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Abstract—Transport networks with branching structures are ob-
servable not only in nature as in trees, blood vessels, etc. but also
in efficiently designed transport systems such as used in railway
configurations and postage delivery networks. Mathematically, such a
branching transport network is modeled by an optimal transport path
between two probability measures (representing the source and the
target). An essential feature of such a transport path is to favor group
transportation in a large amount. This article provides numerical
simulation of optimal transport paths. We first construct an initial
transport path, and then modify the path as much as possible by
using both local and global minimization algorithms.
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I. INTRODUCTION

The optimal transportation problem aims at finding an
optimal way to transport a given measure (the source) into
another (the target) with the same mass. In contrast to the well-
known Monge-Kantorovich problem [5], the ramified optimal
transportation problem aims at modeling a branching transport
network by an optimal transport path between two given
probability measures. An essential feature of such a transport
path is to favor transportation in groups via a nonlinear
(typically concave) cost function on mass. Transport networks
with branching structures are observable not only in nature
as in trees, blood vessels, river channel networks, lightning,
etc. but also in efficiently designed transport systems such as
used in railway configurations and postage delivery networks.
Several equivalent formulations of the branched transportation
problem may be found for instance in [3], [6], [4], [7], [1],
[9] and [2]. Also, in [10], we showed that an optimal transport
path is exactly a geodesic in the sense of metric geometry on
the metric space of probability measures with a suitable metric.
As a result, people are interested in knowing what an optimal
transport path look like numerically. Some numerical studies
involving the optimization of the graph, when the topology is
given (i.e. a topology for the graph is given and the position of
the vertices is optimized) may be found in [2], [11] and [12].
Nevertheless, for practical applications, one needs numerical
simulations of optimal transport paths using algorithms that
allow changing topology. This is the motivation of this article.
Currently, we are using optimal transport paths generated here
to model blood vessel structures found in placentas of human
babies and also river channel networks. More application
of optimal transport paths is expected in modeling systems
simulating what we seen in the nature.

This article is organized as follows. After briefly recalling
some preliminary definitions about optimal transport paths, we
study algorithms for generating optimal transport paths. We
first consider how to generate an initial transport path, then
study how to reduce the cost by modifying the initial transport
path as much as possible. We not only use an algorithm of

local minimization but also a global one. Topology of transport
paths are not fixed during the modification process. Examples
of approximating optimal transport paths are given in the end.

II. PRELIMINARIES

We first recall some concepts about optimal transport paths
between measures as studied in [6]. Let X be a convex
compact subset in the Euclidean space Rd. For any x ∈ X ,
let δx be the Dirac measure centered at x. An atomic measure
in X is in the form of

k∑
i=1

miδxi

with distinct points xi ∈ X , and mi > 0 for each i = 1, · · · , k.
Let a and b be two fixed atomic measures in the form of

a =
k∑
i=1

miδxi
and b =

l∑
j=1

njδyj
(1)

of equal total mass
k∑
i=1

mi =
l∑

j=1

nj .

Definition 2.1: A transport path from a to b is a weighted
directed graph G consists of a vertex set V (G), a directed
edge set E (G) and a weight function w : E (G)→ (0,+∞)
such that

1) {x1,x2,··· ,xk} ∪ {y1, y2, · · · , yl} ⊂ V (G)
2) for any vertex v ∈ V (G) \ {x1,x2,··· ,xk, y1, y2, · · · , yl}∑

e∈E(G)

e−=v

w (e) =
∑

e∈E(G)

e+=v

w (e) (2)

where e− and e+denotes the starting and ending end-
points of each directed edge e ∈ E (G).

3) for each xi with i = 1, · · · , k∑
e∈E(G)

e−=xi

w (e) =
∑

e∈E(G)

e+=xi

w (e) +mi (3)

4) for each yj with j = 1, · · · , l∑
e∈E(G)

e−=yj

w (e) =
∑

e∈E(G)

e+=yj

w (e)− nj . (4)

Remark 2.2: The balance equations (2)(3)(4) simply mean
that the total mass flows into v equals to the total mass flows
out of v. When G is viewed as a polyhedral chain, (2)(3)(4)
can be simply expressed as ∂G = b− a.

Let Path(a,b) be the space of all transport paths from a
to b.
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Definition 2.3: For any parameter 0 ≤ α ≤ 1, and any
G ∈ Path(a,b), define

Mα (G) :=
∑

e∈E(G)

[w (e)]α length (e) .

In [6, Proposition 2.1], we showed that for any transport
path G ∈ Path (a,b), there exists another transport path G̃ ∈
Path (a,b) such that Mα

(
G̃
)
≤ Mα (G) , with V

(
G̃
)
⊆

V (G) and G̃ contains no cycles. Here, a weighted directed
graph G = {V (G) , E (G) , w : E (G)→ (0, 1]} contains a
cycle if for some k ≥ 3, there exists a list of distinct vertices
{v1, v2, · · · , vk} in V (G) such that for each i = 1, · · · , k,
either the segment [vi, vi+1] or [vi+1, vi] is a directed edge in
E(G), with the agreement that vk+1 = v1.

An Mα minimizer in Path(a,b) is called an optimal
transport path from a to b.

III. SIMULATION OF OPTIMAL TRANSPORT PATHS FROM A
SINGLE SOURCE

Let X be a convex subset in Rd. Given two atomic measures
in the form of

a = mδO and b =
N∑
i=1

miδyi with m =
N∑
i=1

mi (5)

in X of equal total mass, we are interested in seeing what an
optimal transport path G from the single source a to b look
like numerically.

If N = 1, then G is clearly consisting of only one edge
[O, y1] with weight m. If N = 2, then we can calculate the
optimal transport path as follows.

A. One source to two targets

Suppose there are two atomic measures

µ = mOδO and ν = mP δP +mQδQ, (6)

with mO = mP + mQ for three points P,Q,O in the space
X . To find an optimal transport path from µ to ν, we need to
minimize the function

f (B) = (mO)α
∣∣∣−−→OB∣∣∣+ (mP )α

∣∣∣−−→BP ∣∣∣+ (mQ)α
∣∣∣−−→BQ∣∣∣

among all points B in the triangle 4POQ. Here, we use the
notation

−−→
BP etc. to denote the vector P−B in X , and let

∣∣∣−−→BP ∣∣∣
be the magnitude of this vector. Since f (B) is a continuous
function on a compact set, f must achieve its minimum at
some point B∗. Indeed, we can find B∗ as follows. Suppose
B∗ is located in the interior of the triangle 4POQ, then it
must satisfy the balance equation

(mO)α
−−→
OB∣∣∣−−→OB∣∣∣ + (mP )α

−−→
BP∣∣∣−−→BP ∣∣∣ + (mQ)α

−−→
BQ∣∣∣−−→BQ∣∣∣ = ~0

at B = B∗. From it, one can easily find the angles

]OB∗P = θ1,]OB
∗Q = θ2 and ]PB∗Q = θ3

where

θ1 = cos−1

(
k2 − k1 − 1

2
√
k1

)
, (7)

θ2 = cos−1

(
k1 − k2 − 1

2
√
k2

)
, (8)

θ3 = cos−1

(
1− k1 − k2

2
√
k1k2

)
(9)

for

k1 =
(
mP

mO

)2α

, k2 =
(
mQ

mO

)2α

.

Let M (and H) be the projection of the point Q (and P ,
respectively) along the segment

−−→
OP (and

−−→
OQ respectively).

Then, the centers R (, and S) of the circles passing through
the triangles 4OB∗P (and 4OB∗Q respectively) is given by

R =
O + P

2
− cot θ1

2

−−→
QM∣∣∣−−→QM ∣∣∣

∣∣∣−−→OP ∣∣∣
S =

O +Q

2
− cot θ2

2

−−→
PH∣∣∣−−→PH∣∣∣

∣∣∣−−→OQ∣∣∣
where

−−→
QM =

−−→
OP ·

−−→
OQ∣∣∣−−→OP ∣∣∣2
−−→
OP −

−−→
OQ and

−−→
PH =

−−→
OP ·

−−→
OQ∣∣∣−−→OQ∣∣∣2
−−→
OQ−

−−→
OP.

By (7),

cot θ1 =
k2 − k1 − 1√

4k1 − (k2 − k1 − 1)2

and
cot θ2 =

k1 − k2 − 1√
4k2 − (k1 − k2 − 1)2

.

Now, B∗ is just the reflection of the point O along the
segment RS. That is,

B∗ = 2 [(1− λ)R+ λS]−O with λ =
−−→
RO ·

−→
RS∣∣∣−→RS∣∣∣2

whenever B∗ is located in the interior of the triangle 4POQ.
Note that a necessary condition for B∗ being located in the
interior of the triangle 4POQ is the angles must satisfy

]OQP < θ1,]OPQ < θ2 and ]POQ < θ3.

In case the condition fails, we have three degenerate cases. If
the angle ]POQ ≥ θ3, then take B∗ to be O and we get a “V-
shaped” path. If the angle ]OQP ≥ θ1 and ]POQ < θ3, then
take B∗ to be Q. If the angle ]OPQ ≥ θ2 and ]POQ < θ3,
then take B∗ to be P .

As a result, given µ and ν in (6), we achieved a formula
for finding B∗. The optimal transport path G from µ to ν has
at most three edges: [B∗, P ] with weight mP , [B∗, Q] with
weight mQ and [O,B∗] with weight mO.
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Fig. 1. Cases for transporting µ to ν

We denote the point B∗ by V (µ, ν) and let

g (µ, ν) = f (O)− f (B∗) (10)

which gives the advantage of taking a “Y-shaped” path over
taking a “V-shaped” path.

B. The construction of an initial transport path

When N ≥ 3, we would like to find an approximately
optimal transport path. The idea is to construct an initial
transport path G ∈ Path (a,b) and then modify G as much
as possible until we can not reduce the cost of G any further.

1) The method of transporting small number of points: If
N ≤ 2, then we have found the optimal transport path G as
above. If 2 < N ≤ K for a small given number K, then for
any pair 1 ≤ i < j ≤ N , let

gij = g
(
(mi +mj) δO,miδyi +mjδyj

)
where the function g is defined as in (10). Suppose the
maximum of {gij} is achieved at 1 ≤ i∗ < j∗ ≤ N . Then,
the desired path G is given recursively by

G = G̃+mi∗ [B∗, yi∗ ] +mj∗ [B∗, yj∗ ],

where B∗ = V
(
(mi∗ +mj∗) δO,mi∗δyi∗ +mj∗δyj∗

)
is the

point in X given by (10), and G̃ is the path from a to b̃ = b−
mi∗δyi∗−mj∗δyj∗ +(mi∗ +mj∗) δB∗ achieved by recursively
applying this algorithm.

2) The subdivision method: To construct an initial transport
path in Path (a,b), one may simply take a trivial transport
path

N∑
i=1

mi [O, yi] .

This is an allowable transport path in Path (a,b). Never-
theless, the degree of the vertex O (i.e. the total number
of edges in G having O as an endpoint) is N . Then, it
might become time consuming later for modifying the path
at the vertex O when N is very large. Instead, we use the
following subdivision method to construct an initial transport
path Gsd (a,b), which contains no cycles and has degree at
most K at every vertex for some given K defined below.

Let K = λd where

λ =
{

3, if d = 2
2, if d ≥ 3

and d is the dimension of the ambient space Rd.

Algorithm (subdivision method):
Input: two atomic measures a,b in the form of (5) and a

parameter 0 ≤ α ≤ 1;
Output: a transport path G ∈ Path (a,b) with degree(v) ≤

K for each v ∈ V (G).
If N ≤ K, then we use the method of transporting small

number of points described above to construct a transport path
from a to b.

If N > K, then let Q be a cube in Rd that contains
the supports of both a and b . We may split the cube Q
into totally K = λd smaller cubes {Qi}Ki=1 of size equal
to 1

λ of the size of Q. For each i = 1, · · · ,K, let Gi be
the path Gsd

(
b (Qi) δc(Qi),bbQi

)
from the center c (Qi) of

the smaller cube Qi to the restriction of b in Qi achieved
by recursively applying this algorithm. Also, let G0 be the
path from a to

∑K
i=1 b (Qi) δc(Qi)

by using the method of
transporting small number of points. Then,

G =
K∑
i=0

Gi

provides the desired path Gsd (a,b) from a to b.

Fig. 2. (a) A single source (2,−1) and the targeting measure represented by
100 random points. (b) An initial transport path constructed by the subdivision
method. (c)A modified transport path achieved by repeated modifying the
initial path in (b) using the local minimization. (d)An optimal transport path
achieved by modifying the path in (c) using the global minimization method.

C. Modification of an existing transport path

Now, suppose G is an existing transport path from a to
b that contains no cycles. We want to modify G to reduce
the transport cost as much as possible. Before describing
algorithms, we first introduce some concepts about vertices
of an transport path G.

For any two vertices v, u ∈ V (G), we say that v is an
ancestor of u and u is a descendant of v, if there exists a
list of vertices v1 = v, v2, · · · , vh−1, vh = u such that each
[vi, vi+1] is a directed edge in E (G) for i = 1, · · · , h − 1.
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Also, if [v, u] is a directed edge in E (G), then we say that v
is a parent of u and u is a child of v.

For each vertex u ∈ V (G) \ {O}, u has exactly one parent
p (u) ∈ V (G) because G contains no cycles and has a single
source a = mδO. Let m (u) be the associated weight on the
directed edge [p (u) , u] in E (G) for each u ∈ V (G)\{O}, and
also set m (O) = m. Note that m (v) ≥ m (u) whenever v is
an ancestor of u. Moreover, the vertex O is always an ancestor
of each u. That is, there exists a list of vertices v1,v2,· · · , vk in
V (G) such that [vi, vi+1] ∈ E (G) with v1 = O and vk = u.
Then, for each t ∈ [−m (u) ,m (u)], we consider the path

R (G; t, u) := G−
k−1∑
i=1

t [vi, vi+1] ∈ Path (a− tδO + tδu,b) .

When t > 0, we say that a mass of t is removed from the path
G at vertex u, When t < 0, we say that a mass of t is added
to the path G at vertex u. Moreover, the potential function of
G at a vertex u ∈ V (G) is defined by

PG (u, t) = PG (p (u) , t)+|p (u)− u| [m (u)α − (m (u)− t)α]
(11)

for u 6= O for t ∈ [−m (u) ,m (u)] and PG (O, t) = 0. Note
that PG (u, t) has the same sign as t.

1) local minimization: We first use a local minimization
method to modify any existing transport path G containing no
cycles.

Input: a transport path G ∈ Path (a,b) containing no
cycles and 0 ≤ α ≤ 1;

Output: a locally optimized path G̃ ∈ Path (a,b) with
Mα

(
G̃
)
≤Mα (G).

Idea: For each vertex u in G, replace Gold (u) by Gnew (u)
whenever Mα (Gold (u)) > Mα (Gnew (u)).

Here, for each vertex u of G, two transport paths Gold (u)
and Gnew (u) are defined as follows. Let

µC =
∑

h∈V (G),p(h)=u

m (h) δh and µP = m (u) δp(u)

be two atomic measures corresponding to the children and the
parent of u. Then,

Gold (u) =
∑

h∈V (G),p(h)=u

m (h) [u, h] +m (u) [p (u) , u]

in Path (µP , µC) is the union of all weighted edges in G
sharing u as their common endpoint. On the other hand, one
may generate another path Gnew (u) ∈ Path (µP , µC) by
using the method of transporting small number of points stated
in III-B1.

If
Mα (Gold (u)) > Mα (Gnew (u)) ,

then by replacing Gold (u) by Gnew (u) in G, we get a new
path

G̃ = G−Gold (u) +Gnew (u) ∈ Path (a,b)

and Mα

(
G̃
)
≤Mα (G)−Mα (Gold (u))+Mα (Gnew (u)) <

Mα (G). So, G̃ is a transport path with less cost. Replace G by

this modified path G̃, and continue this process for all vertices
of G until one can not reduce the cost any further.

The main drawback of this algorithm is that the result is
only local minimization rather than global minimization. For
instance, edges may intersect with each other. Sometimes,
using eyes of a human being, one can easily observe a better
transport path. To overcome these drawbacks, we adopt the
following algorithm.

2) global minimization: Now, we introduce the following
algorithm of global minimization:

Input: two probability measures a, b in the form of (5) and
a parameter 0 ≤ α ≤ 1;

Output: an approximately Mα optimal transport path G ∈
Path (a,b).

step 1: construct a transport path G from a to b using the
subdivision method;

step 2: modify the existing path G using the local mini-
mization method;

step 3: subdivide long edges of G into shorter edges;
step 4: for each vertex u of G, remove a mass of m (u) at

vertex u from the path G; change the parent p(u) of u to a
better one if possible and then add back a mass of m (u) at
vertex u. More precisely,

substep 1: A list of potential parents of u is defined as

L (u) = {v ∈ V (G) : |v − u| ≤ σ, and v is not a descendant of u} ,

where σ = PG (u,m (u)) / [m (u)]α and PG is defined in (11).
Note that the parent p(u) is automatically in L (u) because

σ =
PG (p(u),m (u)) + |p(u)− u|m (u)α

[m (u)]α
≥ |p(u)− u| .

substep 2: By removing a mass of m (u) at vertex u from
the path G, we get another path G̃ = R (G;m (u) , u) .

substep 3: For each v ∈ L (u) \ {p(u)}, let

c (v) = −PG̃ (v,−m (u)) ,

where PG̃ is defined as in (11) with G replaced by G̃. The
number c (v) measures the extra cost of transporting a mass
of m (u) on the system G̃ from the source O to the vertex u
via the vertex v.

substep 4: Find the maximum of c (v) over all v ∈ L (u) \
{p(u)}. If max c (v) > σ [m (u)]α, then we find a better parent
for the vertex u. In this case, suppose the maximum of c (v)
is achieved at v∗. Then, let

G∗ = R
(
G̃;−m (u) , v∗

)
+m (u) [v∗, u] .

That is, we change the parent of u from p(u) to v∗ and then
add a mass m (u) at u to the modified path. For convenience,
the final modified transport path G∗ is still denoted by G.

step 5: Repeat steps 2-4 until one can not reduce the cost
any further.

IV. EXAMPLES

Example 4.1: Let {yi} be 50 random points in the square

[0, 1] × [0, 1]. Then, {yi} determines an atomic probability
measure b =

∑50
i=1

1
50δyi

. Let a= δO where O = (0, 0)
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is the origin. Then an optimal transport path from a to b
looks like the following figures with α = 1, 0.75, 0.5 and 0.25
respectively:

Example 4.2: Let {yi} be 100 random points in the rect-
angle [−2.5, 2.5] × [0, 1]. Then, {yi} determines an atomic
probability measure b =

∑100
i=1

1
100δyi

. Let a = δO where
O = (0, 0) is the origin, and let α = 0.85. Then an optimal
transport path from a to b looks like the following figure.

Example 4.3: Optimal transport paths from the center to the
unit circle. Here, the unit circle is represented by 400 points
uniformly distributed on the circle. The parameter α = 0.75
in the first figure and α = 0.95 in the second one.

Example 4.4: Optimal transport paths from the center to the
unit disk. The first one is using random generated points in
the disk with α = 2/3 while the second one use uniformly
generated points in the disk with α = 0.75.

Example 4.5: An optimal transport path from a point on
the boundary to the unit square, which is represented by 400

randomly generated points, with α = 0.85.

Example 4.6: A placenta of a new baby may be represented
by a planar domain. Here, we model blood vessels in the
placenta by an optimal transport path from the Lebesgue
measure of the domain to the the base point of the cord
insertion.
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