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Abstract. In this article, we provide a model to study urban transport network by
means of optimal transport paths recently studied by the author. Under this model,
we can set up an optimal urban transport network of finite total cost which provide
access to all residents from their home to their destinations. The quality of the road
depends on the traffic density it carries, which make it necessary to build a large
highway for heavy traffic. Moreover, we provide a reasonable pricing system for an
optimal transport network, under which all residents will travel to their destinations
by the network. We also studied the problem of expanding and modifying a given
network.

1. Introduction. People travel everyday from their home to their working places
or other destinations. Thus, building an efficient urban transportation network
becomes essential. Many mathematical models have been given to this problem,
usually by means of the graph theory. In [1][2], Buttazzo, Oudet and Stepanov gave
a new approach to this problem, by means of Monge-Kantorovich mass transporta-
tion. For reader’s convenience, we briefly recall their approach as follows.

Let Ω ⊂ Rn be an open bounded set standing for the city, µ+ be a probability
measure on Ω̄ representing the density of the homes, and µ− be another probability
measure on Ω̄ representing the density of the working places. Let H1 denote the
one dimensional Hausdorff measure. For each closed and connected set Σ with
H1 (Σ) < +∞ , one can study the following Monge-Kantorovich problem with the
Dirichlet constraint Σ:

minimize IΣ (γ) =
∫

Ω̄×Ω̄

d (x, y) ∧ (dist (x,Σ) + dist (y, Σ)) dγ (x, y)

among all transport plans γ ∈ P (
Ω̄× Ω̄

)
satisfying

π+
#γ − π−#γ = µ+ − µ− over Ω̄ \ Σ,

where d (x, y) denotes the geodesic distance from x to y in Ω̄. This problem al-
ways has a solution, and we let MK (µ+, µ−, Σ) denote the minimum value of this
problem. Then, an optimal urban transport network in the BOS model [1] [2] is a
solution to the following minimizing problem:

min
{
MK

(
µ+, µ−, Σ

)
: Σ ⊂ Ω̄ closed and connected, H1 (Σ) ≤ Λ

}
(1)

where Λ > 0 is a given length constraint.
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They are able to get the existence of an optimal transportation network Σ un-
der any given length constraint Λ. An optimal transport network Σ is a closed
connected 1-set of assigned length, enjoying some nice topological and geometrical
properties. However, it becomes complicated in studying the regularity properties
of optimal transport network. It is not clear the asymptotic behavior of optimal
transport network when Λ approaches to ∞. Moreover, highways and ordinary
streets cannot be distinguished in their model.

In this article, we will give a new approach to the optimal urban transportation
problem by means of the optimal transport paths build by the author in [3] and [4].
This model is closely related to the above BOS model in the sense that when the
length constraint Λ of (1) becomes large enough (or more precisely, larger than the
d0-distance between µ+ and µ−, given by the author in [3]), the optimal transport
network desired in the BOS model will be the optimal transport path in the sense of
the author [3] with α = 0. Thus, the regularity properties of the optimal transport
network in the BOS model follows from the interior regularity of optimal transport
path, achieved by the author in [4]. However, in general,the d0 distance between
µ+ and µ− may not be finite.

There are several advantages of this new model. When our parameter α ∈
(1/2, 1), which is possibly true in reality, we can build an optimal urban transport
network of finite total cost which provides access to all residents from their home to
their destinations. Thus, we do not need a length constraint Λ here. The restriction
of Σ being connected in the BOS model is also not needed here. Also, in this model,
the quality of the road will depend on the traffic density it carries. Thus, it is natural
to have a larger highway for heavier traffic density. Moreover, in this model, it is
easy to setup a reasonable pricing system for an optimal transport network. Under
this pricing system, all residents will travel by the network because the ticket price
is cheaper than the total cost of travelling by their own means.

The article is organized as follows. We first express the urban transport network
problem in the framework of the optimal transport paths. Instead of viewing a
urban transport network as a closed connected one dimension set of assigned length
as in the BOS model, we view a urban transport network as a transport path from
µ+ to µ− , which is a real coefficient rectifiable 1−current. Then we will restate the
main results of [3][4] without proof in terms of urban transport networks. A crucial
step is to introduce the Mα cost of urban transport networks which will force nearby
items to travel on a common route. After that, we will set up a reasonable price
system for an optimal urban transportation network. Under that price system, it
will be advantageous for any resident to travel their destinations by the network.

In reality, most cities may already have some urban transport networks. When we
build a new network, we should take advantage of the old one as much as possible.
How to build a new efficient network from the old one? In section 4, we formulate
the problem and prove the existence theorem. Away from the old system, the new
system will still have the desired regularity.

2. Urban transport networks. In building an efficient urban transport network,
we keep the following considerations in our mind. First, a reasonable network should
be able to provide transportation for every resident to its destination. Second, to
be realistic, the total cost of building the network should be finite, and as small
as possible. Moreover, after building the network, the total travelling expenses for
the whole population (e.g. travelling time, cost on fuels etc.) should be as small as
possible.
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Let X ⊂ R2 be a bounded region where people lived. It can be a city, a state, a
country, or any region. For simplicity, we assume X to be convex. Suppose µ+ is
a probability measure in X representing the population density in X, while µ− is
another probability measure representing the density of destinations (e.g. business
areas, landscapes, etc.).

Roughly speaking, a urban transport network corresponding to µ+ and µ− is a
countable union of roads of various sizes connecting µ+ to µ−. In mathematical
language, a urban transport network is a real coefficient rectifiable 1−current of the
form

T =
∑

i

θi [[li]]

with
∂T = µ+ − µ−,

where θi ∈ (0, 1] and li denotes an oriented segment in X. In other words, T is a
countable weighted directed graph from µ+ to µ−, satisfying the “Kirchhoff’s law”
of electric currents at every interior vertices. Let

Path
(
µ+, µ−

)

be the family of all urban transport networks from µ+ to µ−.
Now, let us consider the total cost of the network, which arises as the sum of the

total construction cost for building the network and the total cost of consuming the
network. We want to build a reasonable mathematical model for it.

For a road of length l with traffic density θ, what should be the cost of the road?
As for the construction cost cb for building the road, cb should be proportional to l,
the length of the road. Also, it should be an increasing function of the θ, the traffic
density. The heavier the traffic is, the higher quality of road is needed, and thus the
higher the cost of building the road is. However, cb needs not to be proportional
to θ, instead it should be a concave function of θ. The reason is that when two
separate roads of density θ1 and θ2 are nearby, it is cheaper to build a common
road supporting traffic density θ1 + θ2. Building a “Y shaped” road is cheaper than
building a “V shaped” road, for at least the former occupies less land.

As for the travelling cost ct for the road, ct is also proportional to l. Moreover,
it is also an increasing but concave function of θ. The higher is the density, the
higher quality is the road, and thus, the less is the travelling time.

Therefore, the total cost of the road is an increasing but concave function of the
traffic density θ and proportional to the length l. For simplicity, we model it by

θαl

for some parameter 0 ≤ α < 1. When α = 0, the quality of the road is independent
of the traffic density. Thus, it is no need to build a highway. In reality, the value
of the parameter α depends on many factors such as the ratio of the actual cost of
building roads of different qualities, the cost of land, and so on. Usually α ∈ (0, 1),
which makes it necessary to build a large highway for heavy traffic.

Now, for any urban transport network T =
∑
i

θi [[li]] ∈ Path (µ+, µ−), its total

cost is given by
Mα (T ) =

∑

i

(θi)
α length (li) . (2)

To find an optimal urban network is to solve the following variational problem:

Minimize Mα (T )
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among all urban transport networks T ∈ Path (µ+, µ−).

In [3][4], the author solved this problem. For convenience, we restate the main
results here:

Proposition 1 (Existence). Suppose α ∈ (1/2, 1). For any two probability measures
µ+, µ− ∈ P (X), there exists an optimal urban transport network

T =
∑

i

θi [[li]]

with ∂T = µ+ − µ− under the cost function (2).

Note that this result follows from a combination of the existence theorem 3.1 of
[3] and the rectifiability theorem of [4, theorem 2.7]. Please see in [4, section 4.1]
for more details.

Proposition 2 (Distance). Suppose we set

dα

(
µ+, µ−

)
= min

{
Mα (T ) : T ∈ Path

(
µ+, µ−

)}
.

Then, we have
• ([3, theorem 4.1]) dα gives a distance on the space P (X) of all probability

measures in X.
• ([3, theorem 4.2])The distance dα metrizies the weak * topology of P (X).
• ([3, theorem 5.1])(P (X) , dα) forms a length space.

Proposition 3 (Finite Cost). ([3, theorem 3.1])For each α ∈ (1/2, 1)

dα

(
µ+, µ−

) ≤ 1
22α − 2

diameter (X) .

Proposition 4 (Approximation). ([3, corollary 4.3]) Suppose An (µ+) and An (µ−)
are the nth dyadic approximations of µ+ and µ− respectively. Suppose α ∈ (1/2, 1).
Let Gn ∈ Path (An (µ+) , An (µ−)) be an optimal transport network. Then, un-
der flat metric of real flat 1−chains, {Gn} subsequently converges to an optimal
transport network T between µ+ and µ−. Moreover,

|Mα (T )−Mα (Gn)| ≤ diam (X)
22α−1 − 1

(
21−2α

)n → 0

as n →∞.

Proposition 5 (Regularity). ([4, theorem 4.10]) Suppose T ∈ Path (µ+, µ−) is
an optimal transport network of finite total Mα cost. Then, at any point p on
the support of T but not on the support of µ+ − µ−, there exists an open ball
neighborhood Bp of p such that the support of T bBp is a cone which consists of
finitely many segments with suitable multiplicities. The angles between the segments
are determined by the parameter α as well as the multiplicities carried by these
segments. Moreover, for an optimal transport network T , the support of T contains
no cycles on X \ {spt (µ+) ∪ spt (µ−)} .

In the end of this section, we want to point out some links between this model
and the BSO model.

Assume d0 (µ+, µ−) < +∞, then there exists an optimal transport network T
in the sense of this model such that H1 (T ) = d0 (µ+, µ−) < +∞. For any Λ ≥
d0 (µ+, µ−), we claim that spt (T ) is also an optimal transport network in the sense
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of Buttazzo, Oudet and Stepanov [1] [2] if spt(T ) is connected. The reasoning is
very simple. Since ∂T = µ+ − µ−,

dist (x, spt (T )) = 0

for all x ∈ spt (µ+) ∪ spt (µ−). Thus,

MK
(
µ+, µ−, spt (T )

)
= 0

and spt (T ) is a minimizer in the BOS model. In the case that spt(T ) is not con-
nected, then each connected component Σ̃ of spt(T ) corresponds to an optimal
transport network in the sense of BOS. To see this, we note that

∂(T bΣ̃) = µ+bΣ̃− µ−bΣ̃.

A similar argument as above says that the connected component Σ̃ is an optimal
transport network from µ+bΣ̃ to µ−bΣ̃. Note that, in general, d0 (µ+, µ−) may be
∞.

3. A reasonable pricing structure. Even before constructing a urban transport
network, the company would like to estimate its potential revenue. Besides any
possible supports from outside sources, the company mainly earns its revenue from
charging its customers directly or indirectly. Thus, it becomes necessary for the
company to build a reasonable pricing struture for tolls. That is, how to set the price
so that the company can maximize the profit but still attracting enough residents
for using the network? To ensure residents will use the network, any reasonable
pricing structure needs to satisfy the following constraint:

Constraint 1. It is cheaper to travel on the network than to travel through any
alternative method.

We now give a reasonable pricing struture as follows. Suppose we have built an
optimal urban transport network

T =
∑

i

θi [[li]]

corresponding to µ+ and µ− under some cost function Mα for some α ∈ ( 1
2 , 1).

Each road li here associates with a traffic density θi. For this fixed parameter α,
we consider a positive decreasing function

p(x) = xα − (x− 1)α

for any x ∈ [1,+∞).
Now, for any θ > 0, let C(θ) denote the minimum travelling expense for any θ

residents travelling a unit distance among all posissible alternative methods. Then,
we set the price for these residents to travel on each road li to be

p(
θi

θ
)C(θ) (3)

per unit distance.
Since p(x) is a decreasing function of x, the price decreases as θi increases. As a

result, the price for using a highway is cheaper than the price for using an ordinary
street. Also, the following proposition says that it is cheaper to travel in a group
than as an individual.
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Proposition 6. For any λ ≥ 1 and any θ, θi as above, we have

p(
θi

λθ
)C(λθ) ≤ λp(

θi

θ
)C(θ)

whenever C(λx) ≤ λC(x).

Proof. Since p(x) is decreasing,

p(
θi

λθ
)C(λθ) ≤ p(

θi

θ
)C(λθ) ≤ λp(

θi

θ
)C(θ).

Moreover, we have the following result:

Theorem 1. The pricing system given in (3) satisfies the constraint 1.

Proof. Suppose there are θ residents travelling from a point P ∈ spt (µ+) to a point
Q on the support of the network Σ. We need to show that the total price for
travelling on the network is less than |PQ|C (θ), the expense of travelling by their
own ways. On the optimal transport network T , there exists a unique route from
P to Q on the system. Assume this route is given by

γPQ =
∑

i

θi [[Li]] .

Note that since T is an optimal transport network,

Mα (T ) ≤ Mα (T − γPQ + θ [[PQ]]) ,

which means∑

i

(θi)
α length (Li) ≤

∑

i

(θi − θ)α length (Li) + θα |PQ| .

Therefore, we have
∑

i

[(
θi

θ

)α

−
(

θi

θ
− 1

)α]
length (Li) ≤ |PQ| .

Thus, under the price system 3, the total price for them to travel on the network is
less than |PQ|C (θ), which is the travel expense by their own means. As a result,
residents would prefer to use the network.

As a result, all residents will travel to their destinations by the network under
the above pricing system. In other words, it is cheaper for any resident to travel by
the network than by any alternative method. This price system is reasonable for
general setting. Any optimal urban transport network can adapt this price system.
One can using this price system to estimate the potential revenue before building
the network.

4. Modifying a given urban system. Assume the region X has already an old
urban transportation system, represented by a compact set Σ with H1 (Σ) < +∞.
We want to build a new urban transport system from it. The constructing cost for
building roads on Σ and outside of Σ is different. To distinguish them, we use two
cost functionals Mα and N to measure the cost of a transport network on Σ and
outside of Σ. That is, for each transport network T ∈ Path (µ+, µ−), we let

Hα (T ) = Mα (T b(X \ Σ)) + N (T bΣ)
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for some α ∈ (1/2, 1). Here N is some given weakly lower semicontinuous functional
on real rectifiable 1-currents. Since the cost for maintaining a road on Σ is usually
cheaper than building a similar road outside of Σ, we usually assume

N (T bΣ) ≤ Mα (T bΣ)

for each T ∈ Path (µ+, µ−). A typical example of the functional N is Mβ for some
1 > β ≥ α. In some situation, N may even be identically zero. Also, since both µ+

and µ− are probability measures, the density function θ of each T ∈ Path (µ+, µ−)
is always not greater than 1. Thus, we have

N (T bΣ) ≤ Mα (T bΣ) ≤ H1 (Σ) < +∞.

Therefore,
Hα (T ) ≤ Mα (T ) ≤ Hα (T ) +H1 (Σ)

for each T ∈ Path (µ+, µ−).

Proposition 7. For each given α ∈ (1/2, 1), there exists a T ∈ Path (µ+, µ−) with
the least Hα (T ) cost among all T ∈ Path (µ+, µ−). Moreover, T enjoys the same
regularity of an optimal transport network on the region X \ Σ as in proposition 5.

Proof. Let T0 be an optimal transport path in Path (µ+, µ−) minimizing the Mα

cost functional. Since α > 1/2, we know Mα (T0) is finite. Let {Ti} ⊂ Path (µ+, µ−)
be a minimizing sequence of Hα. Then,

lim inf
i→∞

Mα (Ti) ≤ lim inf
i→∞

Hα (Ti) +H1 (Σ)

≤ Hα (T0) +H1 (Σ)
≤ Mα (T0) +H1 (Σ) < +∞.

Thus {Mα (Ti)} is uniformly bounded. By the compactness theorem of real coeffi-
cient rectifiable 1−currents under Mα cost (see [4, theorem 2.7]), Ti subsequently
converges to a rectifiable 1−current T in Path (µ+, µ−). Since T b(X \ Σ) is also an
Mα minimizer, by the interior regularity theorem ([4, Theorem 4.3]), T enjoys the
same regularity as in proposition 5 on X \ Σ. Also, by the lower semicontinuity of
Hα, T is an optimal urban transport network for Hα.
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