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Abstract

Classically, Plateau’s problem asks to find a surface of least area with a given boundary B. In
this article, we investigate a version of Plateau’s problem, where the boundary of an admissible
surface is only required to partially span B. Our boundary data is given by a flat (m − 1)-
chain B and a smooth compactly supported differential (m − 1)-form Φ. We are interested in
minimizing M(T ) −

∫
∂T

Φ over all m-dimensional rectifiable currents T in Rn such that ∂T is
a subcurrent of the given boundary B. The existence of a rectifiable minimizer is proven with
Federer and Fleming’s compactness theorem. We generalize this problem by replacing the mass
M with the H-mass of rectifiable currents. By minimizing over a larger class of objects, called
scans with boundary, and by defining their H-mass as a type of lower-semicontinuous envelope
over the H-mass of rectifiable currents, we prove an existence result for this problem by using
Hardt and De Pauw’s BV compactness theorem.

1 Introduction
A brief history of Plateau’s problem. Loosely speaking, Plateau’s problem asks to
find a surface of least area with a given boundary. The various answers to this question depend
on the precise notion of a surface, of its area, and of its boundary. Although this problem
was classically studied for surfaces in R3 with the use of mappings of surfaces [14], geometric
measure theory has now provided us with precise formulations and definitions of these italicized
terms [7, 17, 13, 2, 16]. Motivated by De Rham’s notion of currents, in the seminal work [8],
Federer and Fleming solved a version of Plateau’s problem with a class of generalized oriented
submanifolds called integral currents, which come equipped with a natural notion of a boundary
and surface area. We refer the reader to [11] for a historical overview of Plateau’s problem and
geometric measure theory.

The H-mass and scans. The mass M(T ) of a current T is used as a way to measure
its area, and for a rectifiable current T = Hm M ∧ θξ, its mass is given by

∫
M
θ dHm where

θ : M → N is its multiplicity function (see §2). For surfaces in R3, a mass minimizing current
T provides a good model for some but not all soap films. For example, in [10], Fleming showed
that 2-dimensional mass minimizing currents in R3 are smooth embedded surfaces away from
their boundary, whereas general soap films have interior singularities. To get a better model for
soap films, Almgren [1] introduced the notion of size for rectifiable currents and investigated size
minimizing currents. However, in general, the existence of size minimizing currents is difficult
to obtain. In part, this is due to the fact that size minimizing sequences may have unbounded
mass, as can be seen in examples provided by F. Morgan in [12]. The lack of bounded mass
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prevents one from applying Federer and Fleming’s compactness theorem [8] to size minimizing
sequences.

Another important measurement of surface area is the α-mass,

Mα(T ) =

∫
M

θα dHm (1)

of a real rectifiable current T = Hm M ∧ θξ, where the parameter α ∈ [0, 1]. The α-mass acts
as a bridge between the mass and the size of a real rectifiable current. When α = 0, we get the
size of T , and when α = 1 we get its mass. Given two probability measures µ+ and µ−, any real
rectifiable 1-dimensional current T with ∂T = µ+ − µ− is called a transport path from µ+ to
µ− in the study of branched (ramified) optimal transport [18, 3, 19]. The α-mass of T is called
the α-cost of the transport path T . A more general version of the α-mass is the H-mass. For a
concave integrand (Definition 4.1) H : [0,∞)→ [0,∞), the H-mass of a real rectifiable current
T = Hm M ∧ θξ is given by

∫
M
H ◦ θ dHm.

In article [5], Hardt and De Pauw investigated a Plateau-type problem: minimizing the H-
mass over all rectifiable currents with a fixed boundary. Although MH minimizing sequences of
rectifiable currents may not necessarily have bounded mass, they showed that for any fixed ε > 0,
the minimizing sequences for the approximate problem: MH + εM do. They then considered a
sequence of rectifiable currents, each of which is a minimizer to the approximate problem for a
sequence εi → 0. Using their general BV-compactness theorem on this sequence, they obtained
an MH minimizing subsequence of rectifiable currents, that when viewed as scans, converges
to a rectifiable scan. An m-dimensional scan in Rn is a type of measurable function T from
the space of (n − m) planes, to the space of 0 dimensional currents in Rn endowed with the
H-flat distance (Definition 4.3). For example, an m-dimensional rectifiable current in Rn can
be viewed as a scan by slicing it with n−m planes (see §4.1).

Partial Plateau’s problem. In the above Plateau-type problems, the boundaries of the
surfaces are prescribed. In this article, we propose a new Plateau-type problem, where the
boundary is not required to completely fulfill the prescribed one, but rather, is only required
to satisfy a portion of it. We call this partial Plateau’s problem. To motivate it, let us consider
the following scenario. Suppose that we have an oriented wire that has the form of a sunflower
as in Figure 1(A). The solution to the standard oriented Plateau’s problem with this boundary
will be the union of all petals as in Figure 1(B). Now, assume that one petal accidentally falls
off the flower and the boundary wire becomes the one shown in Figure 1(C). In this case, there
is no solution to the corresponding Plateau’s problem anymore since the resulting wire is no
longer a closed curve. Nevertheless, the remaining wire still generates a soap film in the form of

(𝐴) (𝐵) (𝐶) (𝐷)

Figure 1: The solution to the standard Plateau’s problem for the closed curve shown in (A) is the
surface shown in (B). When one of the outer arcs is removed as shown in (C), the soap film shown
in (D) may still form. Although it is no longer a solution to the standard Plateau’s problem, it is
a solution to partial Plateau’s problem studied in the examples of §3.
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the remaining pedals as shown in Figure 1(D). This scenario (where the soap film only spans
a portion of the given wire) motivates us to relax the boundary condition. In Example 3.6, we
investigate this example in detail, and show that the solution shown in Figure 1(D) is given by
a solution to our partial Plateau’s problem.

Another motivation for this problem comes from the study of ramified optimal transportation
as given in [20]. More precisely, let µ and ν be two Radon measures on a convex compact subset
X of the Euclidean space Rn, let Mα be the α-mass as defined in (1) for some α ∈ [0, 1), and let
h be a continuous function on the support of the signed measure ν − µ. Then, [20] considered
the following resource allocation problem: Minimize

Ehα(T ) := Mα(T )−
∫
X

h d(∂T ) (2)

among all 1 dimensional real rectifiable currents T with ∂T � ν−µ, in the sense that its Jordan
decomposition ∂T = ν̃ − µ̃ satisfies µ̃ ≤ µ and ν̃ ≤ ν. In [20], this problem was motivated
by considering the following example: Consider a firm that produces and sells a product in
various regions. The measures µ and ν represent, respectively, the distributions of production
capacities and market sizes. The function h represents the sale price on the support of ν, and
the production cost on the support of µ. The firm aims to maximize its profit (the negative of
Ehα(T )) defined as sale revenue

∫
X
h dν̃ minus the cost involved in transportation Mα(T ) and

production
∫
X
h dµ̃. Note that the boundary ∂T is not required to equal ν − µ, but rather to

be a portion of it. Similar kinds of optimal partial mass transportation problems have been
studied for instance by Caffarelli and McCann [4] and also Figalli [9] for the scenario of Monge-
Kantorovich problems with particular attention to the quadratic cost.

Partial Plateau’s problem with H-mass. The above Plateau-type problems either
look to minimize functionals involving

• the mass, or more generally, the H-mass over m-dimensional rectifiable currents with a
fixed boundary condition, or

• the α-mass over 1 dimensional real rectifiable currents with a partial boundary condition.
In this article, we investigate a Plateau type problem that minimizes a functional involving the
H-mass over m-dimensional rectifiable currents with a partial boundary condition. Precisely,
let H be a concave integrand, let B be an (m − 1)-dimensional rectifiable current with finite
H-mass, and let Φ be a smooth, compactly supported (m− 1)-differential form in Rn. We are
interested in minimizing

EH,Φ(T ) := MH(T )−
∫
∂T

Φ

over all m-dimensional rectifiable currents T in Rn with ∂T � B. By definition, ∂T � B means
that ∂T is a subcurrent [15] of B, in the sense that M(B) = M(B − ∂T ) + M(∂T ). For the
sake of intuition, it is worth mentioning that whenever B is a real rectifiable current with finite
mass, ∂T � B means that ∂T is supported within the support of B, has the same orientation
as B, but only has a fraction of its density [15, Lemma 3.7].

We have thus far formulated our Plateau type problems as minimization problems over recti-
fiable currents. However, to obtain our main existence results (Theorem 4.18, Theorem 5.1, and
Corollary 5.5), we perform our minimization over a larger class of objects, called m-dimensional
scans with boundary (see Definitions 4.7 and 4.10). Loosely speaking, these are scans (introduced
in [5]) with well-defined boundaries that are obtained as pointwise limits of rectifiable currents
(when viewed as scans). The reason that we minimize over scans with boundary is that when
viewed as scans, the class of m-dimensional rectifiable currents is not closed under pointwise
almost everywhere convergence.

Organization of the article. In §2, we go over relevant definitions and notations that
are by now standard in geometric measure theory literature. Then in §3, we look at partial
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Plateau’s problem with mass: Given an (m−1)-dimensional flat chain B in Rn with finite mass,
and a smooth, compactly supported (m− 1)-differential form Φ in Rn, consider

P(EΦ,�B,Rn)

{
minimize EΦ(T ) := M(T )− ∂T (Φ)

among T ∈ Rm(Rn) such that ∂T � B.
(3)

In Theorem 3.5, we prove the existence of this problem by using the standard compactness
arguments of rectifiable currents. Here, for any EΦ minimizing sequence {Ti}, we have uniform
bounds for {M(Ti)+M(∂Ti)}. Although this is a special case of partial Plateau’s problem with
H-mass (studied in §5) when H(θ) = θ, we do not have to minimize over m-dimensional scans
in Rn as in the following problems that involve the general H-mass.

In §4, we re-investigate Plateau’s problem with H-mass, which was first investigated by De
Pauw and Hardt in their seminal work [5]. Formulated over rectifiable currents, the problem is
stated as follows: Given a rectifiable current T0 ∈ Rm(Rn),{

minimize MH(T )

among T ∈ Rm(Rn) such that ∂T = ∂T0.
(4)

To get an existence-type result [5, Theorem 3.5.2.] for problem (4), De Pauw and Hardt innova-
tively relax the notion of a rectifiable current to a rectifiable scan. In their proof of the theorem,
they construct a sequence of MH minimizing rectifiable currents that pointwise converge (as
scans) to a rectifiable scan T ∗. By Fateau’s lemma, it is clear that MH(T ∗) is less than or equal
to the infimum value of problem (4). Nevertheless, since T ∗ is not necessarily a rectifiable cur-
rent, one cannot conclude that MH(T ∗) achieves the infimum value of problem (4) as claimed
in [5, Theorem 3.5.2.].

To overcome this issue, in §4.2 we amend their existence result [5, Theorem 3.5.2.] by refor-
mulating problem (4) with a modified version of theH-mass, denoted byMH , and by minimizing
MH over Scanm(Rn), the class ofm-dimensional scans with boundary (Definitions 4.7 and 4.10).
In particular, we provide the following reformulation of Plateau’s problem with H-mass: Given
a scan T0 ∈ Scanm(Rn) with boundary,

P(MH , ∂T0,Rn)

{
minimize MH(T )

among T ∈ Scanm(Rn) such that ∂T = ∂T0.
(5)

It is worth mentioning the following two facts about Scanm(Rn). The class of m-dimensional
scans with boundary is larger than the class of m-dimensional rectifiable currents, and any
element in Scanm(Rn) has a well-defined boundary, which is not necessarily the case for the
general m-dimensional scans studied in [5]. Under such modifications, in Theorem 4.18 we are
able to get the existence of an MH minimizing m-dimensional scan with fixed boundary.

Given B, Φ, and H as above, and the additional constraint that B is rectifiable and has finite
H-mass, in §5 we consider partial Plateau’s problem with H-mass over rectifiable currents:{

minimize EΦ,H(T ) := MH(T )− ∂T (Φ)

among T ∈ Rm(Rn) such that ∂T � B.
(6)

Unfortunately, as in Plateau’s problem (4) with H-mass, this problem does not always have a
solution among rectifiable currents. To resolve this issue, we reformulate the problem by using
our modified version MH of the H-mass on the class Scanm(Rn), and investigate our main
problem of interest, called partial Plateau’s problem with H-mass:

P(EΦ,H ,�B,Rn)

{
minimize EΦ,H(T ) := MH(T )− ∂T (Φ)

among T ∈ Scanm(Rn) such that ∂T � S(B).
(7)

Our main existence result, Theorem 5.1, is proven within a slightly more general setting,
and the existence of minimizer T ∗ to problem (7) is then given in Corollary 5.5. Moreover,

4



Corollary 5.5 also shows us that

EΦ,H(T ∗) = inf{EΦ,H(T ) : T ∈ Rm(Rn), ∂T � B}.

In other words, despite the fact that one can not expect to find an EH,Φ minimizer to problem (6)
among rectifiable currents, its infimum value is obtained by the corresponding EH,Φ minimizer
of problem (7), where we minimize over scans with boundary under the same partial boundary
condition.

2 Notation and preliminary definitions

Table 1: Notation

N := {1, 2, 3, . . . }, the set of all natural numbers
H A concave integrand (Def. 4.1)

O∗(n, k) the space of all orthogonal projections of Rn onto Rk

θ∗n,k the O(n) invariant measure on O∗(n, k)

Lk the Lebesgue measure on Rk

Hk the k dimensional Hausdorff measure

Currents

Dm(Rn) m-dimensional currents in Rn

Em(Rn) compactly supported m-dimensional currents in Rn

M(T ) the mass of T ∈ Dm(Rn) (8)
Rm(Rn) m-dimensional rectifiable currents in Rn

FK(T ) flat norm of T ∈ Dm(Rn) (11)
Im(Rn) m-dimensional integral currents in Rn (12)

Fm(Rn) m-dimensional integral flat chains in Rn (12)
Nm(Rn) m-dimensional normal currents in Rn (13)
Fm(Rn) m-dimensional flat chains in Rn (13)
MH(T ) H-mass of T ∈ Dm(Rn) (Def. 4.2)
FH

K (T ) H-flat distance of T ∈ Dm(Rn) (Def. 4.3)
A � B A is a subcurrent of B for A,B ∈ Dm(Rn) (15)

Scans

S(T ) the measurable map (p, y) 7→ 〈T, p, y〉 associated to a flat chain T (22)
MH(f) the H-mass of a measurable map f : O∗(n,m)× Rm → I0,K(Rn) (24)
Sm(Rn) scans obtained from rectifiable currents in Rn (27)

Scanm(Rn) m-dimensional scans in Rn with boundary (Def. 4.7 and 4.10)
MH(T ) the lower-semicontinuous envelope of MH over a.e. pointwise conver-

gence of {S(R) : R ∈ Rm(Rn), ∂T = ∂R} (Def. 4.13)

In this article, most of our notations and definitions are consistent with that of Federer’s
geometric measure theory book [7] along with De Pauw and Hardt’s article [5]. For the conve-
nience of the reader, we will now give a brief review of the standard concepts and results from
geometric measure theory that will be important for us in this article.
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Let 0 ≤ m ≤ n. We let Dm(Rn) denote the real vector space of smooth differential m-forms
with compact support. The class Dm(Rn) is the vector space of all continuous real-valued linear
functions on Dm(Rn). Elements of Dm(Rn) are called m-dimensional currents in Rn, and the
subspace Em(Rn) of Dm(Rn) contains all m-dimensional currents with compact support. The
mass of a current T ∈ Dm(Rn) is defined as

M(T ) := sup{T (φ) : φ ∈ Dm(Rn), with 〈e1∧· · ·∧em, φ(x)〉 ≤ 1, ∀x ∈ Rn and ei ∈ Sn−1}. (8)

For m ≥ 1, the boundary of a current T ∈ Dm(Rn) is the current ∂T ∈ Dm−1(Rn) defined
by ∂T (φ) := T (dφ) for φ ∈ Dm−1(Rn), and ∂T is defined to be the zero-current whenever
T ∈ D0(Rn). For a sequence {Ti}∞i=1 ⊆ Dm(Rn) of m-dimensional currents and a current
T ∈ Dm(Rn), we say Ti converges (weakly) to T , written as Ti ⇀ T , if Ti(φ) → T (φ) for all
φ ∈ Dm(Rn).

The rectifiable currents of Federer and Fleming play an important role in this article. With
Hm denoting the m-dimensional Hausdorff measure on Rn, a subsetM of Rn is called (Hm,m)-
rectifiable if Hm(M) <∞ and Hm(M \∪∞i=1Ni) = 0 for some finite or countable family {Ni}i∈I
of m-dimensional C1-submanifolds of Rn. The following is an important characterization of the
class Rm(Rn) of m-dimensional rectifiable currents.

Let 0 ≤ m ≤ n. An m-dimensional rectifiable current T ∈ Rm(Rn) is given by the following
three things:

1. an Hm-measurable and bounded (Hm,m)-rectifiable subset M of Rn,
2. an Hm-measurable m-vectorfield ξ : M → ∧mRn such that for Hm-a.e. x ∈M , ξ(x) = e1∧
· · · ∧ em for some orthonormal basis {ei}mi=1 of the approximate tangent space Tan(M,x),

3. and an (Hm M)-summable function θ : M → N called the multiplicity function.
We will be denoting such a rectifiable current T ∈ Rm(Rn) by Hm M ∧ θξ as in [7]. Other

common notation is also given by τ(M, θ, ξ) as in [17], or by JM, ξ, θK. Its action on φ ∈ Dm(U)
is given by

(Hm M ∧ θξ)(φ) =

∫
M

〈φ, ξ〉θ dHm,

and its mass has the simple form

M(Hm M ∧ θξ) =

∫
M

θ dHm. (9)

Remark 2.1. Notice that the m-dimensional rectifiable currents we are considering all have
finite mass and compact support.

We will now give a brief overview of some special classes of currents. Whenever K ⊆ Rn is
a compact Lipschitz neighborhood retract (CLNR) [7, 4.1.29.], (e.g., compact convex subsets of
Rn), we have the identity

Rm,K(Rn) = Rm(Rn) ∩ {T : spt(T ) ⊆ K}. (10)

When a subset K is simply a compact subset of Rn, Rm,K(Rn) has a more technical definition.
However, since we will mainly be dealing with CLNRs of Rn, we will forgo stating its definition
here, and instead refer the reader to [7, 4.1.24.].

Let K be a compact subset of Rn. We define the following classes of currents
• I0,K(Rn) := R0,K(Rn), and Im,K(Rn) := {T : T ∈ Rm,K(Rn), ∂T ∈ Rm−1,K(Rn)} for
m > 0;

• Fm,K(Rn) := {R+ ∂S : R ∈ Rm,K(Rn), S ∈ Rm+1,K(Rn)};
• Nm,K(Rn) := {T ∈ Dm(Rn) : M(T ) + M(∂T ) <∞ with spt(T ) ⊆ K};
• Fm,K(Rn) := the FK closure of Nm,K(Rn) in Dm(Rn), where FK : Dm(Rn) → [0,∞] is

the flat norm defined as

FK(T ) := inf{M(T − ∂S) + M(S) : S ∈ Dm+1(Rn) with spt(S) ⊆ K},∀T ∈ Dm(Rn).
(11)
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Remark 2.2. Any 0 dimensional integral current T ∈ I0,K(Rn) has a representation

T =

k∑
i=1

aiδxi

where a1, . . . , ak are positive integers, and x1, . . . , xk ∈ K.

The members of the abelian groups

Im(Rn) :=
⋃

K⊆Rn compact

Im,K(Rn), Fm(Rn) :=
⋃

K⊆Rn compact

Fm,K(Rn), (12)

Nm(Rn) :=
⋃

K⊆Rn compact

Nm,K(Rn), Fm(Rn) :=
⋃

K⊆Rn compact

Fm,K(Rn) (13)

are called m-dimensional integral currents, integral flat chains, normal currents, and flat chains
in Rn, respectively. One can show the following set-theoretic relations between the classes of
currents that we have defined so far:

Im(Rn) Rm(Rn) Fm(Rn)

Nm(Rn) {T ∈ Fm(Rn) : M(T ) <∞} Fm(Rn) Dm(Rn).

⊆

⊆

⊆

⊆

⊆

⊆ ⊆ ⊆

Remark 2.3. The flat norm endows Dm(Rn) with a metric defined by (T, T ′) 7→ FK(T − T ′).
By [7, 4.2.18.], one can metrize integral flat chains Fm,K(Rn) with

FK(T ) := min{M(R) + M(S) : R ∈ Rm,K(Rn), and S ∈ Rm+1,K(Rn) with T = R+ ∂S}.
(14)

Remark 2.4. For any sequence {Ti}∞i=1 ⊆ Dm(Rn) of currents, and a current T ∈ Dm(Rn),
if limi→∞FK(Ti − T ) = 0 for some compact subset K of Rn, then Ti ⇀ T . Conversely, if
{Ti}∞i=1 ⊆ Im(Rn) is a sequence of integral currents with supiM(Ti) + M(∂Ti) < ∞, then
Ti ⇀ T implies limi→∞FK(Ti − T ) = 0 for all compact subsets K of Rn. We refer the reader
to Leon Simon’s book on geometric measure theory [17, Theorem 31.2] for a proof of this fact.

3 Partial Plateau’s problem with mass
As in [15], for any two k dimensional currents A and B of finite mass, we say that A is a
subcurrent of B, denoted by A � B, if

M(B) = M(B −A) + M(A). (15)

Notice that the zero-current 0 is always a subcurrent of B and that M(A) ≤M(B) whenever
A � B. In particular, A � 0 if and only if A = 0.

Remark 3.1. Let B = H m M ∧ θξ be a real-rectifiable current. If A is any m-dimensional
subcurrent of B, Paolini and Stepanov [15, Lemma 3.7] showed that A = H m M∧λθξ for some
Borel function λ : Rn → [0, 1]. In particular, A is a real-rectifiable current with spt(A) ⊆ spt(B).

Lemma 3.2. Let B be a k dimensional current and {Ai}∞i=1 be a sequence of k dimensional
currents such that Ai � B for all i ∈ N. If A is an k dimensional current such that Ai ⇀ A,
then A � B.

Proof. Since M satisfies the triangle inequality, it is sufficient to show that M(B−A)+M(A) ≤
M(B). By lower-semicontinuity of M with respect to weak convergence,

M(B −A) ≤ lim inf
i→∞

M(B −Ai) and M(A) ≤ lim inf
i→∞

M(Ai).

7



Therefore since Ai � B for all i ∈ N,

M(B −A) + M(A) ≤ lim inf
i→∞

M(B −Ai) + lim inf
i→∞

M(Ai)

≤ lim inf
i→∞

(M(B −Ai) + M(Ai)) ≤M(B).

Remark 3.3. We mention that Lemma 3.2 holds true if we replace Ai ⇀ A by FK(Ai−A)→ 0
for some compact subset K of Rn. This is because by Remark 2.4, FK(Ai − A) → 0 implies
Ai ⇀ A.

We are interested in what we call, partial Plateau’s problem: Given a flat chain B ∈
Fm−1(Rn) with mass M(B) < ∞, a smooth compactly supported form Φ ∈ Dm−1(Rn), and a
rectifiable current T0 ∈ Rm(Rn), consider

P(EΦ,�B,T0,Rn)

{
minimize EΦ(T )

among T ∈ Rm(Rn) such that ∂(T − T0) � B,

where
EΦ(T ) := M(T )− ∂T (Φ). (16)

Remark 3.4. Note the following:
• When B = 0, ∂(T − T0) � 0 implies ∂T = ∂T0. Thus, up to a constant, this problem

corresponds to the standard Plateau’s problem of rectifiable currents: Minimize EΦ(T ) :=
M(T )− ∂T0(Φ) among all T ∈ Rm(Rn) with ∂T = ∂T0.

• The introduction of T0 makes this a slightly more general problem than P(EΦ,�B,Rn), given
in (3). When T0 = 0, the boundary of T is a subcurrent of B.

• We require M(B) < ∞ but do not require M(∂T0) < ∞. Thus for any admissible T , the
mass of its boundary M(∂T ) may be unbounded.

We now state the existence result of the partial Plateau’s problem.

Theorem 3.5. Let Φ ∈ Dm−1(Rn) and B ∈ Fm−1(Rn) with M(B) <∞. Given T0 ∈ Rm(Rn),
there exists a rectifiable current T ∗ ∈ Rm(Rn) with ∂(T ∗ − T0) � B such that

EΦ(T ∗) = min{EΦ(T ) : T ∈ Rm(Rn), ∂(T − T0) � B}.

Proof. Notice that, since the zero-current 0 � B, this class contains T0. By definition, both T0

and B have compact support. Let K be a compact convex subset of Rn containing spt(T0) ∪
spt(B) and let πK : Rn → Rn denote the nearest point projection onto K [7, 4.1.15].

For any T ∈ Rm(Rn) with ∂(T − T0) � B, it holds that EΦ((πK)#T ) ≤ EΦ(T ). Indeed,
observe that spt(∂T ) ⊆ K because ∂T = ∂(T − T0) + ∂T0, spt(∂(T − T0)) ⊆ spt(B) (see
Remark 3.1), and spt(T0) ∪ spt(B) ⊆ K. Thus, ∂ ((πK)#T ) = (πK)#∂T = ∂T . Since also
M((πK)#T ) ≤M(T ), it follows that

EΦ((πK)#T ) = M((πK)#T )− ∂((πK)#T )(Φ) ≤M(T )− ∂T (Φ) = EΦ(T ). (17)

Let {Ti}∞i=1 ⊆ Rm(Rn) be an EΦ-minimizing sequence with ∂(Ti − T0) � B. Thus, for each i,

M(∂(Ti − T0)) ≤M(B) <∞.

By (17), without loss of generality we may assume spt(Ti) ⊆ K and EΦ(Ti) ≤ EΦ(T0). Then,

M(Ti) = EΦ(Ti) + ∂Ti(Φ) ≤ EΦ(T0) + ∂Ti(Φ) = M(T0) + ∂(Ti− T0)(Φ) ≤M(T0) +M(B)||Φ||,

where ||Φ|| is the comass norm of Φ, and

M(Ti − T0) ≤M(Ti) + M(T0) ≤ 2M(T0) + M(B)||Φ|| <∞.

8



Thus, {Ti−T0} ⊆ Im,K(Rn)∩{T : N(T ) < c} for some large enough c > 0. By the Federer and
Fleming’s compactness theorem for integral currents [7, 4.2.17(b)], a subsequence of {Ti − T0},
still denoted by {Ti − T0}, FK converges to some R ∈ Im,K(Rn). Thus, Ti − T0 ⇀ R and
Ti ⇀ T ∗ := R + T0 ∈ Rm(Rn). Since ∂(Ti − T0) � B, and ∂(Ti − T0) ⇀ ∂R = ∂(T ∗ − T0), by
Lemma 3.2, ∂(T ∗ − T0) � B as well. Also, by the lower-semicontinuity of M,

EΦ(T ∗) = M(T ∗)− ∂T ∗(Φ) ≤ lim inf
i→∞

M(Ti)− ∂Ti(Φ) = lim inf
i→∞

EΦ(Ti).

Since {Ti} is an EΦ-minimizing sequence, we have T ∗ is the desired EΦ-minimizer.

Example 3.6. We now investigate the sunflower example as shown in Figure 1 with more detail.
Let B be the 1 dimensional rectifiable current as shown in Figure 2(A) with density 2 on the
inner circle, and density 1 on the outer circular arcs. Let JPiK (for i = 1, . . . , 8) and JDK denote
the 2 dimensional rectifiable currents with clockwise orientation which respectively represent the
petals and the central disk of the sunflower, as shown in Figure 2(B). Then any T ∈ R2(R2)
with ∂T � B has the form

T = aJDK +

8∑
i=1

ciJPiK (18)

where a and ci are integers such that

0 ≤ ci ≤ 1 and 0 ≤ ci − a ≤ 2 for each i = 1, 2, . . . , 8. (19)

2

2

2 2

2

2

2 2

1

1

1

1

11

1

1

(𝐵) (𝐶)(𝐴)

Figure 2: The boundary B is shown in (A) along with its orientation and density. The petals
{Pi}8i=1 and central disk D shown in (B) have a clockwise orientation. When Φ is given, the petals
are partitioned into the three families shown in (C): negative petals (shown in green), neutral petals
(shown in pink), and positive petals (shown in gray).

If Φ = 0, then clearly we get that the 0-current 0 is the unique minimizer. For any smooth,
compactly supported 1-form Φ ∈ D1(R2),

EΦ(T ) = M(T )− ∂T (Φ)

= |a|M(JDK) +

8∑
i=1

|ci|M(JPiK)−

(
a∂JDK(Φ) +

8∑
i=1

ci∂JPiK(Φ)

)

= |a|M(JDK)− a∂JDK(Φ) +

8∑
i=1

ci(M(JPiK)− ∂JPiK(Φ)).

We now investigate the possible solutions for P(EΦ,�B,0,R2). First, partition the collection {JPiK}
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of petals into the following sets

P− = {JPiK : M(JPiK)− ∂JPiK(Φ) < 0} of negative petals,
P0 = {JPiK : M(JPiK)− ∂JPiK(Φ) = 0} of neutral petals, and
P+ = {JPiK : M(JPiK)− ∂JPiK(Φ) > 0} of positive petals.

In Figure 2(C), the set of negative petals {JP1K, JP2K, JP3K, JP4K} are colored green, the neutral
petals {JP5K, JP6K} are colored pink, and the positive petals {JP7K, JP8K} are colored gray.

Any possible solution T for P(EΦ,�B,0,R2) must have the form described in (18). From in-
equalities (19), we get that a ∈ {−2,−1, 0, 1}. We describe the possible solutions:

• When a = −2, all the ci’s must be 0. In this case, the only possible solution is

T−2 = −2JDK

as illustrated in Figure 3(A).
• When a = −1 all ci are allowed to be either 0 or 1 for any admissible candidate. However,

for a solution T−1 with a = −1, the coefficients ci must be 1 on the negative petals and
0 on the positive petals. On the neutral petals, ci may be chosen to be either 0 or 1.
This is because removing any positive petal or adding any negative petal from a candidate
minimizer can only decrease EΦ, while removing or adding a neutral petal does not change
the value of EΦ. That is, any possible solution must be in the form

T−1 = −JDK +
∑

Pi∈P−

JPiK +
∑
Pi∈P∗

0

JPiK for any P∗0 ⊆ P0,

as illustrated in Figure 3(B).
• When a = 0, for the same reason as in the case of a = −1, any possible solution must be

in the form
T0 =

∑
Pi∈P−

JPiK +
∑
Pi∈P̃0

JPiK for any P̃0 ⊆ P0,

as illustrated in Figure 3(C).
• When a = 1, ci = 1 for all i = 1, . . . , 8. Hence, the only possible solution is

T1 = JDK +

8∑
i=1

JPiK,

as illustrated in Figure 3(D).

(𝐵) (𝐶)(𝐴) (𝐷)

Figure 3: From left to right, we show the four possible solutions T−2, T−1, T0, T1 for P(EΦ,�B,0,R2)

with boundary B and the 1-form Φ as shown in Figure 2.

So far, we have described the possible solutions of P(EΦ,�B,0,R2) by only taking into account the
subcurrent restrictions on their boundaries and the way that the negative, neutral, and positive
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petals change the value of EΦ. We will now characterize the solutions for P(EΦ,�B,0,R2) in terms
of how ∂JDK acts on Φ. First note the following values of EΦ(Ti) for i = −2,−1, 0, 1:

EΦ(T−2) = 2M(JDK) + 2∂JDK(Φ)

EΦ(T−1) = M(JDK) + ∂JDK(Φ) +
∑

Pi∈P−

(M(JPiK)− ∂JPiK(Φ))

EΦ(T0) =
∑

Pi∈P−

(M(JPiK)− ∂JPiK(Φ))

EΦ(T1) = M(JDK)− ∂JDK(Φ) +
∑

Pi∈P−

(M(JPiK)− ∂JPiK(Φ)) +
∑
Pi∈P+

(M(JPiK)− ∂JPiK(Φ)).

Thus,
• EΦ(T−2) ≤ EΦ(T−1) whenever

∂JDK(Φ) ≤ −M(JDK) +
∑

Pi∈P−

(M(JPiK)− ∂JPiK(Φ)) =: λ−2,

• EΦ(T−1) ≤ EΦ(T0) whenever

∂JDK(Φ) ≤ −M(JDK) =: λ−1, and

• EΦ(T0) ≤ EΦ(T1) whenever

∂JDK(Φ) ≤M(JDK) +
∑
Pi∈P+

(M(JPiK)− ∂JPiK(Φ)) =: λ0

Notice also that we have the following inequalities

λ−2 ≤ λ−1 ≤ λ0.

As a result,
• T−2 is a solution when ∂JDK(Φ) ≤ λ−2,
• T−1 is a solution when ∂JDK(Φ) ∈ [λ−2, λ−1],
• T0 is a solution when ∂JDK(Φ) ∈ [λ−1, λ0], and
• T1 is a solution when ∂JDK(Φ) ≥ λ0.

In addition, the solution is unique whenever ∂JDK(Φ) /∈ {λ−2, λ−1, λ0, λ1}.

Example 3.7. Let B̃ be the 1 dimensional rectifiable current shown in Figure 4(A). As in
Example 3.6, T−2 is a solution when ∂JDK(Φ) ≤ λ−2, T−1 is a solution whenever ∂JDK(Φ) ∈
[λ−2, λ−1], and T0 is a solution when ∂JDK(Φ) ≥ λ−1. However, T1 cannot be a solution for
any Φ since its boundary ∂T1 is no longer a subcurrent of B̃.

2

2

2 2

2

2

2 2

1

1

1

1

11

1

1

(𝐵) (𝐶)(𝐴) (𝐷)

Figure 4: Given the boundary B̃ as shown in (A), the three possible solutions T−2, T−1, T0 for
P(EΦ,�B̃,0,R2) are shown in (B), (C), and (D), respectively.
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4 Plateau’s problem with H-mass for scans with boundary
Building upon the work of De Pauw and Hardt [5], in this section, we further investigate
Plateau’s problem with H-mass. We define a subfamily of measurable maps from the space of
all n−m planes in Rn to the space of 0 dimensional integral currents, called scans with boundary
and modify the definition of the H-mass to prove the existence of a solution of Plateau’s problem
with H-mass for scans with boundary in Theorem 4.18. The definitions and techniques from
this section will also be used when we study partial Plateau’s problem in §5.

4.1 The H-mass and the H-flat distance
We now list a few concepts and results from [5] that are particularly useful for the analysis in
this article. We start by defining the H-mass of real rectifiable currents with finite size and by
defining the H-flat distance on integral flat chains.

Definition 4.1 ([5, Definition 3.2.1.]). A function H : [0,∞) → [0,∞) is called a concave
integrand if it satisfies the following conditions:

1. H(0) = 0;
2. H(1) = 1;
3. H(θ1) < H(θ2) whenever 0 ≤ θ1 < θ2;
4. H(θ1 + θ2) ≤ H(θ1) +H(θ2) whenever θ1, θ2 ≥ 0;
5. limθ→∞H(θ) =∞.

Definition 4.2 ([5, Definition 3.2.2.]). For a concave integrand H and a real rectifiable current
T ∈ Dm(Rn) with S(T ) <∞, the H-mass of T is defined as

MH(T ) :=

∫
Rn

H(Θm(‖T‖, x)) dHm(x). (20)

Definition 4.3 ([5, Definition 3.2.8.]). For a compact subset K of Rn, a concave integrand H,
and an integral flat chain T ∈ Fm,K(Rn) we define

FH
K (T ) := inf{MH(T − ∂S) + MH(S) : S ∈ Rm+1,K(Rn), T − ∂S ∈ Rm,K(Rn)}. (21)

As in [7, 1.7.4, 2.7.16], let O(n) be the orthogonal group of Rn and O∗(n, k) be the space of
all orthogonal projections of Rn to Rk with its O(n) invariant measure θ∗n,k. In [5, Proposition
3.1.3. and 3.1.5.], it shows that any flat chain T ∈ Fm,K(Rn) and k ∈ {1, . . . ,m} can be
represented by the θ∗n,k × Lk measurable map

S(T ) : O∗(n, k)× Rk → Fm−k,K(Rn), S(T )(p, y) := 〈T, p, y〉, (22)

defined for every p ∈ O∗(n, k) and for Lk almost every y ∈ Rk. The k dimensional flat chain
〈T, p, y〉 is obtained by slicing T with p−1(y) under the orthogonal projection map p for y ∈ Rm.
For the remainder of the paper, the map S(T ) is to be defined as in (22) for k = m.

Let T ∈ Rm,K(Rn). For Lk almost every y ∈ Rm, 〈T, p, y〉 ∈ I0,K(Rn) [7, 4.3.6.], and hence
S(T ) : O∗(n,m) × Rm → I0,K(Rn). In addition, as in [5, (17)], the integral-geometric identity
says that its mass can be given by integrating the mass of its 0 dimensional slices:

M(T ) =
1

β1(m,n)

∫
O∗(n,m)×Rm

M(S(T )(p, y)) d(θ∗n,m × Lm)(p, y),

where β1(m,n) is the constant given in [7, 2.7.16]. By [5, (21)], we also have a similar equality
for the H-mass of a rectifiable current T ∈ Rm(Rn):

MH(T ) =
1

β1(m,n)

∫
O∗(n,m)×Rm

MH(S(T )(p, y)) d(θ∗n,m × Lm)(p, y). (23)
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Motivated by (23), De Pauw and Hardt [5] defined the H mass of a rectifiable scan. They
also introduced the concept of a scan cycle from the observation that a flat chain T ∈ Fm(Rn)
having boundary zero is equivalent to a corresponding condition on its zero dimensional slices [5,
Proposition 3.1.6]. Here, we extend their definitions to measurable maps from O∗(n,m) × Rm
to I0,K(Rn) in the following definition.

Definition 4.4. For any θ∗n,m×Lm measurable map f : O∗(n,m)×Rm → I0,K(Rn), we define
the H-mass of f to be

MH(f) :=
1

β1(m,n)

∫
O∗(n,m)×Rm

MH(f(p, y)) d(θ∗n,m × Lm)(p, y) (24)

and define the variation of f as

D(f) := sup{
∫
O∗(n,m)×Rm

|D(φ ◦ f)| : φ : I0,K(Rn)→ R with Lip(φ) ≤ 1}. (25)

Moreover we say that f is a cycle, and write ∂f = 0, if for θ∗n,m × Lm almost every (p, y) ∈
O∗(n,m)× Rm,

f(p, y)(1) = 0,

where 1 denotes the constant function 1(x) = 1 on Rn.

From equations (23) and (24), we can see that for any rectifiable current T ∈ Rm(Rn),

MH(T ) = MH(S(T )). (26)

For any compact K ⊆ Rn, we will denote the class of measurable maps obtained by rectifiable
currents in Rm,K(Rn) as Sm,K(Rn) := {S(T ) : T ∈ Rm,K(Rn)} and let

Sm(Rn) :=
⋃

K⊆Rn compact

Sm,K(Rn). (27)

We now recall one of the most important theorems from [5], and then state a direct corollary
that we will use in the proofs of Theorems 4.18 and 5.1.

Theorem 4.5 ([5, Theorem 3.4.1]). Suppose X is a k dimensional Riemannian manifold, Y
is a weakly separable metric space, M : Y → R+ is lower semicontinuous, and M−1([0, R]) is
sequentially compact in Y for all R > 0. If fj : X → Y is measurable, and∫

X

M(fj(x)) dHkx+

∫
X

|D(φ ◦ fj)| ≤ Λ <∞,

for all j = 1, 2, . . . and maps φ : Y → R with Lip(φ) ≤ 1, then some subsequence fj∗ converges
pointwise Hk a.e. to a function f : X → Y with∫

X

M(f(x)) dHkx+

∫
X

|D(φ ◦ f)| ≤ Λ

for all such φ.

Corollary 4.6. Let fj : O∗(n,m) × Rm → I0,K(Rn) be a sequence of θ∗n,m × Lm measurable
maps with

MH(fj) + D(fj) ≤ Λ <∞,
for all j = 1, 2, . . . . Then there exists a subsequence (fjk) of (fj) and an θ∗n,m×Lm measurable
map f : O∗(n,m)× Rm → I0,K(Rn) such that

MH(f) + D(f) ≤ Λ,

and (fjk) converges pointwise a.e. to f in the sense that for θ∗n,m × Lm almost every (p, y) ∈
O∗(n,m)× Rm,

FH
K [fjk(p, y)− f(p, y)]→ 0 as k →∞.
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Proof. This is a special case of [5, Theorem 3.4.1] with

X = the Riemannian manifold O∗(n,m)× Rm

Y = I0,K(Rn) with distY (T, T̃ ) = FH
K (T − T̃ )

M = MH .

4.2 Existence of H-mass minimizing scans
In this subsection, we amend the seminal work [5, Theorem 3.5.2.] of De Pauw and Hardt, who
consider the following Plateau-type problem: Given T0 ∈ Rm(Rn),{

minimize MH(T )

among T ∈ Rm(Rn) such that ∂T = ∂T0,

where MH(T ) denotes the H-mass of T ∈ Rm(Rn) as given in (20). Let Γ(MH , T0,Rn) be the
infimum of that problem:

Γ(MH , T0,Rn) := inf{MH(T ) : T ∈ Rm(Rn) and ∂T = ∂T0}. (28)

For the convenience of the reader, we now state [5, Theorem 3.5.2.] of De Pauw and Hardt.

Theorem ([5, Theorem 3.5.2.]). Let T0 ∈ Rm(Rn) with Im1 (spt(∂T0)) = 0 and let H be a
concave integrand. Then there exists an m-dimensional rectifiable scan T in Rn such that
∂(T −S(T0)) = 0 and MH(T ) = Γ(MH , T0,Rn). Moreover, if spt(∂T0) is an m−1 dimensional
compact propertly embedded C1,1 submanifold then there exists T ∈ Im(Rn) with ∂T = ∂T0 and
MH(T ) = Γ(MH , T0,Rn).

Before we discuss their proof, with the notation in (27) and by equation (26), observe
that (28) has the following equivalent formulation:

Γ(MH , T0,Rn) = inf{MH(R) : R ∈ Sm(Rn) and ∂(R− S(T0)) = 0}.

In other words, Sm(Rn) is the class of objects that [5] minimizes MH over.
Now, in the proof, De Pauw and Hardt construct a sequence of MH minimizing rectifiable

currents, and use their BV compactness theorem [5, Theorem 3.4.1.] to obtain a subsequence
{Tj} such that S(Tj) converges pointwise almost everywhere to a rectifiable scan T . By the
lower-semicontinuity of MH for 0 dimensional integral currents (under the H-flat distance), and
by Fatou’s Lemma, it follows that

MH(T ) ≤ Γ(MH , T0,Rn).

However, since the rectifiable scan T is not necessarily a rectifiable current, we cannot conclude
that T ∈ Sm(Rn), and in turn, can neither conclude that

MH(T ) = Γ(MH , T0,Rn).

To overcome this issue (the lack of closedness of Sm(Rn) under pointwise almost everywhere
convergence), we introduce a modified class of objects that we will minimize over, denoted by
Scanm(Rn), as well as a modified version of the H-mass.

Definition 4.7. Whenever K is a compact subset of Rn, we say that an θ∗n,m×Lm measurable
map T : O∗(n,m) × Rm → F0,K(Rn) is an m-dimensional scan in K if it is in the closure of
Sm,K(Rn). That is, if there exists a sequence of rectifiable currents T1, T2, · · · ∈ Rm,K(Rn) such
that S(Ti)→ T pointwise almost everywhere, in the sense that

lim
i→∞

FH
K [〈Ti, p, y〉 − T (p, y)] = 0 for θ∗n,m × Lm almost every (p, y) ∈ O∗(n,m)× Rm. (29)
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We define
Scanm,K(Rn)

to be the collection of all m-dimensional scans in K such that there exists a rectifiable current
T ∈ Rm,K(Rn) with ∂(T − S(T )) = 0.1 Members of Scanm,K(Rn) are called m-dimensional
scans in K with boundary.

Let us now investigate a couple of facts concerning the classes Scanm,K(Rn) and its members.

Proposition 4.8. Let K1,K2 be two compact subsets of Rn. If K1 ⊆ K2, then Scanm,K1(Rn) ⊆
Scanm,K2

(Rn).

Proof. For any T ∈ Scanm,K1(Rn), by definition, T : O∗(n,m) × Rm → F0,K1(Rn) is an m-
dimensional scan in K1 and ∂(T − S(T )) = 0 for some T ∈ Rm,K1(Rn). Since K1 ⊆ K2, T is
also an m-dimensional scan in K2 and T ∈ Rm,K2

(Rn). So T ∈ Scanm,K2
(Rn) as well.

Lemma 4.9. Let K be a compact subset of Rn. For any integral flat chain T ∈ Fm,K(Rn), the
θ∗n,m × Lm measurable map

S(T ) : O∗(n,m)× Rm → F0,K(Rn), S(T )(p, y) := 〈T, p, y〉,

is an m-dimensional scan in K with boundary.

Proof. We first show that S(T ) is an m-dimensional scan in K. Indeed, since T ∈ Fm,K is an
integral flat chain, there exists a sequence of rectifiable currents T1, T2, · · · ∈ Rm,K(Rn) such
that limi→∞ FK(T −Ti) = 0. By [5, Remark 3.2.9.], FHK (T −Ti) ≤ H(2)FK(T −Ti), and hence
limi→∞ FHK (T − Ti) = 0. By [5, Remark 3.2.11.],

∫
Rm FHK (〈T − Ti, p, y〉) dLmy ≤ FHK (T − Ti)

for any p ∈ O∗(n,m). Thus,∫
O∗(n,m)×Rm

FHK (〈T − Ti, p, y〉) d(θ∗n,m × Lm)(p, y) ≤ β1(n,m)FHK (T − Ti)→ 0 as i→∞.

By [6, Theorem 1.21], there exists a subsequence (Tij) of (Ti) such that

lim
j→∞

FHK (〈T − Tij , p, y〉) = 0

for θ∗n,m×Lm almost every (p, y) ∈ O∗(n,m)×Rm. As a result, S(T ) is an m-dimensional scan
in K.

We now show that S(T ) is also in Scanm,K(Rn). Since T ∈ Fm,K(Rn), there exists R ∈
Rm,K(Rn) and Q ∈ Rm+1,K(Rn) such that T = R+ ∂Q. Thus, by [5, Proposition 3.1.6.],

∂(S(T )− S(R)) = ∂(S(T −R)) = ∂(S(∂Q)) = 0. (30)

Therefore, S(T ) ∈ Scanm,K(Rn).

Definition 4.10. We define the class

Scanm(Rn) :=
⋃

K⊆Rn compact

Scanm,K(Rn),

whose members are called m-dimensional scans in Rn with boundary. For each T ∈ Scanm(Rn),
the boundary of T is defined by

∂T := S(∂T ) (31)

for any T ∈ Rm(Rn) satisfying ∂(T − S(T )) = 0.

With this definition we can now say that by (30), ∂(S(T )) = S(∂T ) for any T ∈ Fm(Rn).

1By Definition 4.4, ∂(T − S(T )) = 0 means that (T − S(T ))(p, y)(1) = 0 for θ∗n,m × Lm almost every (p, y) ∈
O∗(n,m)× Rm.
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Proposition 4.11. Equation (31) defines a boundary operator ∂ : Scanm(Rn)→ Scanm−1(Rn)
with ∂2 = 0, and ∂ : Scanm,K(Rn)→ Scanm−1,K(Rn) for K compact.

Proof. For any T ∈ Scanm(Rn), we first show that ∂T := S(∂T ) is well-defined in the sense
that S(∂T ) is independent of the choices of T ∈ Rm,K(Rn) that satisfies ∂(T − S(T )) = 0
and the choice of the compact set K ⊆ Rn. Indeed, suppose there are two compact sets
K1,K2 and an associated rectifiable current Tj ∈ Rm,Kj

(Rn) ⊆ Rm,K1∪K2
(Rn) with ∂(T −

S(Tj)) = 0 for j = 1, 2. Here, T − S(Tj) : O∗(n,m) × Rm → F0,Kj
(Rn) ⊆ F0,K1∪K2

(Rn).
So, ∂(S(T1 − T2)) = ∂(S(T1) − S(T2)) = 0. By [5, Proposition 3.1.6.], ∂(T1 − T2) = 0 for
T1 − T2 ∈ Rm,K1∪K2(Rn). Therefore, ∂T1 = ∂T2 and hence S(∂T1) = S(∂T2). This shows
that the definition ∂T := S(∂T ) is well-defined. By definition, ∂T ∈ Fm−1,K(Rn). Thus by
Lemma 4.9, ∂T = S(∂T ) ∈ Scanm−1,K(Rn) and ∂2T = ∂(S(∂T )) = S(∂2T ) = S(0) = 0.

Remark 4.12. Recall that the symbol ∂ is only used in the form of ∂T = 0, denoting that T is
a cycle and that we cannot apply this symbol to other maps, while ∂ is a well-defined boundary
operator on Scanm(Rn). In Scanm(Rn) the boundary operator ∂ is equivalent to ∂, in the sense
that for any T ∈ Scanm(Rn), ∂T = 0 if and only if ∂T = 0.

For each compact set K ⊆ Rn, the following functional, denoted by MH,K , serves as a
modification of the H-mass. Lemma 4.15 shows that it agrees with MH on the class of scans of
rectifiable currents.

Definition 4.13. For any compact K ⊆ Rn, we define the functional MH,K : Scanm,K(Rn)→
R by

MH,K(T ) := inf{lim inf
i→∞

MH(Ti) : Ti ∈ Rm,K(Rn),S(Ti)→ T , and ∂(S(Ti)) = ∂T }. (32)

We will simply write MH(T ) instead of MH,K(T ) if K is clear from context.

Remark 4.14. In general, the value of MH,K(T ) depends on the compact set K. Nevertheless,
if K1 ⊆ K2 are nonempty compact subsets of Rn and T ∈ Scanm,K1

(Rn)∩Scanm,K2
(Rn), since

Rm,K1
(Rn) ⊆ Rm,K2

(Rn) and FH
K2
≤ FH

K1
, it follows that MH,K2

(T ) ≤MH,K1
(T ).

Lemma 4.15. For any T ∈ Rm,K(Rn), MH(S(T )) = MH(T ) = MH(S(T )).

Proof. Taking the constant sequence Ti = T in (32) gives us that MH(S(T )) ≤MH(T ). We will
now show that MH(T ) ≤MH(S(T )). Let Ti ∈ Rm,K(Rn) with S(Ti) → S(T ). By definition,
for θ∗n,m × Lm almost every (p, y) ∈ O∗(n,m) × Rm, FH

K [〈Ti, p, y〉 − 〈T, p, y〉] → 0 as i → ∞.
By lower semi-continuity of MH under FH

K convergence [5, Lemma 3.2.14.],

MH(〈T, p, y〉) ≤ lim inf
i→∞

MH(〈Ti, p, y〉).

Integrating both sides and using Fatou’s lemma, we get

MH(S(T )) =
1

β1(m,n)

∫
O∗(n,m)×Rm

MH(〈T, p, y〉) d(θ∗n,m × Lm)(p, y)

≤ 1

β1(m,n)

∫
O∗(n,m)×Rm

lim inf
i→∞

MH(〈Ti, p, y〉) d(θ∗n,m × Lm)(p, y)

≤ lim inf
i→∞

1

β1(m,n)

∫
O∗(n,m)×Rm

MH(〈Ti, p, y〉) d(θ∗n,m × Lm)(p, y)

= lim inf
i→∞

MH(S(Ti)).

Thus, MH(S(T )) ≤MH(T ) and hence the result follows from MH(S(T )) = MH(T ).

The following proposition says that MH is subadditive on Scanm(Rn).

Proposition 4.16. For any nonempty compact subset K of Rn, MH(T1 + T2) ≤ MH(T1) +
MH(T2) for any T1, T2 ∈ Scanm,K(Rn).
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Proof. Let K be a nonempty compact subset of Rn such that both T1, T2 ∈ Scanm,K(Rn). For
each k = 1, 2, let {T ki }∞i=1 be a sequence in Rm,K(Rn) such that S(T ki )→ Tk with ∂(S(T ki )) =
∂Tk for all i ∈ N. By picking a subsequence if necessary, we may assume that for each k = 1, 2,
{MH(T ki )}∞i=1 converges. Now consider the sequence {T 1

i + T 2
i }∞j=1 and notice that T1 + T2 ∈

Scanm,K(Rn), S(T 1
i +T 2

i )→ (T1 +T2), and ∂(S(T 1
i +T 2

i )) = ∂(T1 +T2). Indeed, for θ∗n,m×Lm
almost every (p, y) ∈ O∗(n,m)× Rm,

FH
K [(S(T 1

i +T 2
i )(p, y)− (T1 +T2)(p, y)] ≤ FH

K [(S(T 1
i )−T1)(p, y)]+FH

K [(S(T 2
i )−T2)(p, y)]→ 0

as i→∞, and

((T1 + T2)− S(T 1
i + T 2

i ))(p, y)(1) = (T1 − S(T 1
i )(p, y)(1) + (T2 − S(T 2

i )(p, y)(1) = 0

for all i ∈ N. By definition, this implies ∂((T1 + T2)− S(T 1
i + T 2

i )) = 0 for all i ∈ N. Thus,

MH(T1 + T2) ≤ lim inf
i→∞

MH(T 1
i + T 2

i ) ≤ lim inf
i→∞

MH(T 1
i ) + MH(T 2

i )

= lim
i→∞

MH(T 1
i ) + lim

i→∞
MH(T 2

i ) = lim inf
i→∞

MH(T 1
i ) + lim inf

i→∞
MH(T 2

i ).

Since the sequences {T 1
i }∞i=1 and {T 2

i }∞i=1 were arbitrary, we have MH(T1 + T2) ≤ MH(T1) +
MH(T2).

Lemma 4.17. Let K be a compact subset of Rn and let Ti ∈ I0(Rn) be a sequence of 0 dimen-
sional integral currents. If limi→∞FH

K (Ti) = 0, then limi→∞ Ti(1) = 0.

Proof. By definition of FH
K , there exists a sequence {Si}∞i=1 in R1,K(Rn) such that limi→∞MH(Ti−

∂Si) = 0. It is sufficient to prove that limi→∞FK(Ti − ∂Si) = 0 since this implies that

lim
i→∞

Ti(1) = lim
i→∞

Ti(1)− Si(d(1)) = lim
i→∞

(Ti − ∂Si)(1) = 0.

To prove that limi→∞FK(Ti−∂Si) = 0 we will apply [5, Lemma 3.2.13.] which says that any se-
quence of integral flat chains {Qi}∞i=1 with supi{M(Qi)+M(∂Qi)} <∞ and limi→∞FH

K (Qi) =
0 will also have that limi→∞FK(Qi) = 0. To apply this lemma to our sequence {Ti − ∂Si}∞i=1

of 0 dimensional integral currents, we only need to show that supi{M(Ti − ∂Si)} < ∞ and
limi→∞FH

K (Ti−∂Si) = 0. Our last claim is shown by FH
K (Ti−∂Si) ≤MH(Ti−∂Si)→ 0. We

may also assume that supi{MH(Ti − ∂Si)} < ∞. Remark 3.2.7. in [5] says that H(M(T )) ≤
MH(T ) for all T ∈ I0(Rn) and hence supi{H(M(Ti−∂Si))} <∞. Since H is strictly increasing,
we lastly get that supi{M(Ti − ∂Si)} <∞.

Using this modified version of the H-mass MH on the class Scanm,K(Rn) of m-dimensional
scans in K with boundary, we now show that the Plateau’s problem with H-mass (5) has a
solution for each K.

Theorem 4.18. Let K be a nonempty compact subset of Rn. For any T0 ∈ Scanm,K(Rn), there
exists a scan T ∗ ∈ Scanm,K(Rn) with ∂T ∗ = ∂T0 such that

MH(T ∗) = min{MH(T ) : T ∈ Scanm,K(Rn), ∂T = ∂T0}. (33)

Moreover, T ∗(p, y) ∈ I0,K(Rn) for θ∗n,m × Lm almost every (p, y) ∈ O∗(n,m)× Rm.

Proof. By assumption {T ∈ Scanm,K(Rn) : ∂T = ∂T0} contains T0, and hence is non-empty. We
may assume that inf{MH(T ) : T ∈ Scanm,K(Rn), ∂T = ∂T0} <∞ as otherwise MH(T0) =∞
and we may simply pick T ∗ = T0. Let {T i}∞i=1 be an MH minimizing sequence in this collection.
That is, T i ∈ Scanm,K(Rn), ∂T i = ∂T0, and

lim
i→∞

MH(T i) = inf{MH(T ) : T ∈ Scanm,K(Rn), ∂T = ∂T0}. (34)

Since {T i}∞i=1 is an MH minimizing sequence, without loss of generality, we may assume that

sup
i

MH(T i) ≤ C <∞ (35)
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for some C > 0. By definition of MH in (32), for each i ∈ N, there exists a sequence {T ij}∞j=1 in
Rm,K(Rn) such that

lim
j→∞

MH(T ij ) = MH(T i), and ∂(S(T ij )) = ∂T i = ∂T0 for all j ∈ N. (36)

Since T0 ∈ Scanm,K(Rn), there exists a T0 ∈ Rm,K(Rn) such that ∂T0 = ∂(S(T0)). By the
proof of Proposition 4.11, the condition ∂(S(T ij )) = ∂T0 imply that ∂T ij = ∂T0 for all i, j ∈ N.
By (36), for each i ∈ N there exists an Ni ∈ N such that

|MH(T iNi
)−MH(T i)| ≤ 1

i
. (37)

Hence by (35), supiMH(T iNi
) ≤ C + 1 <∞. Thus,

MH(S(T iNi
− T0)) = MH(T iNi

− T0) ≤ C + 1 + MH(T0) for all i ∈ N.

On the other hand, by [5, Remark 3.3.3], [5, Lemma 3.1.2], and the fact that ∂T iNi
= ∂T0,

D(S(T iNi
− T0)) ≤ c1[MH((T iNi

− T0)× JO∗(n,m)K) + MH(∂((T iNi
− T0)× JO∗(n,m)K))]

= c1MH((T iNi
− T0)× JO∗(n,m)K)

≤ c2MH(T iNi
− T0)

≤ c2[C + 1 + MH(T0)],

where the constants c1 and c2 depend only on n and K. By Corollary 4.6 of the BV compactness
theorem [5, Theorem 3.4.1] of De Pauw and Hardt, and replacing {T iNi

} by a subsequence if
necessary, there exists a θ∗n,m ×Lm measurable map R : O∗(n,m)×Rm → I0,K(Rn) such that

lim
i→∞

FH
K [S(T iNi

− T0)(p, y)−R(p, y)] = 0 (38)

for θ∗n,m × Lm almost every (p, y) ∈ O∗(n,m)× Rm.
Now, let T ∗ = R + S(T0). By definition, (38) implies S(T iNi

) → R + S(T0) = T ∗. By
Lemma 4.17, this implies

(T ∗ − S(T0))(p, y)(1) = lim
i→∞
〈T iNi

− T0, p, y〉(1) = 0

θ∗n,m × Lm almost every (p, y), where the second equality is given by [5, Proposition 3.1.6.]
since ∂T iNi

= ∂T0 for all i ∈ N. This gives us our boundary condition, ∂(T ∗ − S(T0)) = 0, i.e.,
∂T ∗ = ∂(S(T0)) = ∂T0. As a result, T ∗ ∈ Scanm,K(Rn) with ∂T = ∂T0. Hence

MH(T ∗) ≥ inf{MH(T ) : T ∈ Scanm,K(Rn), ∂T = ∂T0}.

Additionally, by (32), (37), and (34),

MH(T ∗) ≤ lim inf
i→∞

MH(T iNi
) = lim inf

i→∞
MH(T i) = inf{MH(T ) : T ∈ Scanm,K(Rn), ∂T = ∂T0}.

Therefore, T ∗ satisfies (33) as desired.
Corollary 4.19. Let K be a nonempty compact and convex subset of Rn, and H be a concave
integrand. For any T0 ∈ Rm,K(Rn) and

T ∗ ∈ argmin{MH(T ) : T ∈ Scanm,K(Rn), ∂T = ∂T0} (39)

with T0 := S(T0), we have that MH(T ∗) = Γ(MH , T0,Rn).

Proof. First, recall that Γ(MH , T0,Rn) = inf{MH(T ) : T ∈ Rm,K(Rn), ∂T = ∂T0} since
MH(πK#(T )) ≤MH(T ) for any T ∈ Rm(Rn) under the nearest point projection map πK .

Since Sm,K(Rn) ⊆ Scanm,K(Rn), by Lemma 4.15, we have MH(T ∗) ≤ inf{MH(T ) :
T ∈ Rm,K(Rn), ∂T = ∂T0} = Γ(MH , T0,Rn). On the other hand, since each MH(T ij ) ≥
inf{MH(T ) : T ∈ Rm,K(Rn), ∂T = ∂T0}, by (36), we have MH(T ∗) ≥ Γ(MH , T0,Rn) as well.
Therefore, MH(T ∗) = Γ(MH , T0,Rn) as desired.
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5 Partial Plateau’s problem with H-mass
In this section, we assume that Φ ∈ Dm−1(Rn), H is a concave integrand, and that B ∈
Rm−1(Rn) with MH(B) <∞.

We are interested in what we call, partial Plateau’s problem with H-mass:

inf{EH,Φ(T ) : T ∈ Rm(Rn), ∂T � B} where EH,Φ(T ) := MH(T )− ∂T (Φ). (40)

To consider this problem, as in the previous section, we will consider an extension of EH,Φ
to elements in Scanm,K(Rn) for a fixed compact set K ⊆ Rn.

For any T ∈ Scanm,K(Rn), by definition, there exists a T ∈ Rm,K(Rn) such that ∂T =
S(∂T ). We simply write ∂T � S(B) whenever ∂T � B. Also, we define ∂T (Φ) := ∂T (Φ) and

EH,Φ(T ) := MH(T )− ∂T (Φ).

It extends the definition of EH,Φ in (40) since by Lemma 4.15, it holds that EH,Φ(S(T )) =
EH,Φ(T ) for any T ∈ Rm,K(Rn).

Theorem 5.1. Let K be a nonempty, compact, and convex subset of Rn, Φ ∈ Dm−1(Rn), H a
concave integrand, and let B ∈ Rm−1(Rn) with MH(B) <∞. For any T0 ∈ Scanm,K(Rn), there
exists a scan T ∗ : O∗(n,m)×Rm → I0,K(Rn) such that T ∗ ∈ Scanm,K(Rn), ∂(T ∗−T0) � S(B),
and

EH,Φ(T ∗) = min{EH,Φ(T ) : T ∈ Scanm,K(Rn), ∂(T − T0) � S(B)}. (41)

Moreover, if T0 = S(T0) for some T0 ∈ Rm,K(Rn), then

EH,Φ(T ∗) = inf{EH,Φ(T ) : T ∈ Rm(Rn), ∂(T − T0) � B}. (42)

The proof of this theorem will make use of the following two lemmas.

Lemma 5.2. Suppose that B ∈ Rk(Rn) for k ≥ 0. If A � B, then A is a k dimensional real
rectifiable current with MH(A) ≤MH(B).

Proof. Since B ∈ Rk(Rn),
B = Hk M ∧ θξ

such thatM is an (Hk, k)-rectifiable subset of Rn, θ : M → Z is summable, and ξ : M → ∧k(Rn)
is a simple k-vectorfield on M that coincides with the approximate tangent space of M . By [15,
Lemma 3.7], A � B implies that

A = Hm M ∧ σθξ for some Borel function σ : Rn → [0, 1].

Thus,

MH(A) =

∫
M

H(σ(x)θ(x)) dHm(x) ≤
∫
M

H(θ(x)) dHm(x) = MH(B) (43)

since 0 ≤ σ ≤ 1 and H is monotonically non-decreasing.

Lemma 5.3. Let m ∈ N, K be a nonempty, convex, compact subset of Rn, Z ∈ Rm−1,K(Rn)
with ∂Z = 0, and let {Zj}∞j=1 ⊆ Rm−1,K(Rn) with ∂Zj = 0 for all j ∈ N. If limj→∞FK(Zj −
Z) = 0, then there exists C,C1, C2, . . . in Rm,K(Rn) such that ∂C = Z, ∂Cj = Zj for all j ∈ N,
and limj→∞FK(Cj − C) = 0.

Proof. For each j ∈ N, let Cj = δv××Zj and C = δv××Z be the cones over Zj and Z respectively
with the fixed vertex v ∈ K [8, 4.1.11]. Note that since K is convex, the cones Cj and C are in
Rm,K(Rn). By the homotopy formula,

∂Cj = ∂(δv××Zj) = Zj − δv××∂Zj = Zj and ∂C = ∂(δv××Z) = Z − δv××∂Z = Z.

For any ε > 0, since limj→∞FK(Zj−Z) = 0, there exists an N ∈ N such that whenever j ≥ N ,
it holds that FK(Zj −Z) < ε. Thus, by the definition of the flat norm FK , there exists Rj and
Sj such that

Zj − Z = Rj + ∂Sj , and M(Rj) + M(Sj) < ε.
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Now,

Cj − C = δv××Zj − δv××Z = δv××(Zj − Z) = δv××(Rj + ∂Sj)

= δv××Rj + δv××∂Sj = δv××Rj + Sj − ∂(δv××Sj),

where we used the homotopy formula in the last equality. Assume that the compact set K is
contained in the ball B(0, ρ) for some ρ > 0. Then,

M(δv××Rj) ≤ ρM(Rj) and M(δv××Sj) ≤ ρM(Sj),

and thus

FK(Cj − C) ≤M(δv××Rj + Sj) + M(δv××Sj) ≤ ρM(Rj) + M(Sj) + ρM(Sj) ≤ (1 + ρ)ε.

This shows that limj→∞FK(Cj − C) = 0 as desired.

Remark 5.4. The following proof of Theorem 5.1 is similar to the one of Theorem 4.18. Nev-
ertheless, as the boundary of the minimizing sequence is not fixed, one can not apply directly
Theorem 4.18 here.

Proof of Theorem 5.1. Since T0 ∈ Scanm,K(Rn), by definition, there exists a T0 ∈ Rm,K(Rn)
with ∂T0 = ∂(S(T0)). Since the zero-current 0 � B, both T0 and S(T0) are contained in the set
{T ∈ Scanm,K(Rn) : ∂(T − T0) � S(B)}. Let {Ti}∞i=1 be an EH,Φ minimizing sequence in this
collection. That is, Ti ∈ Scanm,K(Rn) with ∂(Ti − T0) � S(B) for each i = 1, 2, . . . , and

lim
i→∞

EH,Φ(Ti) = inf{EH,Φ(T ) : T ∈ Scanm,K(Rn), ∂(Ti − T0) � S(B)}. (44)

Without loss of generality, we may assume that EH,Φ(Ti) ≤ EH,Φ(S(T0)) = EH,Φ(T0) for all
i ∈ N. Note that by definition, our boundary condition ∂(Ti −T0) � S(B) implies that for each
i ∈ N, there exists a Ti ∈ Rm,K(Rn) such that ∂Ti = ∂(S(Ti)) and ∂(Ti − T0) � B. Note also
that by the boundary rectifiability theorem [17], ∂(Ti − T0) ∈ Rm−1(Rn) and hence Ti − T0 are
integral currents. Now,

MH(Ti) = EH,Φ(Ti) + ∂Ti(Φ) ≤ EH,Φ(T0) + ∂Ti(Φ) = MH(T0) + ∂(Ti − T0)(Φ) (45)
≤MH(T0) + M(∂(Ti − T0))||Φ|| ≤MH(T0) + M(B)||Φ|| <∞, (46)

since MH(T0) ≤ H(2)M(T0) < ∞ by using the fact that H(θ) ≤ H(2)θ for all θ ≥ 1 in
equation (20). By definition of MH in (32), for each i ∈ N, there exists a sequence {T ij}∞j=1 in
Rm,K(Rn) such that

lim
j→∞

MH(T ij ) = MH(Ti), and ∂(S(T ij )) = ∂Ti for all j ∈ N. (47)

Notice that since ∂(S(T ij )) = ∂Ti = ∂(S(Ti)) it follows that ∂T ij = ∂Ti for all i, j ∈ N. By (47),
for each i ∈ N there exists an Ni ∈ N such that

|MH(T iNi
)−MH(Ti)| ≤

1

i
. (48)

Hence by (46) and (48), for all i ∈ N,

MH(S(T iNi
− T0)) = MH(T iNi

− T0) ≤MH(T iNi
) + MH(T0)

≤MH(Ti) + 1 + MH(T0) ≤ 2MH(T0) + M(B)||Φ||+ 1.

Furthermore, by [5, Remark 3.3.3], [5, Lemma 3.1.2], Lemma 5.2 and the fact that ∂T iNi
= ∂Ti,

it holds that

D(S(T iNi
− T0)) ≤ c1[MH((T iNi

− T0)× JO∗(n,m)K) + MH(∂((T iNi
− T0)× JO∗(n,m)K))]

= c1[MH((T iNi
− T0)× JO∗(n,m)K) + MH(∂((Ti − T0)× JO∗(n,m)K))]

≤ c2[MH(T iNi
− T0) + MH(∂(Ti − T0))]

≤ c2[2MH(T0) + M(B)||Φ||+ 1 + MH(B)],

20



where the constants c1 and c2 depend only on n and K. Thus, for each i,

MH(S(T iNi
− T0)) + D(S(T iNi

− T0))

≤ (1 + c2)(2MH(T0) + M(B)||Φ||+ 1) + c2MH(B) <∞.

Now, by Corollary 4.6 and replacing {T iNi
} by a subsequence if necessary, we may assume

that
lim
i→∞

FH
K [S(T iNi

− T0)(p, y)−R(p, y)] = 0 (49)

for θ∗n,m × Lm almost every (p, y) ∈ O∗(n,m) × Rm, where R : O∗(n,m) × Rm → I0,K(Rn)

is a measurable map. Let T ∗ = R + S(T0). By definition, (49) implies S(T iNi
) → T ∗. By

Lemma 4.17, this implies for a.e. (p, y),

lim
i→∞

(T ∗ − S(Ti))(p, y)(1) = lim
i→∞

(T ∗ − S(T iNi
))(p, y)(1) + lim

i→∞
〈T iNi

− Ti, p, y〉(1) = 0, (50)

where the second equality is given by [5, Proposition 3.1.6.] since ∂T iNi
= ∂Ti for all i ∈ N.

Our next goal is to show that T ∗ ∈ Scanm,K(Rn) and satisfy the boundary condition ∂(T ∗−
T0) � S(B). Since ∂(T ∗−T0) = ∂(T ∗−S(T0)) = ∂R, it is sufficient to show that ∂R = ∂(S(C))
for some C ∈ Rm,K(Rn) with ∂C � B. Since ∂(Ti−T0) � B, we have M(∂(Ti−T0)) ≤M(B) <
∞ for each i. By the compactness theorem of rectifiable currents and replacing (Ti − T0) by
a subsequence if necessary, we may assume that limi→∞FK(∂(Ti − T0) − S) = 0 for some
S ∈ Rm−1(Rn). Since ∂(Ti − T0) � B, by Lemma 3.2, S � B.

Let Ci = δv××∂(Ti − T0) and C = δv××S be the cones with a fixed cone vertex v ∈ K. Note
that both Ci and C are in Rm,K(Rn) since K is convex. Then, ∂Ci = ∂(Ti−T0) and by Lemma
5.3, lim

i→∞
FK(Ci − C) = 0. By the integral-geometric equality,∫

O∗(n,m)×Rm

FK(〈Ci − C, p, y〉) d
(
θ∗n,m × Lm

)
(p, y) ≤ β1(n,m)FK(Ci − C)→ 0.

Thus, for θ∗n,m × Lm-a.e. (p, y) ∈ O∗(n,m)× Rm, limi→∞FK(〈Ci − C, p, y〉) = 0. As a result,
for θ∗n,m × Lm-a.e. (p, y) ∈ O∗(n,m)× Rm, by (50),

(R− S(C))(p, y)(1) = (T ∗ − S(T0)− S(C))(p, y)(1)

= lim
i→∞

(T ∗ − S(Ti))(p, y)(1) + lim
i→∞
〈Ti − T0 − Ci, p, y〉(1) = 0,

because ∂Ci = ∂(Ti−T0). This shows that ∂(R−S(C)) = 0. Since ∂C = S � B, we have ∂R =
S(∂C) � S(B). This gives us our boundary condition, ∂(T ∗ − S(T0 +C)) = ∂(R− S(C)) = 0.
Since S(T iNi

) → T ∗, it follows that T ∗ ∈ Scanm,K(Rn) with ∂(T ∗ − S(T0)) = ∂R � B.
Hence T ∗ belongs to the collection {T ∈ Scanm,K(Rn) : ∂(T − S(T0)) � S(B)}. Additionally,
by (32), (48), and (44),

EH,Φ(T ∗) = MH(T ∗)− ∂(T0 + C)(Φ)

≤ lim inf
i→∞

MH(T iNi
)− lim

i→∞
∂(T0 + Ci)(Φ)

= lim inf
i→∞

MH(Ti)− lim
i→∞

∂Ti(Φ)

= lim inf
i→∞

EH,Φ(Ti)

= inf{EH,Φ(T ) : T ∈ Scanm,K(Rn), ∂(T − S(T0)) � S(B)}.

Therefore, T ∗ is a desired EH,Φ minimizer satisfying (41).
Now, suppose that T0 = S(T0) for some T0 ∈ Rm,K(Rn). We prove (42) as follows. Since

{S(T ) : T ∈ Rm,K(Rn)} ⊆ Scanm,K(Rn), by Lemma 4.15, we have

EH,Φ(T ∗) ≤ inf{EH,Φ(T ) : T ∈ Rm,K(Rn), ∂(T − T0) � B}
= inf{EH,Φ(T ) : T ∈ Rm(Rn), ∂(T − T0) � B} ≤ EH,Φ(T iNi

)

for each i. Taking i→∞, by (47), we have the desired equality (42).
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In particular, when T0 = 0, we have the following corollary.

Corollary 5.5. Let K be a nonempty, compact, and convex subset of Rn, Φ ∈ Dm−1(Rn),
H a concave integrand, and let B ∈ Rm−1(Rn) with MH(B) < ∞. Then there exists T ∗ :
O∗(n,m)× Rm → I0,K(Rn) such that T ∗ ∈ Scanm,K(Rn), ∂T ∗ � S(B), and

EH,Φ(T ∗) = min{EH,Φ(T ) : T ∈ Scanm,K(Rn), ∂T � S(B)}
= inf{EH,Φ(T ) : T ∈ Rm(Rn), ∂T � B}.
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