . ,M and j = 1, . . . , N , by (6.1) and rk + ck − 1 = k, the sequence Ak(i, j) is
eventually constant when k is large enough. Thus, A∞(i, j) = limk→∞ Ak(i, j) is well defined, stair-shaped,
with non-negative entries. �

After knowing the existence of the stair-shaped matrix B using Theorem 6.4, one may use the following
algorithm to recursively find its entries.

Algorithm 6.5.
Input: A matrix A = [aij ] ∈ AM,N .
Output: A stair-shaped matrix B = [bij ] ∈ AM,N with B ∼= A.
Algorithm: One may recursively calculate the entries of B as follows:

• Step 1: Start with i0 = 1, j0 = 1, set

R =

N
∑

j=1

a1j and C =

M
∑

i=1

ai1.

If R ≤ C, then b11 = R, b1j = 0 for all j > 1. Otherwise, b11 = C and bi1 = 0 for all i > 1.

• Step 2: For each (i0, j0) with bi0,j0 unknown and bij is known for all i < i0 and j < j0, let

R =

N
∑

j=1

ai0,j −
∑

j<j0

bi0,j , C =

M
∑

i=1

ai,j0 −
∑

i<i0

bi,j0 .

If R ≤ C, set

bi0,j0 = R, bi0,j = 0 for all j > j0.

Otherwise, when R > C, set

bi0,j0 = C, bi,j0 = 0 for all i > i0.

Using Step 2 recursively, one can calculate all entries of the stair-shaped matrix B.

6.2. Stair-shaped good decomposition.

Definition 6.6. Let η be a finite measure on Γ with (p0)#η = µ− and (p∞)#η = µ+. The representing
matrix of η is the matrix A = [aij ] ∈ AM,N such that aij = η(Γxi,yj ) for each i, j. We say that η is stair-
shaped if its representing matrix A is stair-shaped. A transport path T ∈ Path(µ−, µ+) is called stair-shaped
if there exists a good decomposition η of T such that η is stair-shaped.

Proposition 6.7. Any stair-shaped good decomposition η of T is a better decomposition of T .
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Proof. By Definition 3.1, suppose there exist 1 ≤ i1 < i2 ≤M and 1 ≤ j1 < j2 ≤ N , with

Si1,j1(η)− Si1,j2(η)− Si2,j1(η) + Si2,j2(η) = 0,

then direct calculation from (3.7) gives either

η(Γi1,j1) = η(Γi1,j2) = η(Γi2,j1) = η(Γi2,j2) = 0,

or
η(Γi1,j1) > 0, η(Γi1,j2) > 0, η(Γi2,j1) > 0, η(Γi2,j2) > 0.

The latter case cannot appear since η is stair-shaped and there is no way to align the indexes

(i1, j1), (i1, j2), (i2, j1), (i2, j2),

such that both two coordinates are non-decreasing sequences. As a result, η is a better decomposition.
�

A stair-shaped path is not necessarily cycle-free. For instance, the transport path T given in Remark 4.3
is stair-shaped because η = δγx1,y1

+ δγx2,y2
is a stair-shaped good decomposition of T . However, T is not

cycle-free.

Example 6.1. Let T be a transport path from

µ− = 9δx1
+ 9δx2

+ 9δx3
+ 27δx4

+ 27δx5
to µ+ = 36δy1 + 9δy2 + 18δy3 + 9δy4 + 9δy5

given as shown in the following figure.

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5
T

27

27

9

9

9

18

54

63 81
63

18

45

36

9

18

9

9

For each (i, j), let γxi,yj ∈ Γ be the unique polyhedral curve from xi to yj on T , and ai,j be the (i, j)-entry
of the matrix

A =













4 1 2 1 1
4 1 2 1 1
4 1 2 1 1
12 3 6 3 3
12 3 6 3 3













.

Then

ηA :=
5
∑

i,j=1

aijδγxi,yj

is a good but not a better decomposition of T . Using Algorithm 6.5, the corresponding stair-shaped matrix of
A is given by

B =













9 0 0 0 0
9 0 0 0 0
9 0 0 0 0
9 9 9 0 0
0 0 9 9 9













.

The corresponding measure

ηB :=

5
∑

i,j=1

bijδγxi,yj

24



on Γ is a stair-shaped good decomposition of T , which is automatically a better decomposition of T .

The following theorem says that any stair-shaped transport path can be decomposed as the sum of two
subcurrents generated by two transport maps.

Theorem 6.8. Let T ∈ Path(µ−, µ+) be a stair-shaped transport path, where µ− and µ+ are given in (2.10).
Then there exist decomposition

µ− = µ−
1 + µ−

2 , µ
+ = µ+

1 + µ+
2 , and T = T1 + T2

such that

(a) for each i = 1, 2, Ti is a subcurrent of T and Ti ∈ Path(µ−
i , µ

+
i ),

(b) there exists transport maps ϕ ∈ Map(µ−
1 , µ

+
1 ) and ψ ∈ Map(µ+

2 , µ
−
2 ) such that both (T1, ϕ) and

(−T2, ψ) are compatible.

Proof. Since T is stair-shaped, there exists a good decomposition η whose representing matrix A = [aij ] is
a stair-shaped matrix. We now write A as the sum of B = [bij ] and C = [cij ] as follows. For each i and j, if
aij = 0, set bij = 0 and cij = 0. When aij > 0,

• if aij is the last non-zero entry in the i-th row of A, (i.e., aij′ = 0 for all j′ ≥ j +1,) we set bij = aij
and cij = 0;

• if aij is not the last non-zero entry in the i-th row of A, since A is stair-shaped, aij is the last
non-zero entry in the j-th column of A. In this case, we set bij = 0 and cij = aij .

By doing so, we write A = B + C such that each row of B = [bij ] and each column of C = [cij ] contain at
most one non-zero entry. Note that for each (i, j), aij = bij + cij and aij > 0 means either bij > 0 or cij > 0
but not both. Define

µ−
1 =

∑

i





∑

j

bij



 δxi
, µ+

1 =
∑

j

(

∑

i

bij

)

δyj , µ
−
2 =

∑

i





∑

j

cij



 δxi
, µ+

2 =
∑

j

(

∑

i

cij

)

δyj .

Then µ− = µ−
1 + µ−

2 and µ+ = µ+
1 + µ+

2 . Let

T1 :=

∫

{γ∈Γxi,yj
: bij>0}

Iγ dη, and T2 :=

∫

{γ∈Γxi,yj
: cij>0}

Iγ dη.

Both T1 and T2 are subcurrents of T , and

∂T1 =

∫

{γ∈Γxi,yj
: bij>0}

(δyj − δxi
) dη =

∑

i,j

bij(δyj − δxi
) = µ+

1 − µ−
1 ,

∂T2 =

∫

{γ∈Γxi,yj
: cij>0}

(δyj − δxi
) dη =

∑

i,j

cij(δyj − δxi
) = µ+

2 − µ−
2 ,

which gives Ti ∈ Path(µ−
i , µ

+
i ) for i = 1, 2. Then,

T =

∫

Γ

Iγ dη =

∫

{γ∈Γxi,yj
: aij>0}

Iγ dη =

∫

{γ∈Γxi,yj
: bij>0}

Iγ dη +

∫

{γ∈Γxi,yj
: cij>0}

Iγ dη = T1 + T2.

Denote

X1 = {xi ∈ X : µ−
1 ({xi}) > 0}, Y1 = {yj ∈ X : µ+

1 ({yj}) > 0},

X2 = {xi ∈ X : µ−
2 ({xi}) > 0}, Y2 = {yj ∈ Y : µ+

2 ({yj}) > 0}.

Observe that since A is stair-shaped, by the construction of bij , for each i, there exists at most one j (i.e.
the largest j with aij > 0) such that bij > 0. This leads to a map: ϕ : X1 → Y1 given by

ϕ(xi) = yj if bij > 0.

Similarly, for each j, there exists at most one i (i.e. the largest i with aij > 0) such that cij > 0. This leads
to a map: ψ : Y2 → X2 given by

ψ(yj) = xi if cij > 0.
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By definition of ϕ, for each yj ∈ Y1,

ϕ#µ
−
1 ({yj}) = µ−

1 (ϕ
−1(yj)) = µ−

1 ({xi : bij > 0}) =
∑

bij>0

µ−
1 ({xi}) =

∑

i

bij = µ+
1 ({yj}).

Therefore, ϕ#µ
−
1 = µ+

1 , and similarly, µ−
2 = ψ#µ

+
1 . Also, direct calculation gives

πϕ := (id× ϕ)#µ
−
1 =

∫

{γ∈Γxi,yj
: bij>0}

δ(xi,yj) dη, and πψ := (id× ψ)#µ
+
2 =

∫

{γ∈Γxi,yj
: cij>0}

δ(yj ,xi) dη.

Hence, (T1, ϕ) and (−T2, ψ) are compatible. �

We now provide an example to illustrate Theorem 6.8.

Example 6.2. Let T , µ−, µ+, A, B, ηA, ηB be the same values as defined in Example 6.1. By Theorem
6.8, we have

B1 =













9 0 0 0 0
9 0 0 0 0
9 0 0 0 0
0 0 9 0 0
0 0 0 0 9













, B2 =













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
9 9 0 0 0
0 0 9 9 0













,

so that B = B1 +B2. By matrix B1, we get a transport path T1, with

µ−
1 = 9δx1

+ 9δx2
+ 9δx3

+ 9δx4
+ 9δx5

, µ+
1 = 27δy1 + 9δy3 + 9δy5 ,

and ϕ : {x1, x2, x3, x4, x5} → {y1, y3, y5}, such that

ϕ(x1) = ϕ(x2) = ϕ(x3) = y1, ϕ(x4) = y3, ϕ(x5) = y5.

x1

x2

x3

x4

x5

y1

y3

y5
T1

9

9

9

9

9

By matrix B2, we get a transport path T2, with

µ−
2 = 18δx4

+ 18δx5
, µ+

2 = 9δy1 + 9δy2 + 9δy3 + 9δy4,

and ψ : {y1, y2, y3, y4} → {x4, x5}, such that

ψ(y1) = ψ(y2) = x4, ψ(y3) = ψ(y4) = x5

x4

x5

y1

y2

y3

y4

T2

9

9

9

9

Then, T is decomposed as the sum of T1 and T2.
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6.3. Cycle-free stair-shaped transport paths.
To use Theorem 6.8, for a given transport path, one may want to find a stair-shaped good decomposition

of it. However, the stair-shaped matrix generated by Algorithm 6.5 does not necessarily correspond to a
good decomposition, even if we start with a good decomposition, as demonstrated by the following example.

Example 6.3. Let T be the graph given in the following figure, and γi,j be the curve on T from xi to yj for
each i, j.

y1 y2

x2 x1

2

1

11

2

T

Then,
η = δγ1,1 + δγ1,2 + δγ2,1

is a good decomposition of T with the representing matrix

A = [aij ] =

[

1 1
1 0

]

.

Algorithm 6.5 gives the stair-shaped matrix

B = [bij ] =

[

2 0
0 1

]

.

However, the corresponding measure,
ηB := 2δγ1,1 + δγ2,2

is not a good decomposition of T anymore.

To overcome this issue, we introduce the following concepts:

Definition 6.9. Given A ∈ AM,N , an elementary matrix E[(i1, j1), (i2, j2)] is called admissible to A if

aij > 0 for all (i, j) ∈ {(i1, j1), (i2, j2), (i1, j2), (i2, j1)}. For any two matrices A,B ∈ AM,N , we say A , B if
there exists a list of real numbers {tk}Kk=1 and a list of elementary matrices {Ek}Kk=1 admissible to A such

that B = A+
∑K

k=1 tkEk for some K ∈ N ∪ {∞}.

Lemma 6.10. Suppose A is the representing matrix of a finite measure ηA on Γ satisfying (p0)#ηA = µ−

and (p∞)#ηA = µ+. For any matrix B = [bij ] with A , B, define

(6.2) ηB :=
∑

i,j
with aij>0

bij

aij
ηA⌊Γxi,yj

.

Then ηB is a finite measure on Γ with (p0)#ηB = µ− and (p∞)#ηB = µ+. Moreover, B is the representing
matrix of ηB and ηB ≺≺ ηA.

Proof. The condition A , B gives

B = A+
∑

k

tkEk,

for some real numbers tk and elementary matrices Ek = E[(ik, jk), (i
′
k, j

′
k)] that are admissible to A.

Note that

ηB(Γ) =
∑

i,j
with aij>0

bij

aij
ηA⌊Γxi,yj

(Γ) =
∑

i,j
with aij>0

bij

aij
ηA(Γxi,yj) =

∑

i,j
with aij>0

bij

=
∑

i,j
with aij>0

(aij + tk(Ek)ij) =
∑

i,j
with aij>0

aij = ηA(Γ) <∞.
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Moreover,

(p0)#ηB =
∑

i,j
with aij>0

bij

aij
ηA(Γxi,yj )δxi

=
∑

i,j
with aij>0

bijδxi
=
∑

i









∑

j
with aij>0

(

aij +
∑

k

tk(Ek)ij

)









δxi

=
∑

i









∑

j
with aij>0

aij









δxi
=

∑

i,j
with aij>0

aijδxi
= (p0)#ηA = µ−.

Similarly, (p∞)#ηB = µ+.
We now show that B is the representing matrix of ηB , i.e., ηB(Γxi′ ,yj′

) = bi′j′ for each pair (i′, j′). If

ai′j′ = 0, then ηB(Γxi′ ,yj′
) = 0 since the sum is over all aij > 0. Also, since Ek’s are admissible to A, this

gives (Ek)i′j′ = 0 for all k, so that bi′j′ = 0 = ηB(Γxi′ ,yj′
). If ai′j′ > 0, then since ηA(Γxi′ ,yj′

) = ai′j′ ,

ηB(Γxi′ ,yj′
) =

∑

i,j
with aij>0

bij

aij
ηA⌊Γxi,yj

(Γxi′ ,yj′
) = bi′j′ .

Therefore, B is the representing matrix of ηB .
In the end, we show ηB ≺≺ ηA by using Lemma 3.4. Suppose ηB(Γxi′ ,yj′

) = bi′j′ > 0, then previous
argument gives ai′j′ > 0. Also, by definition of ηB,

∫

Γx
i′

,y
j′

IγdηB =
bi′j′

ai′j′

∫

Γx
i′

,y
j′

IγdηA, and hence
1

bi′j′

∫

Γx
i′

,y
j′

IγdηB =
1

ai′j′

∫

Γx
i′

,y
j′

IγdηA.

As a result, Si′j′ (ηB) = Si′j′(ηA) as desired. �

Proposition 6.11. Let T be a cycle-free transport path from µ− to µ+. Suppose ηA is a good decomposition
of T , then for any matrix B = [bij ] with A , B, ηB given in (6.2) is also a good decomposition of T .

Proof. Let A = [aij ] ∈ AM,N , B = [bij ] ∈ AM,N , then A , B gives

B = A+
∑

k

tkEk,

for some real numbers tk and elementary matrices Ek = E[(ik, jk), (i
′
k, j

′
k)] that are admissible to A. Using

Si,j(η) defined in (3.1), we have

∫

Γ

Iγd(ηB − ηA) =

∫

Γ

Iγ d





∑

i,j

bij

aij
ηA⌊Γxi,yj

−
∑

i,j

ηA⌊Γxi,yj





=
∑

i,j

bij − aij

aij

∫

Γxi,yj

IγdηA

=
∑

i,j

(bij − aij)Si,j(ηA) =
∑

k

tk
∑

i,j

(Ek)ijSi,j(ηA)

=
∑

k

tk ·
(

Sik,jk(ηA)− Sik,j′k(ηA)− Si′
k
,jk(ηA) + Si′

k
,j′

k
(ηA)

)

.

Since Ek’s are admissible to A, then aij > 0 for (i, j) ∈ {(ik, jk)), (ik, j′k)), (i
′
k, jk)), (i

′
k, j

′
k))}. Since

Sik,jk(ηA)− Sik,j′k(ηA)− Si′
k
,jk(ηA) + Si′

k
,j′

k
(ηA)

is on T and aij > 0, direct calculation gives

∂
(

Sik,jk(ηA)− Sik,j′k(ηA)− Si′
k
,jk(ηA) + Si′

k
,j′

k
(ηA)

)

= 0.

By Definition 4.2, T is a cycle-free transport path implies

Sik,jk(ηA)− Sik,j′k(ηA)− Si′
k
,jk(ηA) + Si′

k
,j′

k
(ηA) = 0.
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Hence,
∫

Γ

IγdηB =

∫

Γ

IγdηA.

By using an analogous argument as in the proof of Step 1 in Lemma 3.7, it follows that ηB is also a good
decomposition of T . �

Given a matrix A with non-negative entries, Theorem 6.4 gives a stair-shaped matrix B, such that A ∼= B,
which by definition says B = A +

∑

k tkEk for some elementary matrices Ek. In general, A ∼= B does not

imply A , B, since it is possible that some Ek’s are not admissible to A. However, when each entries of
A is positive (as illustrated in Example 6.1), A ∼= B implies A , B. In general, when A satisfies certain

conditions as stated in the following corollary, we have both A ∼= B and A , B, so that the ηB in (6.2) is a
stair-shaped good decomposition.

Suppose A = [aij ], let A[(i0, j0), (i
′
0, j

′
0)] be the “sub-matrix” of A with entries aij ’s such that i0 ≤ i ≤ i′0,

j0 ≤ j ≤ j′0.

Corollary 6.12. Let T be a cycle-free transport path from µ− to µ+. Let A = [aij ] be the representing
matrix of a good decomposition ηA of T . If there exist a list of sub-matrices Ak = A[(ik, jk), (i

′
k, j

′
k)] of A

such that

(a) (i1, j1) = (1, 1) and i′k ≤ ik+1 ≤ i′k + 1, j′k ≤ jk+1 ≤ j′k + 1 for each k,
(b) all elements of the sub-matrix Ak are positive for each k,
(c) all elements of A not in any of the sub-matrices are 0,

then there exists a stair-shaped good decomposition ηB of T with ηB ≺≺ ηA. Hence, T is stair-shaped.

Proof. We construct the desired stair-shaped matrix by using induction. We first apply Theorem 6.4 to the
sub-matrix

A1 = A[(i1, j1), (i
′
1, j

′
1)]

and get a stair-shaped A′
1. Then replace entries in A with entries in A′

1 in their corresponding original
positions in A, and denote this new matrix as B1. Inductively, for each k ≥ 1, apply Theorem 6.4 to the
sub-matrix

Bk[(ik+1, jk+1), (i
′
k+1, j

′
k+1)]

of Bk and get a stair-shaped A′
k+1. Then replace entries in Bk with entries in A′

k+1 in their corresponding
original positions in Bk, and denote this matrix as Bk+1. Note that for each k, by condition (a), the
sub-matrix Bk[(i1, j1), (i

′
k, j

′
k)] is stair-shaped and

(6.3) BK [(i1, j1), (i
′
k, j

′
k)] = Bk[(i1, j1), (i

′
k, j

′
k)], for each K ≥ k + 2.

As a result, for each (i, j), the limit limk→∞Bk(i, j) exists and equals the value of Bk(i, j) when k is large
enough.

Let B be the limit matrix of {Bk} whose (i, j)-entry B(i, j) = limk→∞Bk(i, j) for each (i, j). By (6.3),
B[(i1, j1), (i

′
k, j

′
k)] = Bk[(i1, j1), (i

′
k, j

′
k)] for each k. Since Bk[(i1, j1), (i

′
k, j

′
k)] is stair-shaped, B is also stair-

shaped. Since B is a stair-shaped matrix, its corresponding measure ηB as defined in (6.2) is stair-shaped.

By (b) and definition of admissible matrices, we have A , B. Therefore, Proposition 6.11 gives ηB is a good
decomposition with ηB ≺≺ ηA. �

In the end, we provide a typical matrix of finite size satisfying conditions (a), (b), (c) in Corollary 6.12,
and see how to decompose the corresponding cycle-free stair-shaped transport path into the difference of
two map-compatible paths.

Example 6.4. Let

µ− = 4δx1
+ 11δx2

+ 14δx3
+ 11δx4

+ 17δx5
+ 10δx6

+ 3δx7
+ 6δx8

+ 2δx9
+ δx10

+ 5δx11
,

µ+ = 4δy1 + 3δy2 + 14δy3 + 11δy4 + 12δy5 + 7δy6 + 7δy7 + 9δy8 + 3δy9 + 3δy10 + 11δy11,

and T be a cycle-free transport path from µ− to µ+ illustrated by the following diagram:
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x1

x2

x3

x4

x5

x6

x7

x8

x9

x10x11

y1

y2

y3

y4
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y6

y7
y8

y9

y10

y11

4
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7

43

14
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11

8
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4
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7

16
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6
3

3

3

2
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Transport Path T

Let

A =





































1 1 2 0 0 0 0 0 0 0 0
3 2 1 2 3 0 0 0 0 0 0
0 0 6 7 1 0 0 0 0 0 0
0 0 5 2 4 0 0 0 0 0 0
0 0 0 0 1 3 6 7 0 0 0
0 0 0 0 3 4 1 2 0 0 0
0 0 0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 2 1 3
0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 5





































.

Then, A = [aij ] is the corresponding matrix of a good decomposition ηA of T , namely

ηA :=
∑

i,j

aijδγxi,yj
.

Here, A satisfies conditions (a), (b), (c) in Corollary 6.12 with

A1 =

[

1 1 2
3 2 1

]

, A2 =





1 2 3
6 7 1
5 2 4



 , A3 =

[

1 3 6 7
3 4 1 2

]

, A4 =

[

1 2
2 1

]

, and A5 =









3
2
1
5









.

Using algorithm 6.5, we have

A′
1 =

[

4 0 0
0 3 3

]

, A′
2 =





8 0 0
6 8 0
0 3 8



 , A′
3 =

[

4 7 6 0
0 0 1 9

]

, A′
4 =

[

3 0
0 3

]

, and A′
5 =









3
2
1
5









.

By Corollary 6.12,

ηB :=
∑

i,j

bijδγxi,yj
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is a stair-shaped good decomposition of T with ηB ≺≺ ηA, where the matrix

B = [bij ] =





































4 0 0 0 0 0 0 0 0 0 0
0 3 8 0 0 0 0 0 0 0 0
0 0 6 8 0 0 0 0 0 0 0
0 0 0 3 8 0 0 0 0 0 0
0 0 0 0 4 7 6 0 0 0 0
0 0 0 0 0 0 1 9 0 0 0
0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 3 3
0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 5





































is stair-shaped.
Now, by the proof of Theorem 6.8, one may decompose the stair-shaped matrix B into B = B1+B2 where

B1 =





































4 0 0 0 0 0 0 0 0 0 0
0 0 8 0 0 0 0 0 0 0 0
0 0 0 8 0 0 0 0 0 0 0
0 0 0 0 8 0 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 0 9 0 0 0
0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 5





































and B2 =





































0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 4 7 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0





































.

From matrix B1 and the transport path T , we may construct the corresponding transport path T1 ∈
Path(µ−

1 , µ
+
1 ) illustrated below, where

µ−
1 = 4δx1

+ 8δx2
+ 8δx3

+ 8δx4
+ 6δx5

+ 9δx6
+ 3δx7

+ 3δx8
+ 2δx9

+ δx10
+ 5δx11

,

and

µ+
1 = 4δy1 + 8δy3 + 8δy4 + 8δy5 + 6δy7 + 9δy8 + 3δy9 + 11δy11.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10x11

y1

y3

y4

y5

y7
y8

y9

y11

4
8

4

8

8

8

8

6

9
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3
3

2

1
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Transport Path T1
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Note that from the non-zero entries of B1, there exists a transport map

ϕ1 : {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11} −→ {y1, y3, y4, y5, y7, y8, y9, y11},

where

ϕ1(x1) = y1, ϕ1(x2) = y3, ϕ1(x3) = y4, ϕ1(x4) = y5, ϕ1(x5) = y7, ϕ1(x6) = y8,

ϕ1(x7) = y9, ϕ1(x8) = y11, ϕ1(x9) = y11, ϕ1(x10) = y11, ϕ1(x11) = y11.

Here, ϕ1#µ
−
1 = µ+

1 , and (T1, ϕ1) is compatible.
Similarly, using matrix B2 and transport path T , we may construct the corresponding transport path

T2 ∈ Path(µ−
2 , µ

+
2 ) as illustrated below, where

µ−
2 = 3δx2

+ 6δx3
+ 3δx4

+ 11δx5
+ δx6

+ 3δx8
,

and
µ+
2 = 3δy2 + 6δy3 + 3δy4 + 4δy5 + 7δy6 + δy7 + 3δy10.

x2

x3

x4

x5

x6
x8

y2

y3

y4

y5

y6

y7

y10

3

3

6

3

3

4 7

1

4

7

1

1

3

3

Transport Path T2

Again, using the non-zero entries of B2, there exists a transport map

ϕ2 : {y2, y3, y4, y5, y6, y7, y10} −→ {x2, x3, x4, x5, x6, x8},

with

ϕ2(y2) = x2, ϕ2(y3) = x3, ϕ2(y4) = x4, ϕ2(y5) = x5, ϕ2(y6) = x5, ϕ2(y7) = x6, ϕ2(y10) = x8,

Here, µ−
2 = ϕ2#µ

+
1 , and (−T2, ϕ2) is compatible.

As a result, we decompose the cycle-free stair-shaped transport path T = T1 − T2 as the difference of two
map-compatible paths T1 and T2.
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