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Monge’s Transport Problem
How do you best move a given pile
of sand to fill a given hole of the
same volume? � � � � � �
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Pile of Sand: a positive Radon measureµ+ on a compact convex subset
X ⊂ Rm.

Hole: another positive Radon measureµ− onX.

Same Volume:0 < µ+ (X) = µ− (X) < +∞
move:a Borel, one-to-one mapψ : X → X
fill: ψ#µ

+ = µ− (i.e. µ−(A) = ψ#µ
+(A) = µ+(ψ−1(A))).

best:minimum total “work”
Work or cost ofψ: I (ψ) =

∫
X |x− ψ (x)| dµ+ (x).
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Monge’s problem (1781)
Find an “optimal transport map” in

A =
{
ψ : X → X Borel, one-to-one,ψ#

(
µ+) = µ−

}
which minimizes the cost

I [ψ] :=

∫
X
|x− ψ (x)| dµ+ (x)

or in general case

I [ψ] :=

∫
X
c (x, ψ (x)) dµ+ (x)

for some given cost density functionc : X ×X → [0,+∞).

Technical Difficulties:

•Highly nonlinearstructure ofI.

•No solution forX = [−1, 1], µ+ = δ0, µ− = 1
2δ−1 + 1

2δ1.
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Kantorovich (1940’s)
Transform it into a linear problem on a convex set.

µ−

µ+

Transport map

µ+

µ−

Transport Plan

Relaxation

Minimize

J (γ) :=

∫
X×X

c (x, y) dγ (x, y)

in the class oftransport plans

M ={γ ∈ P (X ×X) |πx#γ = µ+, πy#γ = µ−}

Existence: from a simple compactness argument of probability measures.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Wasserstein distances onP (X)

Definition. Givenp ∈ (0,+∞) (usually[1,+∞)), for anyµ+, µ− ∈ P (X),
define

Wp
(
µ+, µ−

)
:= ( min

γ∈M

∫
X×X

|x− y|p dγ (x, y))min(1,1/p).

distance between measures= minimal cost

Proposition.Wp is a distance onP (X) and metrizes the weak * topology of
P (X).

Many people has been working on this interesting problem.
Applications:This problem has many applications in Economic; Fluid Me-
chanics; PDE; Optimization; meteorology and oceanography; surface recon-
struction;· · · .
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Summary: For a given cost functionc : X × X → [0,+∞), we have
considered

•Monge problem:Minimize

I [ψ] :=

∫
X
c (x, ψ (x)) dµ+ (x)

among all transport maps.

•Monge-Kantorovich problem:Minimize

J (γ) :=

∫
X×X

c (x, y) dγ (x, y)

among all transport plans.
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Summary: For a given cost functionc : X × X → [0,+∞), we have
considered

•Monge problem:Minimize

I [ψ] :=

∫
X
c (x, ψ (x)) dµ+ (x)

among all transport maps.

•Monge-Kantorovich problem:Minimize

J (γ) :=

∫
X×X

c (x, y) dγ (x, y)

among all transport plans.

But, should we always define transportation cost as an integral of a cost
functionc(x, y)?
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Summary: For a given cost functionc : X × X → [0,+∞), we have
considered

•Monge problem:Minimize

I [ψ] :=

∫
X
c (x, ψ (x)) dµ+ (x)

among all transport maps.

•Monge-Kantorovich problem:Minimize

J (γ) :=

∫
X×X

c (x, y) dγ (x, y)

among all transport plans.

But, should we always define transportation cost as an integral of a cost
functionc(x, y)?

Answer: Not always.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A simple example
What is the best way to ship two items from nearby cities to the same desti-
nation far away.

µ+

µ−
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A simple example
What is the best way to ship two items from nearby cities to the same desti-
nation far away.

µ+

µ−

First Attempt: Move them directly to their destination.
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A simple example
What is the best way to ship two items from nearby cities to the same desti-
nation far away.

µ+

µ−

Another way: put them on the same truck and transport together!
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µ+

µ−

A V-shaped path

µ+

µ−

A Y-shaped path
Answer: Transporting two items together might be cheaper than the total cost
of transporting them separately. As a result,

• A “Y shaped” path is preferable to a “V shaped” path.

•Here, the cost is naturally given by the actual transport “path”, while the
transport maps for both types are trivially same. Knowing only maps is
not enough here.

In general, aramified structuremight be more efficient than a“linear” struc-
tureconsisting of straight lines.
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Examples of Ramified Structures
• Trees

•Circulatory systems

•Cardiovasular systems

•Railways, Airlines

• Electric power supply

•River channel networks

• Post office mailing system

•Urban transport network

•Marketing

•Ordinary life

•Communications

• Superconductor

Conclusion: Ramified structures
are very common in living and
non-living systems. It deserves a
more general theoretic treatment.
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Problem: Given two arbitrary probability measuresµ+ and
µ− ∈ P (X) on a convex compact subsetX ⊂ Rm, find an optimal
pathtransportingµ+ to µ−.

Need:

• A class of “transport paths”.

– Broad enough to ensure the existence of optimal transport paths;

• A reasonable cost functional on the category.

– Optimal transport paths should allow some parts overlap in a cost effi-
cient fashion. Should be “Y-shaped” rather than “V shaped”.

– Nice regularity of optimal transport paths.

Idea: figuring outsimple casesfirst!
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Atomic measures
An atomic measureis a (finite) sum of Dirac measures with positive multi-
plicities.

a =
∑
i

aiδxi

for somexi ∈ X andai > 0. LetA(X) be the space of all atomic measures
onX.

Question: What is atransport pathbetween two atomic probability measures
a andb?

a

b
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Transport atomic measures
a

b

V

A transport path froma to b is a weighted
directed graph

G = {V (G), E(G), w : E(G) → (0,+∞)}

satisfyingKirchhoff’s laws(for eletrical
circuits):∑

v=e−
w (e) =

∑
v=e+

w (e)

for any interior vertexv.

Notation: For atomic measuresa, b ∈ P (X), let

Path(a, b) be the family of all transport paths froma to b.
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Cost Functionals
Note that in general the space Path(a, b) might be very large.
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Cost Functionals
Note that in general the space Path(a, b) might be very large.

Want:Find an optimal“Y shaped” or “ramified”transport path in Path(a,b).
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Cost Functionals
Note that in general the space Path(a, b) might be very large.

Want:Find an optimal“Y shaped” or “ramified”transport path in Path(a,b).
Thus, we need a suitablecost functionalon transport paths.
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Cost Functionals
Note that in general the space Path(a, b) might be very large.

Want:Find an optimal“Y shaped” or “ramified”transport path in Path(a,b).
Thus, we need a suitablecost functionalon transport paths.

Answer: For eachG = {V (G), E(G), w : E(G) → (0,+∞)}, define the
Mα mass ofG by

Mα (G) :=
∑
e

w (e)α length(e)

for someα ∈ [0, 1).
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Cost Functionals
Note that in general the space Path(a, b) might be very large.

Want:Find an optimal“Y shaped” or “ramified”transport path in Path(a,b).
Thus, we need a suitablecost functionalon transport paths.

Answer: For eachG = {V (G), E(G), w : E(G) → (0,+∞)}, define the
Mα mass ofG by

Mα (G) :=
∑
e

w (e)α length(e)

for someα ∈ [0, 1).

Result: anMα mass minimizer is indeed “Y-shaped” or “ramified”.
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Example 1: Two points to one point

It satisfies a balance equation:

3∑
i=1

mα
i ~ni = ~0.

Using this equation, we have a for-
mula to calculate the angles.
In particular, ifα = 0, then the an-
gles are120o.
Also, if α = 1/2, then the top angle
must be90o.
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Two points to two points
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Some lemmas(Xia, 2001)

Lemma.For anyG ∈ Path(a, b), there
exists aG̃ ∈ Path(a, b) such thatG̃
contains nocyclesand

Mα

(
G̃
)
≤ Mα (G) .

L
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Some lemmas(Xia, 2001)

Lemma.For anyG ∈ Path(a, b), there
exists aG̃ ∈ Path(a, b) such thatG̃
contains nocyclesand

Mα

(
G̃
)
≤ Mα (G) .

L

Thus, we may consider only transport paths containing no cycles.
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Some lemmas(Xia, 2001)

Lemma.For anyG ∈ Path(a, b), there
exists aG̃ ∈ Path(a, b) such thatG̃
contains nocyclesand

Mα

(
G̃
)
≤ Mα (G) .

L

Thus, we may consider only transport paths containing no cycles.

Lemma. If G contains no cycles, then0 < w (e) ≤ 1 for any e ∈ E (G).
Thus

M (G) ≤ Mα (G) .
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Some lemmas(Xia, 2001)

Lemma.For anyG ∈ Path(a, b), there
exists aG̃ ∈ Path(a, b) such thatG̃
contains nocyclesand

Mα

(
G̃
)
≤ Mα (G) .

L

Thus, we may consider only transport paths containing no cycles.

Lemma. If G contains no cycles, then0 < w (e) ≤ 1 for any e ∈ E (G).
Thus

M (G) ≤ Mα (G) .

Now, given any two probability measuresµ+ andµ−, what is a transport
path fromµ+ to µ−?

µ+
µ−??
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Transport general probability measures

??

ai biGi

µ+
??

µ−

Idea:

• Approximateµ+, µ− by atomic measuresai, bi;

• Transportai to bi by a graphGi;

• The limit T of Gi (in a suitable sense) is a transportation ofµ+ to µ−.

The sequence of triples{ai, bi, Gi} is called anapproximating graph se-
quenceof T .
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Dyadic approximation of Radon measures
AssumeX ⊂ Q, a cube inRm of the edge lengthd, with centerc. Let

Qi = {Qhi : h ∈ Zm ∩ [0, 2i)m}

be a partition ofQ into smaller cubes of edge lengthd
2i

.
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Q0 Q1 Q2

For any Radon measureµ onX, let

Ai(µ) =
∑
h

µ(Qhi )δchi

wherechi is the center ofQhi . Then,Ai(h) converges toµweakly as measures.
This is called“Dyadic approximation ofµ”.
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How to take limits ofGi’s ? —–Duality!!
Answer: View eachGi as a 1 dimensionalnormal currentwith ∂Gi = bi−ai.

LetU ⊂ Rm be any open set.

• Dn(U): C∞ differentialn−forms inU with compact support.

• An n-currentis an element of the dual spaceDn(U) of Dn(U). i.e. an
n−current is a continuous linear functional onDn(U). Thus,0−currents
are just distributions.

• For anyT ∈ Dn(U), its boundary∂T ∈ Dn−1(U) is given by

∂T (ψ) = T (dψ),∀ψ ∈ Dn−1(U).

• Themassof T ∈ Dn(U) is given by

M(T ) = sup{T (ω) : |ω| ≤ 1, ω ∈ Dn(U)}

• T ∈ Dn(U) is normalif M(T ) + M(∂T ) < +∞.
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Examples of n-current

•Orientedn-dimensional submanifoldM of U withHn(M) < +∞.

[M ](ω) =

∫
M
ω =

∫
M
< ω(x), ξ(x) > dHn(x)

for anyω ∈ Dn(U). Note that∂[M ] = [∂M ] andM([M ]) = Hn(M).

•Differentialm− n formsφ ∈ Dm−n(U);

φ(ω) =

∫
U
φ ∧ ω.

•Rectifiable currentsτ (M, θ, ξ)

τ (M, θ, ξ)(ω) =

∫
M
< ω(x), ξ(x) > θ(x)dHn(x)

Here: M is a rectifiable n-set,θ is a locallyHn integrable function and
ξ(x) is the orientation ofTxM .
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Transport paths between Radon measures

Definition. Givenµ+, µ− ∈ P (X), a normal 1-currentT is called atrans-
port pathfromµ+ to µ− if there exists a sequence of approximating graphs
{ai, bi, Gi} such that

ai ⇀ µ+, bi ⇀ µ−, Gi ⇀ T

in the sense of distributions.

Note that we automatically have∂T = µ+ − µ− as distributions.
For each transport pathT , we define

Mα (T) := inf
{ai,bi,Gi}

lim inf
i→∞

Mα (Gi) .

Let Path(µ+, µ−) be the family of all transport paths fromµ+ to µ−.
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Example: How to transport a Lebesgue measure to a Dirac measure?

1
n

li

1
n

First attempt:
n∑
i=1

(
1

n

)α
li

≈ C

n∑
i=1

(
1

n

)α
= Cn1−α → +∞.
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Example: How to transport a Lebesgue measure to a Dirac measure?

1
n

li

1
n

First attempt:
n∑
i=1

(
1

n

)α
li

≈ C

n∑
i=1

(
1

n

)α
= Cn1−α → +∞.

1
2n Second attempt:

∞∑
n=1

2n∑
i=1

(
1

2n

)α
li ≈ C

∞∑
n=1

2n∑
i=1

(
1

2n

)α 1

2n

= C

∞∑
n=1

(
1

2n

)α
=

C

1− 1
2α
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In higher dimension case, ifα > 1− 1
m, then

∞∑
n=1

(2n)m∑
i=1

(
1

(2n)m

)α
li

≈ C

∞∑
n=1

(2n)m∑
i=1

(
1

(2n)m

)α 1

2n

= C

∞∑
n=1

(
1

(2n)m

)α
2n(m−1)

= C

∞∑
n=1

(
2
m(1−α)−1

)n
< +∞

Proposition. [Finite Cost] (Xia, 2001) Supposeα > 1 − 1
m. For anyµ ∈

P (X), there exists aT ∈ Path(µ, δc) from µ to a Dirac measureδc with
Mα (T) < +∞.
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Existence theorem(Xia, 2001)

Theorem.Givenµ+ and µ− ∈ MΛ(X), α ∈ (1 − 1
m, 1], there exists an

Mα mass minimizerS in the familyPath(µ+, µ−). Moreover,Mα(S) <
Λα

21−m(1−α)−1

√
md
2 .

Sketch of the proof:

• Pick{ai, bi, Gi} with

Mα(Gi) ↘ inf{Mα(T) : T ∈ Path(µ+, µ−)}

•We may assume{Gi} has no cycless

M(Gi) ≤ Mα(Gi) < C bounded.

• By the compactness of normal currents,

Gik ⇀ T ∈ Path(µ+, µ−)

• lower semicontinuity ofMα.
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A new distance onP (X)

Definition. Givenµ+ andµ− ∈ P (X), define

dα
(
µ+, µ−

)
:= min{Mα (T) : T ∈ Path(µ+, µ−)}.

Theorem.(Xia, 2001)dα is a distance onP (X).

Remark:dα is different from any of the Wassenstein distances.

Theorem.(Xia, 2001)dα metrizes the weak * topology ofP (X).
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Optimal transport paths

Lemma. If Gi ∈ Path(ai, bi) is an Mα

minimizer , thenT ∈ Path(µ+, µ−) is
alsoanMα minimizerin Path(µ+, µ−).

ai biGi

µ+ µ−
T

Definition. A transport pathT ∈ Path(µ+, µ−) is called anoptimal trans-
port pathif there exists a sequence of appximating graphs{ai, bi, Gi} such
that eachGi ∈ Path(ai, bi) is anMα minimizer.
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Error estimate
By the lemma, we can pick ourfavorite approximating atomic measures
{ai}, {bi}.
We choose “dyadic approximation”{An(µ)}.
Proposition.For anyµ ∈ P (X),

dα(µ,An(µ)) ≤ Cλn

with some constantC > 0 andλ = 2m(1−α)−1 ∈ (0, 1).

Corollary. If eachGn is optimal, then

Mα(T) ≤ Mα(Gn) + 2Cλn

µ+ µ−
T

An(µ
+) An(µ

−)Gn

Optimal
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Length Space Property

Theorem.(Xia, 2002)(P (X), dα) is a length space.

That is, for anyµ+, µ− ∈ P (X), there
exists a continuous map

ψ : [0, t] → (P (M), dα)

with t = dα(µ+, µ−) such that

ψ(0) = µ+, ψ(T ) = µ−

and for any0 ≤ s1 < s2 ≤ t,

dα(ψ(s1), ψ(s2)) = s2 − s1.

ψ

s1

µ+ µ−
ψ(s1)

ψ(s2)

s2 dα(µ
+, µ−)

(P (X), dα)

0

In other words, an optimal transport path between Radon measures plays the
role of ageodesicbetween two points.
Later, we will see that in facteachψ(s) is purely atomic for any0 < s < t.
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Atomic approximation (α = 0.1)
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Atomic approximation (α = 0.5)
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Atomic approximation (α = 0.95)
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From Lebesgue to Dirac
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Transporting general measures
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Transport Path & Transport Plan
Let a andb be any two atomic measures. For example,

X1 X2

X3

Y1
Y2

1
4

1
4

1
2

2
3

1
3
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Transport Path & Transport Plan
Let a andb be any two atomic measures. For example,

X1 X2

X3

Y1
Y2

1
4

1
4

1
2

2
3

1
3

• Each transport planγ ∈ Plan(a, b)
is given by a real valued matrix

U = (uij).

e.g.

U1 =

( 1
4

1
12 0

0 5
12

1
4

)
orU2 =

(
0 1

12
1
4

1
4

5
12 0

)

• Each transport pathG ∈ Path(a, b)
gives a 1-current valued matrix
g(G) = (gij). (no cycles!)

X1 X2

X3

Y1
Y2

1
4

1
4

1
2

2
3

1
3

.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Compatible Pair of Transport Path & Plan
A transport pathG and a transport planγ are said to becompatibleif

G =
∑

uij · gij.
A compatible pair gives a decomposition ofG.
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Compatible Pair of Transport Path & Plan
A transport pathG and a transport planγ are said to becompatibleif

G =
∑

uij · gij.
A compatible pair gives a decomposition ofG.

For instance,U1 is compatible withG whileU2 is not.
X1 X2

X3

Y1
Y2

1
4

1
4

1
2

2
3

1
3

+ 1
12 + 5

12 +1
4

X1 X2 X2

X3

Y1 Y1 Y2
Y2

= 1
4
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Compatible Pair of Transport Path & Plan
A transport pathG and a transport planγ are said to becompatibleif

G =
∑

uij · gij.
A compatible pair gives a decomposition ofG.

For instance,U1 is compatible withG whileU2 is not.
X1 X2

X3

Y1
Y2

1
4

1
4

1
2

2
3

1
3

+ 1
12 + 5

12 +1
4

X1 X2 X2

X3

Y1 Y1 Y2
Y2

= 1
4

A compatible pair of transport path and transport plan provides the neces-
sary transporting information by its unique matrix representation

(
(uij), (gij)

)
.

uij = amount of mass fromxi to yj, while gij = actual transport path.
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Some Results(Xia, 2001)

• There existsG ∈ Path (a, b) compatible with allγ ∈ Plan (a, b).

• For anyG ∈ Path (a, b), there exists aγ ∈ Plan (a, b) compatible with
G.

•Given a transport planγ ∈ Plan
(
µ+, µ−

)
, there exists an optimal trans-

port pathT ∈ Path
(
µ+, µ−

)
with least finiteMα cost among all com-

patible pairs(T, γ). (mailing problem)

•Given a transport pathT ∈ Path
(
µ+, µ−

)
, there exists an optimal trans-

port planγ ∈ Plan
(
µ+, µ−

)
with leastI (γ) cost among all compatible

pairs(T, γ).
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How nice is an optimal transport path?

Let T ∈ Path(µ+, µ−) be any transport path withMα(T) < +∞, not
necessarily optimal.

Theorem.(rectifiability)(Xia, 2001)T is a real multiplicity 1-rectifiable cur-
rentT = τ (M, θ, ξ) with ∂T = µ+ − µ−. Moreover,

Mα(T) =

∫
M
θ(x)αdH1(x)

Idea of proof: Follows from the rectifiable slicing theorem.

Now, assume thatT is optimal. Let us see how niceT is.
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Interior regularity: a local finiteness property
(Xia, 2002)
Suppose one ofµ+ or µ− is atomic. For anyp ∈ spt(T ) \ spt(∂T ), there
exists an open ball neighborhoodBp of p such that

T bBp
is a cone atp consisting of finite union of segments with suitable multiplici-
ties. These segments are balanced by a simple balance equation.
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How about the boundary ?
Observation: The support ofT may not necessarily be1-dimensional nearby
its boundary, which is the difference of the given two measures. This is
because the boundary itself may even bedensein the space, as demonstrated
by letting the initial measure to be the Lebesgue measure.
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How about the boundary ?
Observation: The support ofT may not necessarily be1-dimensional nearby
its boundary, which is the difference of the given two measures. This is
because the boundary itself may even bedensein the space, as demonstrated
by letting the initial measure to be the Lebesgue measure.

Solution: Relax yourself and enjoy the
nature.

The nature has provided a wonderful so-
lution for us: the leaf vein.
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How about the boundary ?
Observation: The support ofT may not necessarily be1-dimensional nearby
its boundary, which is the difference of the given two measures. This is
because the boundary itself may even bedensein the space, as demonstrated
by letting the initial measure to be the Lebesgue measure.

Solution: Relax yourself and enjoy the
nature.

The nature has provided a wonderful so-
lution for us: the leaf vein.

But, how to read this information?
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Boundary Regularity
To understand the boundary behavior, a suitable approach is to study the
“level sets”of the rectifiable currentT = τ (M, θ, ξ) instead. For eachλ > 0,
let

Mλ = {x ∈M : θ(x) ≥ λ}.
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Boundary Regularity
To understand the boundary behavior, a suitable approach is to study the
“level sets”of the rectifiable currentT = τ (M, θ, ξ) instead. For eachλ > 0,
let

Mλ = {x ∈M : θ(x) ≥ λ}.

Theorem(Xia, 2003): Each level set of an optimal transport path is locally
concentrated on a finite union of bilipschitz curves. These curves enjoy some
nice properties similar to those satisfied by segments near an interior point.
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Key Idea of Proof: Decomposition!

• For any optimal weighted directed graphG ∈ Path(a, b), if Mα(a) +
Mα(b) is bounded above, then we can decomposea, b, G

a = aP + aR, b = bP + bR, G = P +R

so thatP ∈ Path(aP , bP ), R ∈ Path(aR, bR), the total number of ver-
tices and edges of P are uniformly bounded. The level setGλ is contained
in P . Edges ofP are “nice”.

• Taking the limits to get the decomposition of optimal transport paths.

Advantage: Graphs are much easier to deal with. Just using combinatory.
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Key Idea of Proof: Decomposition!

• For any optimal weighted directed graphG ∈ Path(a, b), if Mα(a) +
Mα(b) is bounded above, then we can decomposea, b, G

a = aP + aR, b = bP + bR, G = P +R

so thatP ∈ Path(aP , bP ), R ∈ Path(aR, bR), the total number of ver-
tices and edges of P are uniformly bounded. The level setGλ is contained
in P . Edges ofP are “nice”.

• Taking the limits to get the decomposition of optimal transport paths.

Advantage: Graphs are much easier to deal with. Just using combinatory.

Feedback?A natural question: Can we use this idea to understand the
dynamic formation of a tree leaf?
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Key Idea of Proof: Decomposition!

• For any optimal weighted directed graphG ∈ Path(a, b), if Mα(a) +
Mα(b) is bounded above, then we can decomposea, b, G

a = aP + aR, b = bP + bR, G = P +R

so thatP ∈ Path(aP , bP ), R ∈ Path(aR, bR), the total number of ver-
tices and edges of P are uniformly bounded. The level setGλ is contained
in P . Edges ofP are “nice”.

• Taking the limits to get the decomposition of optimal transport paths.

Advantage: Graphs are much easier to deal with. Just using combinatory.

Feedback?A natural question: Can we use this idea to understand the
dynamic formation of a tree leaf?

YES!! (Xia, 2004)
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Question: Given a measureµ, ν, for whichα, will we havedα(µ, ν) < +∞?
For simplicity, we chooseν =Dirac mass.
Recall that ifµ =Lebesgue measure andα > 1− 1

m, then

∞∑
n=1

(2n)m∑
i=1

(
1

(2n)m

)α
li

≈ C

∞∑
n=1

(2n)m∑
i=1

(
1

(2n)m

)α 1

2n

= C
∞∑
n=1

(
1

(2n)m

)α
2n(m−1)

= C

∞∑
n=1

(
2
m(1−α)−1

)n
< +∞

Here, dimensionm = infα<1{ 1
1−α : dα(µ, δ0) < +∞}



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Dimensional distance
For anyµ, ν ∈ P (X), let

D(µ, ν) = inf
α<1

{ 1

1− α
: dα(µ, ν) < +∞}

Proposition. (P (X), D) is apseudometric space.

That is,D is a metric except thatD(µ, ν) = 0 does not implyµ = ν.
e.g.D(δx, δy) = 0 for anyx, y ∈ X becausedα(δx, δy) = |x−y| < +∞,∀α.

Definition. For anyµ andν, we sayµ ' ν if D (µ, ν) = 0. That is,µ andν
are equivalent if and only ifdβ (µ, ν) < +∞ for anyβ. The equivalent class
of µ is denoted by[µ] .

Lemma. If µ1 ' µ2, then for anyν,D (µ1, ν) = D (µ2, ν) .

Thus, we may define
D([µ], [ν]) := D(µ, ν)
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Dimensional Distance

Theorem.(Xia, 2007)D defines a metric on the equivalent classes of prob-
ability measures.

In general, we have

dHaus(spt(µ) ≤ D(µ, δ0) ≤ dbox(spt(µ)).

Thus, when support ofµ is nice enough, we get

dimension ofspt(µ) = the distanceD(µ, δ0).

As a result, I callD dimensional distance.

Conclusion:Dimensionof a set/measureis just the distancefrom it to a Dirac
mass.
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Example:µ =Lebesgue measure,ν =Dirac mass
If α > 1− 1

m, i.e.,m > 1
1−α then

∞∑
n=1

(2n)m∑
i=1

(
1

(2n)m

)α
li

≈ C

∞∑
n=1

(2n)m∑
i=1

(
1

(2n)m

)α 1

2n

= C

∞∑
n=1

(
1

(2n)m

)α
2n(m−1)

= C
∞∑
n=1

(
2
m(1−α)−1

)n
< +∞

So, thedimensionof µ = m = inf
α<1

{ 1

1− α
: dα(µ, δ0) < +∞}

= D(µ, ν), thedistancefrom µ to δ0
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Example:µ =Cantor set,ν =Dirac mass

∞∑
n=1

2n
(

1

2n

)α(1

3

)n
=

∞∑
n=1

(
21−α

3

)n
<∞

⇐⇒ 21−α

3
< 1

⇐⇒ 21−α < 3

⇐⇒ 1

1− α
>

ln 2

ln 3

Here again,

thedimensionof µ =
ln 2

ln 3
= inf
α<1

{ 1

1− α
: dα(µ, δ0) < +∞}

= D(µ, ν), thedistancefrom µ to δ0

Note, hereα is allowed to benegative.
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Example:µ =Fat Cantor set,ν =Dirac mass
Examples:µ = Fatλ Cantor set (i.e. remove an interval of lengthλ from the
middle of [0, 1]).

∞∑
n=1

2n
(

1

2n

)α 1 + λ

4

(
1− λ

2

)n−1

=
1 + λ

2 (1− λ)

∞∑
n=1

(
21−αp

)n
<∞

⇐⇒ 21−αp < 1

⇐⇒ 21−α <
1

p

⇐⇒ 1

1− α
> −ln 2

ln p
=

ln 2

ln 2− ln (1− λ)

wherep = 1−λ
2 .

Again, we have dimension ofµ = infα<1{ 1
1−α : dα(µ, δ0) < +∞}
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Example:µ =self-similar set,ν =Dirac mass
Example:A =finite union ofAi for i = 1, · · · k. EachAi is aσ−rescale of
A.

∞∑
n=1

kn
(

1

kn

)α
σn−1L =

L

σ

∞∑
n=1

(
k1−ασ

)n
< +∞

⇐⇒ k1−ασ < 1

⇐⇒ 1

1− α
> −ln k

lnσ

Therefore,D (µ) = − ln k
lnσ.

Here again, self-similar dimension ofµ = infα<1{ 1
1−α : dα(µ, δ0) < +∞}
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Thank You and Enjoy the Nature


