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Abstract. We investigate the following question: what is the set of unit volume which can be
best irrigated starting from a single source at the origin, in the sense of branched transport? We may
formulate this question as a shape optimization problem and prove existence of solutions, which can be
considered as a sort of “unit ball” for branched transport. We establish some elementary properties
of optimizers and describe these optimal sets A as sublevel sets of a so-called landscape function
which is now classical in branched transport. We prove β-Hölder regularity of the landscape function,
allowing us to get an upper bound on the Minkowski dimension of the boundary: dimM∂A ≤ d− β
(where β := d(α − (1 − 1/d)) ∈ (0, 1) is a relevant exponent in branched transport, associated with
the exponent α > 1 − 1/d appearing in the cost). We are not able to prove the upper bound, but
we conjecture that ∂A is of non-integer dimension d − β. Finally, we make an attempt to compute
numerically an optimal shape, using an adaptation of the phase-field approximation of branched
transport introduced some years ago by Oudet and the second author.
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Introduction

Given two probability measures µ, ν on Rd, a classical optimization problem amounts to finding a
connection between the two measures which has minimal cost. In branched transport, such a connection
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will be performed along a 1-dimensional structure such that the cost for moving a mass m at distance
` is proportional to mα × ` where α is some concave exponent α ∈ [0, 1]. The map t 7→ tα being
subadditive (even strictly subadditive for α < 1), that is to say (a + b)α ≤ aα + bα, it is cheaper for
masses to travel together as much as possible. Consequently, the optimal connections exhibit branching
structures: for instance, if one wishes to transport one Dirac mass to two Dirac masses of mass 1/2,
the optimal graph will be Y -shaped.

A early model has been proposed by Gilbert in [Gil67] as an extension of Steiner problem (see
[GP68]) in a discrete setting, where the connection between two atomic measures is made through
weighted oriented graphs. There are two main extensions of this model to a continuous setting, i.e.
with arbitrary probability measures. The first one was introduced in 2003 by the third author in [Xia03]
and can be viewed as a Eulerian model. It is based on vector measures and roughly reads as:

min

{ˆ ∣∣∣∣ dvdH1 (x)

∣∣∣∣α dH1(x) : ∇ · v = µ− ν
}
,

minimizing among vector measures which have an H1-density. A Lagrangian model was introduced
essentially at the same time by and Maddalena, Solimini, Morel [MSM03], and then intensively studied
by Bernot, Caselles, Morel [BCM05] . It is based on measures on a set of curves, but the description
of this model, which is a little more involved, is given in Section 1. An almost up-to-date reference on
branched transport resides in the book by the same authors [BCM09].

Looking at the optimal branching structures computed numerically in [OS11] (in some non-atomic
cases), or at natural drainage networks and their irrigations basins, one is tempted to describe them
as fractal (see [RR01]). Actually, even though the underlying network has infinitely many branching
points, it is stil a 1-rectifiable set, hence it is not clear in what sense fractality appears. Fractality is a
notion which usually relates either to self-similarity properties of non-smooth objects, or to non-integer
dimension of sets. A first rigorous result which would fall in the first category is proven by Brancolini
and Solimini in [BS14]: for sufficiently diffuse measures (for example the Lebesgue measure restricted
to a Lipschitz open set), the number of branches of length ∼ ε stemming from a branch of length l is
of order l/ε. This may read as a self-similarity property since in a way the total length is preserved
when looking at subbranches at all scales.

The present paper leans towards the other notion of fractality, that is towards “fractal” dimension.
Some sets in branched transport have already been proposed as candidates to exhibit non-integer
dimension, for instance the boundary of adjacent irrigation basins (an open conjecture by J.-M. Morel).
Here we are interested in another candidate which is related to branched transport: the boundary of
what we call unit balls for branched transport. With the results of the present paper, we can only
prove an upper bound on the dimension, which is non-integer, and conjecture that this upper bound
is actually sharp.

The article is divided into five parts. In a preliminary section we define properly the Lagrangian
framework of branched transport and its basic features, and we formulate our question as a shape
optimization problem involving the irrigation distance. Section 2 is devoted to the proof of existence of
minimizers and to elementary properties of minimizers. In Section 3 we prove the β-Hölder regularity
of the landscape function, which appears in the description of optimizers, and use it to derive an upper
bound on the Minkowski dimension of the boundary of the optimizers in Section 4. The final section
is an attempt at computing optimizers numerically, which is particularly useful due to the fact that we
are not fully able to answer theoretically the question of the fractal behavior of the boundary. This
is done by adapting the Modica-Mortola approach introduced by [OS11], and allows to provide some
convincing computer visualizations.
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1. Preliminaries

As preliminaries, we quickly set the Lagrangian framework of branched transport and its main
features. For more details, we refer to the book [BCM09] or to [Peg17, Sections 1–2] for a simpler
exposition.

1.1. The irrigation problem. We denote by Γ(Rd) the set of 1-Lipschitz curves in Rd parameterized
on [0,∞], endowed with the topology of uniform convergence on compact sets.

Irrigation plans. We call irrigation plan any probability measure η ∈ Prob(Γ) satisfying the following
finite-length condition

(1.1) L(η) :=

ˆ
Γ

L(γ) dη(γ) < +∞,

where L(γ) =
´∞

0
|γ̇(t)|dt. Notice that any irrigation plan is concentrated on Γ1(Rd) := {γ : L(γ) <

∞}. We denote by IP(Rd) the set of all irrigation plans η ∈ Prob(Γ). If µ and ν are two probability
measures on Rd, one says that η ∈ IP(Rd) irrigates ν from µ if one recovers the measures µ and ν by
sending the mass of each curve respectively to its initial point and to its final point, which means that

(π0)#η = µ and (π∞)#η = ν,

where π0(γ) = γ(0), π∞(γ) = γ(∞) := limt→+∞ γ(t) and f#η denotes the push-forward of η by f
whenever f is a Borel map1. We denote by IP(µ, ν) the set of irrigation plans irrigating ν from µ:

IP(µ, ν) = {η ∈ IP(Rd) : (π0)#η = µ, (π∞)#η = ν}.

If η is a given irrigation plan, we define the multiplicity at x, that is the total mass passing by x, as

θη(x) = η({γ ∈ Γ : x ∈ γ}),

where x ∈ γ means that x belongs to the image of the curve γ. Finally, for any nonnegative function
f , we denote by

´
γ
f(x) dx the line integral of f along γ ∈ Γ:

ˆ
γ

f(x) dx :=

ˆ +∞

0

f(γ(t))|γ̇(t)|dt.

Irrigation costs. For α ∈ [0, 1] we consider the irrigation cost Iα : IP(Rd)→ [0,∞] defined by

Iα(η) :=

ˆ
Γ

ˆ
γ

θη(x)α−1 dx dη(γ),

with the conventions 0α−1 =∞ if α < 1, 0α−1 = 1 otherwise, and∞×0 = 0. If µ, ν are two probability
measures on Rd, the irrigation (or branched transport) problem consists in minimizing the cost Iα on
the set of irrigation plans which send µ to ν, which reads

(LIα) min
η∈IP(µ,ν)

ˆ
Γ

ˆ
γ

θη(x)α−1 dxdη(γ).

We set Zη(γ) =
´
γ
θη(x)α−1 dx so that the cost may expressed as

Iα(η) =

ˆ
Γ

Zη(γ) dη(γ).

The following results are extracted from [BCM05; Peg17; Xia03].

1Notice that limt→∞ γ(t) exists if γ ∈ Γ1(K), and this is all we need since any irrigation plan is concentrated on
Γ1(K).
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Proposition 1.1 (First variation inequality for Iα). If η is an irrigation plan with Iα(η) finite, then
for all irrigation plan η̃ the following holds:

(1.2) Iα(η̃) ≤ Iα(η) + α

ˆ
Zη(γ) d(η̃ − η).

Notice that the integral
´
Zη d(η̃ − η) is well-defined since

´
Zη dη <∞ and Zη is nonnegative, though

it may be infinite.

Theorem 1.2 (Existence of minimizers,). For any pair of probability measures µ, ν ∈ Prob(Rd) which
have compact support, the problem (LIα) admits a minimizer.

Theorem 1.3 (Irrigability). If 1 − 1
d < α < 1, for any µ, ν ∈ Prob(Rd) with compact support there

exists some η ∈ IP(µ, ν) such that Iα(η) is finite.

From now on we assume that α ∈
]
1− 1

d , 1
[
.

Irrigation distance. Let us set

dα(µ, ν) = min{Iα(η) : η ∈ IP(µ, ν)}
for any pair µ, ν of probability measures on Rd. For any compact K ⊆ Rd, it induces a distance on
Prob(K) which metrizes the weak-? convergence of measures in the duality with C(K). On non-compact
subsets of Rd, the distance dα is lower semicontinuous w.r.t. the weak-? convergence of measures in
the duality with bounded and continuous functions (narrow convergence)2.

Proposition 1.4 (Scaling law). For any compactly supported measures µ, ν with equal mass, there
is an upper bound on the irrigation distance depending on the mass and the diameter. We set µ′ =
µ − µ ∧ ν, ν′ = ν − µ ∧ ν the disjoint parts of the measures and m = |µ′| = |ν′| their common mass.
Then:

dα(µ, ν) ≤ Cmα diam(suppµ′ ∪ supp ν′).

Landscape function. The landscape function was introduced by the second author in [San07], in
the single-source case. It has been then studied by Brancolini, Solimini in [BS11] and by the third
author in [Xia14]. It will be a central tool in the study of the shape optimization problem we are going
to introduce. We recall here the basic definitions and properties. Given an optimal irrigation plan
η ∈ IP(δ0, ν), we say that a curve γ is η-good if

• the quantity Zη(γ) =
´
γ
θη(x)α−1 dx is finite,

• for all t < T (γ),
θη(γ(t)) = η({γ̃ ∈ Γ(Rd) : γ = γ̃ on [0, t]}),

where T (γ) = inf{t ∈ [0,∞] : γ(s) = γ(∞) for all s ∈ [t,∞]} is the stopping time of γ.
One may prove by optimality that η is concentrated on the set of η-good curves. Moreover it is

proven in [San07] that for all η-good curves γ, the quantity Zη(γ) depends only on the final point γ(∞)
of the curve, thus we may define the landscape function zη as follows:

zη(x) =

{
Zη(γ) if γ is an η-good curve s.t. x = γ(∞),
+∞ otherwise.

Notice that for an optimal η the cost may be expressed in terms of zη:

Iα(η) =

ˆ
Γ

Zη(γ) dη(γ) =

ˆ
Rd
zη(x) dν(x).

2Proving this is just an adaptation of the proof on compact sets. If µ is fixed (for example) and νn → ν with
ηn ∈ IP(µ, νn) optimal and parameterized by arc length, assuming that the cost is bounded, the irrigation plans ηn are
tight and one may extract a subsequence converging to some η which irrigates ν and whose cost is less than lim inf dα(µ, νn)

by lower semicontinuity of Iα.
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Finally, one may show that zη is lower semicontinuous and that the inequality zη(x) ≥ |x| holds.

1.2. The shape optimization problem. We ask ourselves the following question: what is the set of
unit volume which is closest to the origin in the sense of irrigation? To give this a precise meaning,
we embed everything in the space of probability measures; hence we want to minimize the dα distance
between the unit Dirac mass at 0 ∈ Rd and sets E of unit volume, seen as the uniform measure on E.
This problem reads

(Sα) min {dα(δ0,1E L) : |E| = 1},

where L denotes the Lebesgue measure on Rd. We relax this problem by minimizing on a larger set,
which is the set of probability measures with Lebesgue density bounded by 1, thus getting:

(Rα) min {Xα(ν) : ν ≤ 1, ν ∈ Prob(Rd)},

where Xα(ν) = dα(δ0, ν).
In the following, we will sometimes encounter positive measures which do not have unit mass, thus

we extend the functional by setting Xα(ν) := dα(|ν|δ0, ν) for any finite measure ν.
A key tool in the analysis of this problem lies in the following lemma.

Proposition 1.5 (First variation inequality for Xα). Suppose that ν ∈ Prob(Rd) with Xα(ν) < ∞.
Suppose also that η is an optimal irrigation plan between |ν|δ0 and ν, with landscape function zη. The
following holds:

Xα(ν̃) ≤ Xα(ν) + α

ˆ
zη d(ν̃ − ν)

for any ν̃ ∈ Prob(Rd).

Notice also that the integral
´
zη d(ν̃ − ν) is well-defined since

´
zη dν = Iα(η) = Xα(ν) < ∞ and

zη is non-negative, though it may be infinite.

Proof. If
´
zη dν̃ = ∞ then there is nothing to prove. Otherwise for ν-a.e. x, zη(x) is finite hence

there are η-good curves reaching x and one can find a measurable3 map g : Rd → Γ which associates
with every x an η-good curve reaching x. Let us build an irrigation plan η̃ ∈ IP(|ν̃|δ0, ν̃) which is
concentrated on η-good curves, by setting η̃ = g#ν, so thatˆ

Γ

Zη dη̃ =

ˆ
Γ

zη(γ(∞)) dη̃(γ) =

ˆ
Rd
zη(x) dν̃.

Then, by the first variation inequality for Iα, we get:

Xα(ν̃)
.
= dα(|ν̃|δ0, ν̃) ≤ Iα(η̃) ≤ Iα(η) + α

ˆ
Γ

Zη d(η̃ − η) = Xα(ν) + α

ˆ
Rd
zη d(ν̃ − ν). �

2. Existence and first properties

We will often denote by C = C(α, d) or c = c(d) different positive constants which depend only on
α, d or d respectively.

3One can characterize η-good curves as those γ such that Z̃η(γ) <∞ where Z̃η(γ) :=
´∞
0 |γ|t,η dt is a slight variation

of Zη defined in [San07] which is also lower semicontinuous. Hence the multifunction associating to every x the set
of η-good curves reaching x can be written as

⋃
`∈Q{γ ∈ Γ : Z̃η(γ) ≤ `, γ(∞) = x}, i.e. as a countable union of

multifunctions with closed graph. This means that this multifunction is measurable and admits a measurable selection
(see e.g. [CV77]).
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2.1. Existence of minimizers.

Theorem 2.1. The relaxed shape optimization problem (Rα) admits at least a minimizer.

Proof. The existence of a minimizer follows from the lower semicontinuity and tightness. Indeed, any
minimizing sequence νn must have bounded first moment sinceˆ

|x|dν(x) ≤
ˆ
zη(x) dν(x) = dα(δ0, ν).

A bound on the first moment implies tightness of the sequence and, up to extracting a subsequence,
one has νn ⇀ ν. The condition νn ≤ 1 implies ν ≤ 1 and the lower semicontinuity of dα provides the
optimality of ν. �

For 1 > α > 1 − 1
d , we will denote the optimal value for the relaxed shape optimization problem

(Rα) by:
eα := min{dα(δ0, ν) : ν ≤ 1 and ν ∈ Prob(Rd)}.

Lemma 2.2 (Scaling lemma). For any finite measure ν we have

Xα(ν) ≥ eα|ν|α+ 1
d .

Proof. For λ = |ν|−1/d, let ν̃ = λdϕ#(ν) be a scaling of ν under the map ϕ(x) = λx in Rd. Then,´
Rd dν̃ = λd

´
Rd dν = λd|ν| = 1 and ν ≤ 1. Thus,

eα ≤ dα(ν̃, δ0) = λαd+1dα(ν, |ν|δ0) = |ν|−(α+ 1
d )Xα(ν).

�

For any ν, we say that z is a landscape function of ν if it is the landscape function zη associated
with some optimal irrigation plan η ∈ IP(δ0, ν).

Theorem 2.3. Let ν be a minimizer of (Rα) and z a landscape function of ν. Then ν is the indicator
of a set A which is a sublevel set of z:

(2.1) A = {x : z(x) ≤ z?}, with z? =
eα
α

(α+
1

d
).

In particular, A is a solution to problem (Sα) and it is a compact and path-connected set.

Proof. We show that ν also minimizes the first variation of Xα, that is µ 7→
´
z dµ. Take ν̃ a competitor

for (Rα). By Proposition 1.5, one has:

Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(ν̃ − ν),

but Xα(ν) ≤ Xα(ν̃), thus ˆ
z dν ≤

ˆ
z dν̃

for any ν̃. So as to minimize this quantity, ν must concentrate its mass on the points where z takes its
lowest values. More precisely, there is a value z? ∈ [0,∞] such that

ν(x)


= 1 if z(x) < z?,
∈ [0, 1] if z(x) = z?,
= 0 if z(x) > z?.

Indeed, we just take z? = sup{t ∈ R : |{z(x) ≤ t}| < 1}. Since
´
z dν = eα > 0, necessarily z? > 0.

This kind of arguments is typical in optimization problems under an upper density constraint, as it
was for instance done for crowd motion applications in [MRS14].
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Step 1: z? ≤ eα
α

(
α+ 1

d

)
.

For 0 ≤ k < z?, we consider the competitor ν̃ = 1{z≤k} and set |ν̃| = 1−m, noting that m > 0 by
definition of z?. Using Lemma 2.2 and Proposition 1.5, one gets

eα(1−m)α+ 1
d ≤ Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(ν̃ − ν) = eα − α

ˆ
{z>k}

z dν.

Since ν({z > k}) = 1− |{z ≤ k}| = m, it follows that

(2.2) eα(1−m)α+ 1
d ≤ eα − αkm.

As α+ 1
d > 1, the map t 7→ tα+ 1

d is (strictly) convex, thus

eα

(
1−

(
α+

1

d

)
m

)
≤ eα(1−m)α+ 1

d ≤ eα − αkm,

hence forgetting the middle term, substracting eα and dividing by m:

αk ≤ eα
(
α+

1

d

)
.

Taking the limit k → z? yields:

(2.3) z? ≤ eα
α

(
α+

1

d

)
.

Step 2: ν = 1A where A = {z ≤ z?}.
Take the competitor ν̃ = 1{z≤z?} and set |ν̃| = 1 + m, m ≥ 0. Using again the scaling lemma and

the first variation of Xα one gets:

eα(1 +m)α+ 1
d ≤ eα + α

ˆ
z=z?

z d(ν̃ − ν) = eα + αz?m.

Now by strict convexity of t 7→ tα+ 1
d , if m > 0 then one has eα(1 +m)α+ 1

d > eα
(
1 +

(
α+ 1

d

)
m
)
, thus

eα

(
α+

1

d

)
m < αz?m,

which contradicts (2.3). Consequently m = 0, hence ν = ν̃ = 1{z≤z?}.
Step 3: Compactness and connectedness.
A is closed since z is lower semicontinuous and bounded since z(x) ≥ |x| for all x ∈ Rd. It is

path-connected since any point x with z(x) ≤ z? is the endpoint of an η-good curve γ starting from 0
and γ ⊆ A because z is increasing along this curve.
Step 4: z? ≥ eα

α

(
α+ 1

d

)
.

Take x0 ∈ A with maximal Euclidean norm. Then the half ball Hr(x0) := Br(x0)∩{x : 〈x−x0, x0〉 >
0} is included in Ac. We consider the competitor ν̃ = 1AtHr(x0), with mass |ν̃| = 1 + m, where
m = |Hr(x0)| = crd for some constant c = c(d). To irrigate ν̃, we pay at most the cost of irrigation of
ν, plus the price for moving an extra mass m from 0 to x0 along the irrigation plan, plus the cost for
moving this mass to Br(x0) \A, which we can bound by Cmαr, as follows:

Xα(ν̃) = dα((1 +m)δ0, ν̃) ≤ dα((1 +m)δ0, ν +mδx0
) + dα(ν +mδx0

, ν + 1Hr(x0))

= Xα(ν +mδx0
) + dα(mδx0

,1Hr(x0))

≤ eα + αmz(x0) + Cr1+dα,
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where C = C(α, d) is some positive constant. Since x0 is not a Lebesgue point of A and x0 ∈ A, by
Lemma 2.4 below, it follows that z(x0) = z?. Putting this in the previous inequality, combining it with
the convexity inequality

Xα(ν̃) ≥ eα(1 +m)α+ 1
d ≥ eα

(
1 +

(
α+

1

d

)
m

)
,

and dividing by m > 0, one gets:

eα

(
α+

1

d

)
≤ αz? + Cr1+dα−d.

Passing to the limit r → 0, we obtain

z? ≥ eα
α

(
α+

1

d

)
. �

2.2. Lebesgue points. For any set K, let us set ΘK(x, r) := |K∩B(x,r)|
|Br(x)| the fraction of mass of Br(x)

lying in K. We also set

β = d

(
α−

(
1− 1

d

))
= 1 + dα− d,

a number which is strictly between 0 and 1 as 1 > α > 1− 1
d and which will appear extensively as an

exponent throughout the rest of the article.

Lemma 2.4. If z(x) < z?, then x is a Lebesgue point of A.

Proof. Consider the competitor ν̃ = 1A∪Br(x) with mass |ν̃| = 1+m where m = |Br(x)\A|. To irrigate
ν̃ from 0 one may irrigate ν +mδx from 0, then 1Br(x)\A from x. The first cost may be estimated by
the first variation of Xα, and the second one may be bounded knowing that irrigating a mass m at
distance r costs less than Cmαr for some constant C = C(α, d). This writes rigorously as:

Xα(ν̃) = dα((1 +m)δ0, ν̃) ≤ dα((1 +m)δ0, ν +mδx) + dα(ν +mδx, ν + 1Br(x)\A)

= Xα(ν +mδx) + dα(mδx,1Br(x)\A)

≤ eα + αmz(x) + Cmαr,

On the other hand, by the scaling lemma and by convexity, one has Xα(ν̃) ≥ eα
(
1 +

(
α+ 1

d

)
m
)
≥

eα +αmz?, the last inequality resulting from Theorem 2.3. Combining this with the previous series of
inequalities yields:

m1−α(z? − z(x)) ≤ Cr,

which rewrites

(2.4) Θ1−α
Ac (x, r)(z? − z(x)) ≤ Crβ ,

where we recall β = 1 + dα − d is a number strictly between 0 and 1. As a consequence, if z(x) < z?

then ΘAc(x, r)
r→0−−−→ 0 and x is a Lebesgue point of A. �

3. Hölder continuity of the landscape function

We set Ar(x) := A ∩Br(x), z̄r(x) the central median of z on the set Ar(x) and zr(x) its mean. We
are going to show that z is β-Hölder continuous using Campanato estimates (Campanato spaces were
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introduced in [Cam63], see [Giu03, Section 2.3] for a modern exposition), as it is done in [San07]. More
precisely, we are going to prove the following inequalitie, for arbitrary r > 0: 

Ar(x)

|z − zr(x)| ≤ Crβ ,(3.1)

|zr(x)− zr/2(x)| ≤ Crβ ,(3.2)

zr(x)− z(x) ≤ Crβ ,(3.3)

|z(x)− zr(x)| ≤ Crβ ,(3.4)

|z|y−x|(x)− z|y−x|(y)| ≤ C|y − x|β .(3.5)

Notice that the two last inequalities imply that z is indeed β-Hölder continuous:

|z(y)− z(x)| ≤ |z(y)− z|y−x|(y)|+ |z|y−x|(x)− z|y−x|(y)|+ |z(x)− z|y−x|(x)|

≤ C|y − x|β .
The main difficulty we will encounter is that we will quite easily obtain estimates of the form

· · · ≤ C rβ

ΘA(x, r)1−α ,

and will need to get rid of the term ΘA(x, r)1−α, i.e. treat the case when it becomes small.

3.1. Main lemmas. We will make use of the following lemmas.

Lemma 3.1 (Maximum deviation). There is a constant C = C(d, α) > 0 such that the following holds:

(3.6) ∀y ∈ Ar(x), z? − z(y) ≤ C rβ

ΘAc(x, r)1−α .

Remark 3.1. One can see that if ΘA(x, r) becomes small, then ΘAc(x, r) is large (close to 1), and
actually all values of z in Ar(x) become close to the same value z? up to Crβ .

Proof. We consider the competitor ν̃ = 1A∪Br(x), with mass |ν̃| = 1 + m where m = |Br(x) \ A|. For
any y ∈ Ar(x), let us irrigate ν̃ from 0 by irrigating ν from 0, moving an extra mass m from 0 to y
along the irrigation plan, then irrigating 1Br(x)\A from this mass at y. Using Lemma 2.2, we have

eα(1 +m)α+ 1
d ≤ Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(mδy) + Crmα.

By convexity,

eα

(
1 +

(
α+

1

d

)
m

)
≤ (1 +m)α+ 1

d eα ≤ eα + αmz(y) + Crmα,

thus, knowing that eα
(
α+ 1

d

)
= αz? by (2.1):

αmz? ≤ αmz(y) + Crmα.

By definition, m = ωdr
dΘAc(x, r) where ωd is the volume on the unit d-dimensional ball, hence

z? − z(y) ≤ Cr(rdΘAc(x, r))
α−1 = C

rβ

ΘAc(x, r)1−α . �

Lemma 3.2 (Mean deviation). There is some constant C = C(d, α) > 0 such that 
Ar(x)

|z(y)− zr(x)|dy ≤ Crβ

for all r > 0 and all x ∈ A.
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Proof. We will first show that  
Ar(x)

|z(y)− zr(x)|dy ≤ C rβ

ΘA(x, r)1−α .

There is a disjoint union Ar(x) = A− t A+ such that |A−| = |A+| = |Ar(x)|
2 and z ≤ z̄r(x) on A−,

z ≥ z̄r(x) on A+. Let us consider the competitor ν̃ = 1A − 1A+ + 1A− . By the first variation lemma:

Xα(ν̃) ≤ Xα(ν) + α

ˆ
z d(ν̃ − ν).

Recall that Xα(ρ) = dα(δ0, ρ) when ρ is a probability measure, which is the case for ν and ν̃, and that
dα is a distance. Thus by the triangle inequality:

α

ˆ
z d(ν − ν̃) ≤ dα(δ0, ν)− dα(δ0, ν̃) ≤ dα(ν, ν̃).

We know that dα(ν, ν̃) ≤ C|ν̃ − ν|α diam(supp(ν̃ − ν)) ≤ C|Ar(x)|αr for some C = C(α, d) > 0.
Moreover notice thatˆ

z d(ν − ν̃) =

ˆ
A+

z(y) dy −
ˆ
A−

z(y) dy

=

ˆ
A+

(z(y)− z̄r(x)) dy +

ˆ
A−

(z̄r(x)− z(y)) dy

=

ˆ
Ar(x)

|z(y)− z̄r(x)|dy.

Consequently:
 
Ar(x)

|z(y)− z̄r(x)|dy ≤ C|Ar(x)|α−1
r ≤ C |Ar(x)|α−1

|Br(x)|α−1 r
1+d(α−1) = C

rβ

ΘA(x, r)1−α .

Moreover, one has

|zr(x)− z̄r(x)| =

∣∣∣∣∣
 
Ar(x)

z(y)− z̄r(x) dy

∣∣∣∣∣ ≤
 
Ar(x)

|z(y)− z̄r(x)|dy ≤ C rβ

ΘA(x, r)1−α

which leads to 
Ar(x)

|z(y)− zr(x)|dy =

 
Ar(x)

|z(y)− z̄r(x)|dy + |zr(x)− z̄r(x)| ≤ C rβ

ΘA(x, r)1−α .

Now we get rid of ΘA(x, r)1−α. If ΘA(x, r) ≥ 1/2, we get the desired inequality. On the other hand,
if ΘAc(x, r) ≥ 1/2, by Lemma 3.1, we have

0 ≤ z? − z(y) ≤ Crβ , ∀y ∈ Ar(x),

which also implies that
0 ≤ z? − zr(x) ≤ Crβ .

By these two inequalities, we have

|z(y)− zr(x)| ≤ Crβ , ∀y ∈ Ar(x).

Now, taking the mean over Ar(x) 3 y leads to the wanted inequality as well: 
Ar(x)

|z(y)− zr(x)|dy ≤ Crβ . �
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Remark 3.2. Notice that the estimate 
Ar(x)

|z(y)− zr(x)|dy ≤ C rβ

ΘA(x, r)1−α

is valid in general: we only use the fact that ν is an indicator function (a density bounded from below
would suffice). The optimality of ν comes into play to to get rid of ΘA(x, r).

3.2. Hölder regularity.

Proposition 3.3 (Small-scale difference). For all x ∈ A and all r > 0 one has

|zr(x)− zr/2(x)| ≤ Crβ .

Proof. First we show that

|zr(x)− zr/2(x)| ≤ C rβ

ΘA(x, r)1−α .

Indeed, by Lemma 3.2,

|zr(x)− zr/2(x)| ≤

´
Ar/2(x)

|z(y)− zr(x)|dy
|Ar/2(x)|

≤ |Ar(x)|
|Ar/2(x)|

 
Ar(x)

|z(y)− zr(x)|dy

≤ 2d
ΘA(x, r)

ΘA(x, r/2)
Crβ ≤ C rβ

ΘA(x, r/2)
.

As before, if ΘA(x, r/2) ≥ 1/2 we get the desired estimate. Otherwise, we have ΘAc(x, r/2) ≥ 1/2 and
ΘAc(x, r) ≥ 2−dΘAc(x, r/2) ≥ 2−1−d. Now, by Lemma 3.1,

0 ≤ z? − z(y) ≤ C rβ

ΘAc(x, r)
≤ Crβ , ∀y ∈ Ar(x).

Consequently 0 ≤ z? − zr/2(x) ≤ Crβ and 0 ≤ z? − zr(x) ≤ Crβ which implies that

|zr(x)− zr/2(x)| ≤ Crβ . �

Lemma 3.4 (Lower deviation to the mean). There is a constant C = C(d, α) > 0 such that for all
x ∈ A and all r > 0 one has:

(3.7) ∀y ∈ Ar(x), zr(x)− z(y) ≤ Crβ .

Proof. First we show that

zr(x)− z(y) ≤ C rβ

ΘA(x, r)1−α .

Remove the mass m = |Ar(x)| going to Ar(x) from the irrigation plan, make it travel along the plan
to any fixed y ∈ Ar(x) and then send it to Ar(x): this should cost more. This implies

αmz(y)− α
ˆ
Ar(x)

z + Cmαr ≥ 0,

which may be rewritten as

zr(x)− z(y) ≤ Cmα−1r ≤ C rβ

ΘA(x, r)1−α .

Now if ΘA(x, r) ≥ 1/2 one gets the desired result. Otherwise ΘAc(x, r) ≥ 1/2 and Lemma 3.1 yields:

0 ≤ z? − z(y) ≤ Crβ , ∀y ∈ Ar(x).

Thus 0 ≤ z? − zr(x) ≤ Crβ and for any fixed y ∈ Ar(x),

|zr(x)− z(y)| ≤ |zr(x)− z?|+ |z? − z(y)| ≤ Crβ ,
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from which we also get the wanted inequality. �

Lemma 3.5 (Deviation to the mean). For all x ∈ A and all r > 0, one has

|z(x)− zr(x)| ≤ Crβ .

Proof. By Proposition 3.3, one has

|z(x)− zr(x)| ≤ |z(x)− zr/2(x)|+ |zr/2(x)− zr(x)| ≤ |z(x)− zr/2(x)|+ Crβ ,

which means by setting f(r) = |z(x)− zr(x)| for r > 0 that:

f(r) ≤ f(r/2) + Crβ .

Consequently for all k ∈ N

f(r) ≤ f(r · 2−(k+1)) + Crβ
k∑
i=0

2−iβ

thus

f(r) ≤ lim sup
ε→0

f(ε) + Crβ
∞∑
i=0

2−iβ ≤ lim sup
ε→0

f(ε) + Crβ .

Now let us prove that f(ε) → 0 when ε → 0, i.e. zε(x)
ε→0−−−→ z(x). We already know that z is lower

semi-continuous hence z(x) ≤ lim infε→0 zε(x). Moreover using (3.7), we have

lim sup
ε→0

zε(x) ≤ lim sup
ε→0

(z(x) + Cεβ) = z(x),

which implies that zε(x) → z(x) when ε → 0. Therefore the inequality f(r) ≤ Crβ holds, that is to
say:

|z(x)− zr(x)| ≤ Crβ . �

Lemma 3.6 (Large scale difference). For any x, y ∈ A, one has:

|z|y−x|(x)− z|y−x|(y)| ≤ C|y − x|β .

Proof. Set r = |y − x|, and ∆r = Br(x) ∩ Br(y). Notice that, ∆r being a fixed fraction of Br(x)
(independant of r), |∆r| = c|Br| for some c = c(d) ∈]0, 1[.

If both ΘAc(x, r) ≥ c
2 and ΘAc(y, r) ≥ c

2 , then by Lemma 3.1 one has:

0 ≤ z? − zr(x) ≤ C rβ

ΘAc(x, r)1−α ≤ Cr
β , and 0 ≤ z? − zr(y) ≤ C rβ

ΘAc(y, r)1−α ≤ Cr
β ,

which implies the desired inequality

(3.8) |zr(x)− zr(y)| ≤ Crβ .

On the other hand, if either ΘAc(x, r) or ΘAc(y, r) is less than c/2, say ΘAc(x, r) ≤ c
2 , we claim the

desired inequality (3.8) still holds. Indeed, for all u ∈ Ar(x) ∩Ar(y) one has

|zr(x)− zr(y)| ≤ |zr(x)− z(u)|+ |zr(y)− z(u)|

thus integrating over Ar(x) ∩Ar(y) in u one gets:

|zr(x)− zr(y)| ≤ 1

|Ar(x) ∩Ar(y)|

[ˆ
Ar(x)

|z(u)− zr(x)|du+

ˆ
|Ar(y)|

|z(u)− zr(y)|du

]

≤ Crβ |Ar(x)|+ |Ar(y)|
|Ar(x) ∩Ar(y)|

,
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the last inequality resulting from Lemma 3.2. Note that

|Ar(x) ∩Ar(y)| = |∆r ∩A| ≥ |∆r| − |Br(x) \A| = c|Br(x)| − |Br(x) \A|

which implies that

|Ar(x)|+ |Ar(y)|
|Ar(x) ∩Ar(y)|

≤ 2|Br(x)|
c|Br(x)| − |Br(x) \A|

=
2

c−ΘAc(x, r)
≤ 4

c
.

Thus, in this case, we still have

|zr(x)− zr(y)| ≤ Crβ |Ar(x)|+ |Ar(y)|
|Ar(x) ∩Ar(y)|

≤ Crβ .

�

Theorem 3.7 (Hölder continuity). The function z is β-Hölder continuous on A. More precisely:

∀x, y ∈ A, |z(y)− z(x)| ≤ C|y − x|β ,

for some constant C = C(α, d).

Proof. By Lemma 3.5 and Lemma 3.6,

|z(y)− z(x)| ≤ |z(y)− z|y−x|(y)|+ |z|y−x|(y)− z|y−x|(x)|+ |z(y)− z|y−x|(y)| ≤ 3C|y − x|β . �

Let us state a consequence of this result which is a refinement of the previous proposition on Lebesgue
points. Now we may quantify the minimal size of a ball one can put inside A around x in terms of
z? − z(x).

Proposition 3.8 (Interior points). For some constant C = C(α, d) the following holds:

(3.9) ∀x ∈ A, Br(x)(x) ⊆ A,

where r(x) = C(z? − z(x))1/β ≥ 0. In particular

{x ∈ A : z(x) < z?} ⊆
◦
A and ∂A ⊆ {x ∈ A : z(x) = z?}.

Proof. It suffices to prove (3.9) for x0 ∈ A satisfying z(x0) < z?. Consider a point x ∈ Ac. Take a point
y ∈ A which is closest to x : it is possible since A is compact. By construction y is not a Lebesgue
point of A, thus by Lemma 2.4, z(y) = z?. By the Hölder continuity of z stated in Theorem 3.7,

z? − z(x0) = |z(y)− z(x0)| ≤ C|y − x0|β ≤ C|x− x0|β ,

where the last inequality follows from the fact that |y − x0| ≤ |y − x| + |x − x0| ≤ 2|x − x0| because
y minimizes the distance from x. Hence, for all x ∈ Ac, |x − x0| ≥ C(z? − z(x0))1/β = r(x0), which
implies the desired result. �

4. On the dimension of the boundary

We are interested in the dimension of the boundary ∂A, our guess being that it should be non-
integer, and lie between d−1 and d. Here we look at the Minkowski dimension (also called box-counting
dimension). Given a set X, we denote by Nε(X) the maximum amount of disjoint balls of radius ε
centered at points of X.

Definition 4.1 (Minkowski dimension). We define the upper Minkowski dimension of X by

dimM (X) = lim sup
ε→0

log(Nε(X))

− log ε
,
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and the lower Minkowski dimension by

dimM (X) = lim inf
ε→0

log(Nε(X))

− log ε
.

When these coincide we just call it the Minkowski dimension and denote it by dimM (X).

We shall get an upper bound on the upper Minkowski dimension. We say that X is of dimension
smaller than δ if dimMX ≤ δ.

Lemma 4.1. There is a constant C = C(α, d) such that for all k ≤ z?,

|{x ∈ A : k < z(x) ≤ z?}| ≤ C(z? − k).

Proof. Consider the competitor ν̃ = 1{z≤k} with total mass |ν̃| = 1 −m, where m = |{x ∈ A : k <
z(x) ≤ z∗}|. As in (2.2), one has

eα(1−m)α+1/d ≤ eα − αkm

hence knowing that αz? = (α + 1/d)eα and developing the term on the left-hand side at order 2, we
obtain:

−αmz? +
eα
2

(α+
1

d
)(α+

1

d
− 1)m2 ≤ −αkm

Thus
m ≤ C(z? − k)

with 1/C = eα(α+ 1/d)(α+ 1/d− 1)/(2α). �

Theorem 4.2. The set ∂A is of dimension less than d− β.

Proof. For ε > 0 fixed, take disjoint balls (Bi)i∈I of radius ε, where N := |I| = Nε(∂A). We set
B+
i = Bi \ A, B−i = Bi ∩ A. We split the set of balls into two parts: those which have a larger

intersection with A rather than Ac, and vice-versa. Namely, we set

I+ = {i ∈ I : |B+
i | ≥ |Bi|/2}, N+ = |I+|,

I− = {i ∈ I : |B−i | ≥ |Bi|/2}, N− = |I−|,

so that I = I+ ∪ I− and N ≤ N+ +N−. We are going to bound N+ and N− by some power of ε.
Step 1: Bound on N−.

Since z is β-Hölder continuous on A, one has for each Bi = Bε(xi):

∀x ∈ Bi ∩A, |z(x)− z?| < Cεβ ,

since the center xi lies in ∂A ⊆ {z = z?} according to Proposition 3.8. Consequently

(∂A)ε ∩A ⊆ {z? − Cεβ < z ≤ z?},

thus because of Lemma 4.1:

|(∂A)ε ∩A| ≤ |{z? − Cεβ < z ≤ z?}| ≤ Cεβ .

Using the previous inequality and the fact that |B−i | ≥ |Bi|/2 ≥ Cεd for i ∈ I−, one has:

CN−εd ≤
∑
i∈I−
|B−i | ≤ |(∂A)ε ∩A| ≤ Cεβ ,

which implies:

(4.1) N− ≤ Cε−(d−β).
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Step 2: Bound on N+.
We consider the competitor ν̃ = 1Ã where Ã = A ∪

⋃
i∈I+ B

+
i . It has a mass |ν̃| = 1 + m where

m =
∑
i∈I+ |B

+
i |. To irrigate ν̃, we send an extra mass |B+

i | to each center xi along the irrigation plan,
which costs α|B+

i |z?, then we send this mass towards B+
i , which costs at most C|B+

i |
α
ε. But one

should get a cost no less than eα(1 +m)α+1/d by the scaling lemma. Moreover, with a development of
order 2 one has:

(1 +m)α+1/d ≥ 1 + (α+ 1/d)m+ 1/2 · (α+ 1/d)(α+ 1/d− 1)(1 +m)α+1/d−2m2

≥ 1 + (α+ 1/d)m+ Cm2

because for ε small, 1 +m is less than 2 for example. Consequently one may say:

eα
(
1 + (α+ 1/d)m+ Cm2

)
≤ eα + αmz? +

∑
i∈I+

Cε|B+
i |
α
.

Recall that αz? = eα(α+ 1/d), thus after simplifying one gets for some C > 0:

(4.2) m2 ≤ C
∑
i∈I+
|B+
i |
α
ε ≤ CN+ε1+αd.

Notice that for i ∈ I+, |B+
i | ≥ |Bi|/2 ≥ Cεd, so that

m =
∑
i∈I+
|B+
i | ≥ CN

+εd.

Injecting this into (4.2), one gets:

(N+εd)2 ≤ CN+ε1+αd,

thus

(4.3) N+ ≤ Cε1+αd−2d = Cε−(d−β).

Putting (4.1) and (4.3) together yields:

Nε(∂A) = N ≤ N+ +N− ≤ C

εd−β
,

and

dimM (∂A) = lim sup
ε→0

log(Nε(∂A))

− log(ε)
≤ d− β,

which means that ∂A is of dimension smaller than d− β. �

This result pushes us to propose the following conjecture:

Conjecture 4.3. The boundary ∂A is of dimension d− β, in the sense that:

dimH(∂A) = dimM (∂A) = d− β.

Proving this requires to establish the inequality dimH(∂A) ≥ d − β, for which we do not have a
working strategy yet.
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5. Numerical simulations

Our goal now is to compute solutions to our shape optimization problem numerically. To perform
numerical simulations, we use the Eulerian framework of branched transport, first defined by the third
author in [Xia03]. This framework is based on vector measures with a measure divergence, i.e. measures
v ∈Md(Rd) such that ∇ · v ∈M(Rd), the set of such measures being denoted byMdiv(Rd). The cost
is the so-called α-mass:

Mα(v) =


ˆ ∣∣∣∣ dvdH1 (x)

∣∣∣∣α dH1(x) if v is 1-rectifiable,

+∞ otherwise.

An elliptic approximation of this functional was introduced by Oudet and the second author in [OS11]
(see also [San10]), in the spirit of Modica and Mortola [MM77]. The approximate functional is defined
for ε > 0 by:

Mα
ε (v) = ε−σ1

ˆ
|v(x)|σ dx+ εσ2

ˆ
|v(x)|2

2
dx

for suitably chosen σ, σ1, σ2. It is proven in [OS11] that Mα
ε Γ-converges to Mα as ε goes to 0, for a

suitable topology on Mdiv(Rd). Moreover, the Γ-convergence result also holds imposing an equality
constraint on the divergence ∇ · v = fε, for a suitable sequence fε ⇀ f , as proven in [Mon17]. The
results of [OS11] are proven in dimension d = 2, but in [Mon15] there is a proof of how to extend to
higher dimension, in the case α > 1−1/d (in dimension d = 2 there is also a version of the Γ-convergence
result for α ≤ 1/2). Also note that, recently, other phase-field approximations for branched transport
or other network problems have been studied, see for instance [BOO16; FCM16; BLS15].

Here we adapt the approach of [OS11] to our shape optimization problem by adding this time an
inequality constraint on the divergence.

Recall that the Lagrangian and Eulerian frameworks are equivalent [Peg17], so that the irrigation
distance may be computed in the following way:

dα(µ, ν) = inf
v
{Mα(v) : ∇ · v = µ− ν}.

Consequently the shape optimization problem (Rα) rewrites, in relaxed form, as:

(ES) min
v

{Mα(v) : µ− 1 ≤ ∇ · v ≤ µ} where µ = δ0.

Setting a = µ − 1, b = µ and some mollified versions aε = µε − 1, bε = µε,for example a convolution
of µ with the standard mollifier of suitable size rε (e.g. εσ2r−dε = o(1) as in [Mon17]), we define the
following approximate problem, for ε > 0:

(AS) min
v

{Mα
ε (v) : aε ≤ ∇ · v ≤ bε}.

Let us remark that the above-mentioned Γ-convergence results do not allow us to say that this
problem approximates (ES), as the inequality constraint on the divergence is not directly in these
works. We leave this question for further investigation, as our aim is for now to make a first attempt
to compute numerically an optimal shape for the original problem (Sα).

5.1. Optimization methods. We tackle problem (AS) by descent methods. Two difficulties arise:
first of all, the functional Mα

ε is not convex hence there is no garantee that the methods converge,
and if they do, they may converge to a local minimizer which is not necessarily a global minimizer ;
secondly, this is a constrained problem, hence we will need to compute projections or resort to proximal
methods to handle the constraint. The simplest approach is to use a first-order method, for instance
to perform a projected gradient descent on the functional Mα

ε for ε fixed (but small):
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The projected gradient method.∣∣∣∣ v0 ∈ C
vn+1 = pC(vn − τn∇Mα

ε (vn)),

where
C = {v : aε ≤ ∇ · v ≤ bε}

is the convex set of admissible vector fields for (AS).

Computing the projection pC is not an easy task, even more so as we want fast computations since
this projection should be done at each step of the algorithm. Actually, this projection step will be
quite costly (at least in our approach), hence we need to pass to a higher order method to get to an
approximate minimizer in a reasonable number of iterations.

Recall that the projected gradient method is a particular case of the proximal gradient method,
which we describe briefly. Consider a problem of the form

min
v
f(v) + g(v)

where f is smooth and g “proximable”, in the sense that one may easily compute its proximal operator

proxτg(v) = argmin
v′

g(v′) +
1

2τ
|v′ − v|2.

The proximal gradient method consists in doing at each step an explicit descent for f and an implicit
descent for g:

The proximal gradient method.∣∣∣∣ v0 given
vn+1 = proxτng (vn − τn∇f(vn)).

The projected gradient method corresponds to the case

g(v) =

{
0 if v ∈ C,
+∞ otherwise.

If there was no function g, we recover the classical gradient descent method. Notice that there is an
implicit choice in this method, since we compute gradients which depend on the scalar product. There
is no reason that the canonical scalar product is well adapted to the function we want to minimize.
Following the work of Lee, Sun and Saunders [LSS14] on Newton-type proximal methods, one may
“twist” the scalar product, leading to the more general method:

A “twisted” proximal gradient method.

(5.1)

∣∣∣∣∣ v0 given

vn+1 = proxτn,Hng (vn − τn∇Hnf(vn)),

where ∇Hf(x) is the gradient of f with respect to the scalar product 〈x, y〉H = 〈Hx, y〉 for H an
invertible self-adjoint operator, and

proxτ,Hg (v) = argmin
v′

g(v′) +
1

2τ
‖v′ − v‖2H .

The best quadratic model of f around a point x0 is

Qfx0
(x) = f(x0) + 〈∇Hf(x0), x〉H + 1/2〈x, x〉H ,
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with H = Hf (x0) being the Hessian of f at x, thus it is natural to consider (5.1) with Hn = Hf (xn).
Notice indeed that if g is zero, the proximal operator is the identity and that ∇Hf(v) = H−1∇f , so
that one recovers Newton’s method:

vn+1 = vn − τnH−1
n ∇f(vn),

which is known to converge quadratically for smooth enough f . This is why this method is called
proximal Newton method. However, for large-scale problems, computing and storing the Hessian is
very costly, thus an alternative is to set Hn to be an approximation of the Hessian of f at vn, thus
leading to proximal quasi-Newton methods. These methods were introduced in [LSS14], which we refer
to for further detail and theoretical results of convergence.

A very popular choice for Hn is given by the L-BFGS method (see [LN89]), which is a quasi-Newton
method building in some sense the “best” approximation of the Hessian at vn using only the information
of the points vk and the gradients ∇f(vk) for a fixed number of previous steps k = n, n−1, . . . , n−L+1.
The interest is that no matrix is stored, and there is a very efficient way to compute the matrix-vector
product H−1

n ·v using simple algebra. Therefore, we decided to implement a proximal L-BFGS method,
which in our case reads:

Projected L-BFGS method.

(5.2)

∣∣∣∣∣ v0 given

vn+1 = pH̃nC (vn − τnH̃−1
n ∇f(vn)),

where H̃n is the approximate Hessian computed with the L-BFGS method with L steps and pH̃nC is the
projection on C with respect to the norm ‖·‖H̃n .

The algorithm to compute the matrix-vector product H̃−1
n · x is given in Section 5.3.

5.2. Computing the projection. The difficulty lies in the computation of the projection, that is on
the proximal operator. A box constraint on the variable is very easy to deal with, but here we are
faced with box constraints on ∇ · v, that is on a linear operator applied to v. Moreover, we want to
compute a projection with respect to a twister scalar product 〈·, ·〉H , which adds some extra difficulty.
For simplicity of notations, we rename aε, bε as a, b. By definition, finding the projection pHC (v0) of v0

amounts to solving the optimization problem:

(P) min

{
‖v − v0‖2H

2
: a ≤ ∇ · v ≤ b, v//∂Ω

}
.

Note that, when one considers the divergence operator as an operator acting on vector fields defined on
the whole Rd (extended to 0 outside Ω), the Neumann boundary condition above exactly corresponds
to the fact that the divergence has no mass on ∂Ω, which can be considered as included in the inequality
constraints.

As a convex optimization, such a problem admits a dual problem, which we are going to use. We
set

ψ(w) =

{
0 if a ≤ w ≤ b,
+∞ if not,

.

whose Legendre transform is

g(u) = ψ?(u) =

ˆ
bu+ −

ˆ
au−,
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so that ψ = ψ?? = g?. Let us derive formally the dual problem by an inf − sup exchange:

inf
v//∂Ω

{
‖v − v0‖2H

2
: a ≤ ∇ · v ≤ b

}
= inf

v

1

2
‖v − v0‖2H + ψ(∇ · v)

= inf
v

1

2
‖v − v0‖2H + sup

u
−〈∇u, v〉 − g(u)

= inf
v

sup
u

1

2
‖v − v0‖2H − 〈∇Hu, v〉H − g(u)

≥ sup
u
−g(u) + inf

v

1

2
‖v − v0‖2H − 〈∇Hu, v〉H

= − inf
u
g(u) + sup

v
〈∇Hu, v〉H −

1

2
‖v − v0‖2H

= − inf
u
g(u) +

‖∇Hu‖2H
2

+ 〈∇Hu, v0〉H

= − inf
u
g(u) +

1

2

ˆ
H−1∇u · ∇u−

ˆ
u(∇ · v0).

Hence the dual problem reads:

(D) min
u

1

2

ˆ
H−1∇u · ∇u−

ˆ
u(∇ · v0)︸ ︷︷ ︸

f(u)

+

ˆ
bu+ −

ˆ
au−︸ ︷︷ ︸

g(u)

.

The inf − sup interversion can be justified with equality via Fenchel’s duality [Bre11, Chapter 1] in a
well-chosen Banach space. Hence there is no duality gap:

min (P) + min (D) = 0.

As a consequence solving the dual problem provides a solution to the primal one. Indeed if u is optimal
for (D) then v = v0 +∇Hu is optimal for (P). Now let us justify why it was interesting to pass by the
resolution of a dual problem. Such a problem is of the form

(5.3) min
u
f(u) + g(u),

where f is smooth, with gradient ∇f(u) = −∇ · (H−1∇u)−∇ · v0, and g is proximable:

proxτg(u)(x) =


u(x)− τa if u(x) < τa,
0 if τa ≤ u(x) ≤ τb,
u(x)− τb if u(x) > τb.

We know how to compute the proximal operator and the gradient of f , since L-BFGS provides a simple
method to compute the product H−1x. Problems of the form (5.3) with f smooth (and computable
gradient) and g proximable can be tackled with first-order methods such as the proximal gradient
method described in the previous section (also called ISTA) or a fast proximal gradient method called
FISTA, introduced in [BT09]. We opted for the latter, which is a slight modification of the proximal
gradient method using an intermediary point:

(FISTA)

∣∣∣∣∣∣∣
u0 ∈ H1(Rd),
ũn = un + λn(un − un−1),

un+1 = proxτg(ũn − τ∇f(ũn)),
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where λn is given by some recursive formula (we refer to [BT09] for the details). It enjoys a theoretical
and pratical rate of convergence which is higher than ISTA and which is that of the classical gradient
method:

f(un)− fopt ≤
2Lf |u0 − uopt|2

(n+ 1)2
.

5.3. Algorithms and numerical experiments. Following the work of [OS11], we discretize our
problem on a staggered grid : we divide the cube Q = [−1, 1]2 into M2 subcubes of side 2/M , the
functions U are defined at the center of the small cubes, while the x component V x of a vector fields V
is defined on the vertical edges of the grid and the y component V y on the horizontal edges of the grid.
This is quite convenient to compute the discrete divergence of a vector field and the discrete gradient
of a function.

• Unknowns: (V xi,j) 1≤i≤M
1≤j≤M+1

, (V yi,j)1≤i≤M+1
1≤j≤M

, with

V x1,j = V xM+1,j = V yi,1 = V y1,M+1 = 0,

which means that V is parallel to the boundary.
• Objective function:

F (V ) = ε−σ1h2
∑
i,j

N(V̂i,j)
σ + εσ2h2/2

∑
i,j

|∇i,jV x|2 +
∑
i,j

|∇i,jV y|2
 .

There are several definitions to give to make sense of F . First of allN is a smooth approximation
of the norm, of the form

N(x) = (|x|2 + ε2
s)

1/2 for εs small.

The discrete vector field V̂i,j = (V̂ xi,j , V̂
y
i,j) is an interpolation of (V x, V y) defined at the centers

of the cubes:

V̂ xi,j =
V xi,j + V xi+1,j

2
, V̂ yi,j =

V yi,j + V yi,j+1

2
, 1 ≤ i, j ≤M.

Finally the discrete gradient is defined as usual by

∇i,jV x = ((V xi,j+1 − V xi,j)/h, (V xi+1,j − V xi,j)/h), 1 ≤ i ≤M − 1, 1 ≤ j ≤M,

∇i,jV y = ((V yi,j+1 − V
y
i,j)/h, (V

y
i+1,j − V

y
i,j)/h), 1 ≤ j ≤M − 1, 1 ≤ i ≤M.

We may now give the main algorithm and its sub-methods.
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Algorithm 1 Proximal L-BFGS for F
Data: tolerance tol, initial vector field V0, step τ0, source δ
V ← V0, U ← U0

compute error
while error > tol do

τ ← τ0
repeat

G←MultiplyBFGS(∇F (V ))
V,U ← Project(V − τG,U, δ, τ)
τ ← τ/2

until F (V ) has decreased
update L-BFGS data
compute error

end while

The update step for L-BFGS data consists in storing in Y,Z, r the points and gradients of the L
previous steps, so that at step n:

YL−k = ∇F (Vn−k)−∇F (Vn−k−1), ZL−k = Vn−k − Vn−k−1

for all k = 0, . . . , L− 1, and rk = 1/(Yk · Zk) for all k = 0, . . . , L− 1. Notice here that we do a simple
backtracking line search by reducing the stepsize τ until the energy has decreased, for example until it
has sufficiently decreased and satisfies the Armijo rule. Also, notice that the potential U computed at
step n is used at the next step as initial data ; this trick extensively speeds up the computation of the
projection. Finally, we took as error measurement some relative difference between two consecutive
steps.

Now, as stated in Section 5.2, the projection on C with respect to ‖·‖H is computed via the FISTA
method, as follows:

Algorithm 2 Project V0 on C with respect to ‖·‖H
Data: tolerance tolp, step τp
function Project(V0, U0, δ, τ)

D0 ← ∇ · V0

U ← U0

while error > tolp do
tp ← t; t← (1 +

√
1 + 4t2p)/2; s← (tp − 1)/t

G←MultiplyBFGS(∇U)
Ui ← U + s(U − Uold)
Uold ← U
U ← Prox(Ui − τp(∇ ·G−D0), δ, τ)
compute error

end while
V ← V0 + MultiplyBFGS(∇U)
return V,U

end function
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The Prox function is just the proximal operator associated with the discrete counterpart of g : u 7→´
bu+ −

´
au− where a = δ − 1, b = δ. Thus P = Prox(U, δ, τ) is defined by:

Pi =


Ui − τ(δi − 1) if Ui < τ(δi − 1),
0 if τ(δi − 1) ≤ Ui ≤ τδi,
Ui − τδi if Ui > τδi.

For the sake of completeness, we give a simple method to compute the L-BFGS multiplication H−1X
(see [LN89; Noc80] for details).

Algorithm 3 L-BFGS multiplication H−1X

function MultiplyBFGS(X)
G← X
for i = L, . . . , 1 do

si ← riZi ·G
G← G− siYi

end for
G← (ZL · Y )/(YL · YL)G
for i = 1, . . . , L do

t← riYi ·G
G← G+ (si − t)Zi

end for
return G

end function

We present some numerical results obtained with εs = 10−4, on a M ×M grid with M = 201 and
ε = 3h where h = 2/M , the code being written in Julia. We have started with random initial values
for V and a smooth approximation δ of the Dirac δ0. After some days of computation on a standard
laptop, one gets the following shapes and underlying networks.

With no surprise, the shape for α = 0.85 is rounder than those obtained for α = 0.55 and α = 0.65.
These two are quite similar, but a simple zoom shows that the one with the smallest value of α is a
slightly more irregular than the other. The corresponding irrigation networks are also coherent with
the expected results: the branches have larger multiplicity (close to the origin) for smaller α.
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(a) Norm of the vector field, α = 0.55 (b) Irrigated measure, α = 0.55

(c) Norm of the vector field, α = 0.65 (d) Irrigated measure, α = 0.65

(e) Norm of the vector field, α = 0.85 (f) Irrigated measure, α = 0.85

Figure 1. Algorithm output for different α’s after ∼ 15000–25000 iterations (e stands
for the computed optimal value, which is an approximation of eα, and M for the
number of discretization points on each side of the domain).



24 PAUL PEGON, FILIPPO SANTAMBROGIO, QINGLAN XIA

Acknowledgments and Conflicts of Interests. The support of the ANR project ANR-12-BS01-
0014-01 GEOMETRYA and of the PGMO project MACRO, of EDF and Fondation Mathématique
Jacques Hadamard, are gratefully acknowledged. The work started during a visit of the second author
to UC Davis, and also profited of a visit of the third author to Univ. Paris-Sud at Orsay, and both
Mathematics Department are acknowledged for the warm hospitality.

The authors declare that no conflict of interests exists concerning this work.

References

[BCM05] Marc Bernot, Vicent Caselles, and Jean-Michel Morel. “Traffic plans”. In: Publ. Mat. 49.2
(2005), pp. 417–451. issn: 0214-1493. doi: 10.5565/PUBLMAT_49205_09.

[BCM09] Marc Bernot, Vicent Caselles, and Jean-Michel Morel. Optimal transportation networks.
Vol. 1955. Lecture Notes in Mathematics. Models and theory. Springer-Verlag, Berlin, 2009,
pp. x+200. isbn: 978-3-540-69314-7.

[BLS15] Matthieu Bonnivard, Antoine Lemenant, and Filippo Santambrogio. “Approximation of
length minimization problems among compact connected sets”. In: SIAM J. Math. Anal.
47.2 (2015), pp. 1489–1529. issn: 0036-1410. doi: 10.1137/14096061X.

[BOO16] M. Bonafini, G. Orlandi, and E. Oudet. “Variational approximation of functionals defined
on 1-dimensional connected sets: the planar case”. In: ArXiv e-prints (Oct. 2016). arXiv:
1610.03839 [math.OC].

[Bre11] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Univer-
sitext. Springer, New York, 2011, pp. xiv+599. isbn: 978-0-387-70913-0.

[BS11] Alessio Brancolini and Sergio Solimini. “On the Hölder regularity of the landscape function”.
In: Interfaces Free Bound. 13.2 (2011), pp. 191–222. issn: 1463-9963. doi: 10.4171/IFB/
254.

[BS14] Alessio Brancolini and Sergio Solimini. “Fractal regularity results on optimal irrigation
patterns”. In: J. Math. Pures Appl. (9) 102.5 (2014), pp. 854–890. issn: 0021-7824. doi:
10.1016/j.matpur.2014.02.008.

[BT09] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems”. In: SIAM J. Imaging Sci. 2.1 (2009), pp. 183–202. issn: 1936-4954. doi:
10.1137/080716542.

[Cam63] S. Campanato. “Proprietà di hölderianità di alcune classi di funzioni”. In: Ann. Scuola
Norm. Sup. Pisa (3) 17 (1963), pp. 175–188.

[CV77] C. Castaing and M. Valadier. Convex analysis and measurable multifunctions. Lecture Notes
in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977, pp. vii+278.

[FCM16] Luca Alberto Davide Ferrari, Antonin Chambolle, and Benoît Merlet. “A simple phase-field
approximation of the Steiner problem in dimension two”. 24 pages, 8 figures. Sept. 2016.

[Gil67] E. N. Gilbert. “Minimum Cost Communication Networks”. In: Bell System Technical Journal
46.9 (1967), pp. 2209–2227. issn: 1538-7305. doi: 10.1002/j.1538-7305.1967.tb04250.x.

[Giu03] Enrico Giusti. Direct methods in the calculus of variations. World Scientific Publishing Co.,
Inc., River Edge, NJ, 2003, pp. viii+403. isbn: 981-238-043-4. doi: 10.1142/9789812795557.

[GP68] E. N. Gilbert and H. O. Pollak. “Steiner Minimal Trees”. In: SIAM Journal on Applied
Mathematics 16.1 (1968), pp. 1–29. doi: 10.1137/0116001. eprint: http://dx.doi.org/
10.1137/0116001.

[LN89] Dong C. Liu and Jorge Nocedal. “On the limited memory BFGS method for large scale
optimization”. In: Math. Programming 45.3, (Ser. B) (1989), pp. 503–528. issn: 0025-5610.
doi: 10.1007/BF01589116.

http://dx.doi.org/10.5565/PUBLMAT_49205_09
http://dx.doi.org/10.1137/14096061X
http://arxiv.org/abs/1610.03839
http://dx.doi.org/10.4171/IFB/254
http://dx.doi.org/10.4171/IFB/254
http://dx.doi.org/10.1016/j.matpur.2014.02.008
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1002/j.1538-7305.1967.tb04250.x
http://dx.doi.org/10.1142/9789812795557
http://dx.doi.org/10.1137/0116001
http://dx.doi.org/10.1137/0116001
http://dx.doi.org/10.1137/0116001
http://dx.doi.org/10.1007/BF01589116


REFERENCES 25

[LSS14] Jason D. Lee, Yuekai Sun, and Michael A. Saunders. “Proximal Newton-type methods for
minimizing composite functions”. In: SIAM J. Optim. 24.3 (2014), pp. 1420–1443. issn:
1052-6234. doi: 10.1137/130921428.

[MM77] Luciano Modica and Stefano Mortola. “Un esempio di Γ−-convergenza”. In: Boll. Un. Mat.
Ital. B (5) 14.1 (1977), pp. 285–299.

[Mon15] Antonin Monteil. “Elliptic approximations of singular energies under divergence constraint”.
PhD Thesis. Université Paris-Saclay, Dec. 2015.

[Mon17] Antonin Monteil. “Uniform estimates for a Modica-Mortola type approximation of branched
transportation”. In: ESAIM Control Optim. Calc. Var. 23.1 (2017), pp. 309–335. issn: 1292-
8119. doi: 10.1051/cocv/2015049.

[MRS14] Bertrand Maury, Aude Roudneff-Chupin, and Filippo Santambrogio. “Congestion-driven
dendritic growth”. In: Discrete Contin. Dyn. Syst. 34.4 (2014), pp. 1575–1604. issn: 1078-
0947. doi: 10.3934/dcds.2014.34.1575.

[MSM03] F. Maddalena, S. Solimini, and J.-M. Morel. “A variational model of irrigation patterns”.
In: Interfaces Free Bound. 5.4 (2003), pp. 391–415. issn: 1463-9963. doi: 10.4171/IFB/85.

[Noc80] Jorge Nocedal. “Updating quasi-Newton matrices with limited storage”. In: Math. Comp.
35.151 (1980), pp. 773–782. issn: 0025-5718. doi: 10.2307/2006193.

[OS11] Edouard Oudet and Filippo Santambrogio. “A Modica-Mortola approximation for branched
transport and applications”. In: Arch. Ration. Mech. Anal. 201.1 (2011), pp. 115–142. issn:
0003-9527. doi: 10.1007/s00205-011-0402-6.

[Peg17] Paul Pegon. “On the Lagrangian branched transport model and the equivalence with its
Eulerian formulation”. In: Topological Optimization and Optimal Transport. Ed. by M.
Bergounioux et al. Berlin: De Gruyter, 2017, pp. 281–303.

[RR01] Ignacio Rodriguez-Iturbe and Andrea Rinaldo. Fractal river basins: chance and self-organization.
Cambridge University Press, 2001.

[San07] Filippo Santambrogio. “Optimal channel networks, landscape function and branched trans-
port”. In: Interfaces Free Bound. 9.1 (2007), pp. 149–169. issn: 1463-9963. doi: 10.4171/
IFB/160.

[San10] Filippo Santambrogio. “A Modica-Mortola approximation for branched transport”. In: Comptes
Rendus Mathematique 348.15 (2010), pp. 941–945. issn: 1631-073X. doi: http://dx.doi.
org/10.1016/j.crma.2010.07.016.

[Xia03] Qinglan Xia. “Optimal paths related to transport problems”. In: Commun. Contemp. Math.
5.2 (2003), pp. 251–279. issn: 0219-1997. doi: 10.1142/S021919970300094X.

[Xia14] Qinglan Xia. “On landscape functions associated with transport paths”. In: Discrete Contin.
Dyn. Syst. 34.4 (2014), pp. 1683–1700. issn: 1078-0947. doi: 10.3934/dcds.2014.34.1683.

PP and FS, Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay,
91405 Orsay cedex, France, paul.pegon@math.u-psud.fr, filippo.santambrogio@math.u-psud.fr; QX, Depart-
ment of Mathematics, UC Davis, One Shields Ave, Davis, CA 95616, United States, qlxia@math.ucdavis.edu

http://dx.doi.org/10.1137/130921428
http://dx.doi.org/10.1051/cocv/2015049
http://dx.doi.org/10.3934/dcds.2014.34.1575
http://dx.doi.org/10.4171/IFB/85
http://dx.doi.org/10.2307/2006193
http://dx.doi.org/10.1007/s00205-011-0402-6
http://dx.doi.org/10.4171/IFB/160
http://dx.doi.org/10.4171/IFB/160
http://dx.doi.org/http://dx.doi.org/10.1016/j.crma.2010.07.016
http://dx.doi.org/http://dx.doi.org/10.1016/j.crma.2010.07.016
http://dx.doi.org/10.1142/S021919970300094X
http://dx.doi.org/10.3934/dcds.2014.34.1683

	Introduction
	1. Preliminaries
	1.1. The irrigation problem
	1.2. The shape optimization problem

	2. Existence and first properties
	2.1. Existence of minimizers
	2.2. Lebesgue points

	3. Hölder continuity of the landscape function
	3.1. Main lemmas
	3.2. Hölder regularity

	4. On the dimension of the boundary
	5. Numerical simulations
	5.1. Optimization methods
	5.2. Computing the projection
	5.3. Algorithms and numerical experiments

	References

