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ABSTRACT

The human newborn is a reflection of the entirety of nutrients transferred from the maternal to the fetal circulation
across the placenta during gestation. By extension, birth weight and newborn health depend on placental
function. In this article, we quantify efficiency of the transport system in the human placenta and study its role
played in the birth weight as well as the gestational age of the human newborn. In the data, each placenta
is represented by a planar domain and a fixed point representing the site of the umbilical cord insertion. By
means of techniques in ramified optimal transportation, we simulate a vascular tree structure for the placenta,
in a simplified form by an idealized optimal transport network. We study transport efficiency of this simulated
transport network for each placenta and investigate its correlations with birth weight and gestational age at
birth. We show that averaged birth weight and averaged gestational age are both roughly increasing functions
of the calculated placental transport efficiency. Both preterm and low birth weight are associated with lower
placental transport efficiency. We also show that the relationship of transport efficiency to these outcomes is
nonlinear, reaching a plateau at 38–39 weeks gestational age and 3200 g birth weight.

Keywords: Placenta, Birth Weight, Optimal Transportation, Transport Efficiency, Shape Factor, Branching
Structure.
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1. INTRODUCTION
The human newborn is the reflection of the sum total
of oxygen and nutrients transferred from the maternal to
the fetal circulation across the placenta during gestation.
By extension, efficiency of the transport system in the
placenta plays an important role in determining the birth
weight, the placental weight and the gestational age of the
newborn. The goal of this paper is to apply optimal trans-
port modeling to quantify effects of efficiency of the trans-
port system in human placentas on the birth weight as well
as the gestational age. For each placenta, we simulate a
vascular tree structure in a simplified form by an idealized
optimal transport network. The simulation of the vascular
tree structure is based on (i) placental size, (ii) placental

∗Author to whom correspondence should be addressed.
Email: qlxia@math.ucdavis.edu

shape and (iii) the position of insertion of the umbili-
cal cord on the chorionic disk surface. This size, shape
and position data was readily available from measurements
from photographs of 1110 placentas from a University of
North Carolina birth cohort collected in the middle of the
last decade, which has been extensively studied in e.g.,
Refs. [3, 6, 7, 16, 20] and references therein. For each sim-
ulated transport network, there is an associated transport
cost C, computed by the model. This cost C represents the
total work done by the heart of fetus to pump blood across
the placenta. We find a high correlation between C and
measured birth weight. Averaged transport cost is nearly a
linear function of the birth weight. Also, a shape factor S is
computed by the model which would be the transport cost
if a placenta were rescaled to have a unit area chorionic
plate. The shape factor is the same for two placentas of
the same shape. Moreover, we define transport efficiency
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E of the placenta to be the ratio of the corresponding
shape factor (i.e., normalized transport cost) of the unit
disk with the one of the placenta. We show that averaged
birth weight and averaged gestational age are both roughly
increasing functions of the calculated placental transport
efficiency. Both preterm and low birth weight are asso-
ciated with lower placental transport efficiency. We also
show that the relationship of transport efficiency to these
outcomes is nonlinear, reaching a plateau at 38–39 weeks
gestational age and 3200 g birth weight.
We organize this paper as follows. After recalling some

basic concepts about ramified optimal transportation in
Section 2, we simulate a vascular structure for each pla-
centa in Section 3 using optimal transport modeling. Via
the corresponding transport cost of the vascular structure,
we introduce our main concepts: the shape factor and the
transport efficiency, for each placenta. In the last section,
we investigate the relations of the calculated transport cost
and placental transport efficiency with the measured birth
weight as well as the gestational age at birth.
Some Related Works on Human Placentas. The first

related approach is given in Ref. [15] where a 3D one-
parameter model of placental vascular growth is proposed
based on diffusion limited aggregation. Another approach
is given in Ref. [3] using the diffusion method. By consid-
ering villous membrane to capillary membrane transport,
stationary oxygen diffusion can be numerically solved in
terminal villi represented by digital photomicrographs. We
refer to Ref. [19] and references therein for the updated
research in this direction. The third interesting approach
is given in Ref. [17] which investigated thermodynamic
properties of optimal transport networks while�18� investi-
gates thermodynamic properties of measured human pla-
centa major blood vessel networks.

2. BRIEF INTRODUCTION TO RAMIFIED
OPTIMAL TRANSPORTATION

The optimal transportation problem aims at finding an
optimal way to transport materials from the source to the
target. An optimal transport path introduced in Ref. [9] is
a mathematical concept used to model tree-shaped branch-
ing transport networks. Transport networks with branch-
ing structures are observable not only in nature as in
trees, blood vessels, river channel networks, lightning, etc.
but also in efficiently designed transport systems such as
used in railway configurations and postage delivery net-
works. Recently, mathematicians (e.g., Refs. [1, 2, 4, 9])
have shown great interest in modeling these transport net-
works with branching structures. Applications of optimal
transport paths may be found in e.g., Refs. [10 and 13].
In this article, we will model the blood vessel structure of
a placenta via an optimal transport path.
We first recall some basic concepts of ramified opti-

mal transportation as stated in Ref. [9]. Recall that a

(finite) atomic measure on the Euclidean space �m is in
the form of

a =
k∑

i=1

mi�xi
(1)

with distinct points xi ∈�m, and positive real numbers mi�
where �x denotes the Dirac mass located at the point x.
Given two atomic measures

a =
k∑

i=1

mi�xi
and b=

�∑
j=1

nj�yj
(2)

in �m of equal mass (i.e.,
∑k

i=1mi =
∑�

j=1 nj), a transport
path from a to b is a weighted directed graph G con-
sisting of a vertex set V �G�, a directed edge set E�G�
and a weight function w: E�G� → �0�+�� such that
�x1� x2� � � � � xk�∪ �y1� y2� � � � � y��⊂ V �G� and for any ver-
tex v ∈ V �G�,

∑
e∈E�G��e−=v

w�e�− ∑
e∈E�G��e+=v

w�e�

=

⎧⎪⎪⎨
⎪⎪⎩

mi� if v = xi for some i = 1� � � � � k

−nj� if v = yj for some j = 1� � � � � �

0� otherwise

where e− and e+ denotes the starting and ending endpoints
of each edge e ∈ E�G�.
Note that this balanced equation simply means the con-

servation of mass at each vertex.
Suppose a and b are two atomic measures on �m of

equal total mass. For any real number 	< 1 and any trans-
port path G from a to b, we define its transport cost to be

M	�G� 
= ∑
e∈E�G�

w�e�	length�e� (3)

where length�e� denotes the Euclidean distance between
endpoints of the edge e.
Let Path�a� b� be the space of all transport paths from a

to b. A transport path G from a to b is called an 	-optimal
transport path if

M	�G� ≤M	�G̃�

for any other transport path G̃ from a to b. Also, the d	

distance between a and b is defined to be

d	�a�b�=min�M	�G�
 G ∈ Path�a�b�� (4)

In general, for any two Radon measures � and � on
�m with equal mass, the d	 distance between � and � is
given by

d	�����= lim
n→�d	�an�bn� (5)

for any two sequence �an�� �bn� of atomic measures con-
verge weakly to � and �, respectively.
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Fig. 1. An optimal transport path from 100 random points to the ori-
gin.

Some numerical simulations of optimal transport paths
were given in Ref. [12]. For instance, Figure 1 provides a
typical example of an optimal transport path.
Applications of optimal transport path may be found in

e.g., Refs. [10, 13 and 11]. For instance, we have used the
idea of theory to understand the dynamic formation of a
plant leaf in Ref. [10].

3. THE SHAPE FACTOR AND TRANSPORT
EFFICIENCY OF A PLACENTA

As stated in Ref. [16], 1110 placentas were collected by an
academic health center in central North Carolina. For each
placenta, a trained observer captured series of x, y coordi-
nates that marked the site of the umbilical cord insertion
and the perimeter of the fetal surface. To simulate vascular
structures for the placentas, we apply the modeling method
of ramified optimal transportation to each placenta.
The vascular network structure in each placenta pro-

vides a means of transporting blood between the whole
chorionic plate surface and the umbilical cord. In a sim-
plified version, this network may be represented by a
weighted directed graph. For each branch point of this net-
work, the sum of flows in must equal the sum of flows
out. This motives us to view it as a transport path from
the chorionic plate to the umbilical cord. Since there are
many ways to construct a transport network one would
like to find an optimal one which minimizes the amount
of work done to pump the blood. The transportation cost
for each transport path reflects the work done in pumping
blood through the network. As a result, we use an optimal
transport path to simulate an optimal vascular structure for
that placenta. This single idealized network for a placenta
may be viewed as a representation of either an optimal
vein network or, by reversing directions of flow, an optimal
arterial network. In the absence of more detailed infor-
mation about blood supply, we assume a uniform supply

of blood per unit area over the whole surface of the pla-
centa. We also model the placenta by a region in the plane
because the data is from photographs of the placenta flat
on a table, rather than in the curved inside surface of the
uterus.

3.1. The Shape Factor and the Transport Efficiency
As stated above, each placenta P is represented by a pair
�D�O� where D is a bounded planar domain and O is a
fixed point inside D representing the the site of the umbil-
ical cord insertion. Let �D denote the Lebesgue measure
of �2 restricted on the set D. For each 	< 1, the transport
cost of the placenta P = �D�O� is defined to be

C	�P� 
= d	��D� �D��O�

where �D� denotes the area of the domain D. By properties
of d	, it holds that

C	�P�= �D�	d	

(
1
�D��D��O

)

Let P1 = �D1�O1� and P2 = �D2�O2� be two placentas.
We say P1 and P2 have the same shape if there exists a
number 
> 0 such that the mapping f
: D1 →D2 given by

f �x� = 
�x−O1�+O2� x ∈D1

is one-to-one and onto. The number 
 is called the rescale
factor.
We are interested in investigating the role of the shape

of the placenta played in the birth weight of the newborn.
Thus, we introduce the variable “shape factor” as follows.

Definition 3.1. For each placenta P = �D�O� and 	< 1,
the 	-shape factor of P is defined by

S	�P� 
=
C	�P�

�D�	+0�5
= d	��1/�D���D��O�√�D�

Proposition 3.2. Let P1 = �D1�O1� and P2 = �D2�O2� be
two placentas. If P1 and P2 have the same shape, then they
have the same shape factor. That is,

S	�P1�= S	�P2�

for each 	,

Proof. Since D2 is a rescale of D1 in �2, it holds that

�D2� = 
2�D1�

By the definition of the transport cost M	, one may also
show that

d	

(
1

�D2�
�D2

� �O2

)
= 
d	

(
1

�D1�
�D1

� �O1

)
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Fig. 2. An approximated 0�5-optimal transport path.

Therefore,

S	�P2� =
d	��1/�D2���D2

� �O2
�√�D2�
= 
d	��1/�D1���D1

� �O1
�√


2�D1�

= d	��1/�D1���D1
� �O1

�√�D1�
= S	�P1�

Since transportation cost d	��1/�D���D��O� is propor-
tional to the shape-factor S	, among placentas of similar
sizes, the small the shape-factor S	 the more efficient was
the transport system corresponding to the placenta. This
motivates us to consider the following definition:

Definition 3.3. For each placenta P = �D�O� and 	< 1,
the transport 	-efficiency of P is defined to be

E	�P� 
=
S	�B�0�1��

S	�P�

Fig. 3. An approximated 0�6-optimal transport path.

Fig. 4. An approximated 0�75-optimal transport path.

where S	�B�0�1�� denotes the 	-shape factor of the unit
ball B�0�1� in �2 with respect to the origin 0.

Clearly, two placentas of the same shape have the same
transport efficiency.

3.2. Vessel Structure Modeled by an Optimal
Transport Path

To calculate the transport cost C	�P�, the shape fac-
tor S	�P� and the transport efficiency E	�P� of a pla-
centa P , we need both the area �D� and the distance
d	��1/�D���D��O�. By (5), d	��1/�D���D��O� is the limit
of d	�an� �O� for any sequence of atomic probability mea-
sures �an� that is weakly convergent to �1/�D���D as
probability measures. Here, the value d	��1/�D���D��O�
is independent of the choices of the approximating mea-
sures �an�.

Fig. 5. An approximated 0�85-optimal transport path.
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Let �D� be the area of the planar domain D. For each
N ∈ �, let �N be the grid with edge length h =√�D�/N
such that the point O is one of the grid points on �N . We
approximate the normalized Lebesgue measure 1/��D���D

by the atomic probability measure

aN = 1

Ñ

Ñ∑
i=1

�xi

where �x1� x2� � � � � xÑ � denote the locations of grid points
on �N within the domain D. Note that Ñ ≈ N when N is
large enough. Also, the sequence �aN � weakly converges
to �1/�D���D as N → �. As a result, when N is large
enough, the transport cost

C	�P�= �D�	d	

(
1
�D��D��O

)
≈ �D�	d	�a� �O�

and the shape factor

S	�P�=
C	�P�

�D�	+0�5
≈ d	�a� �O�√�D�

By definition, the distance d	�a� �O� equals to the trans-
port cost M	�G� for any optimal transport path G ∈
Path�a� �O�. When N is small (e.g., less than 20), an
optimal transport path G can be found using Melzak’s
method.1 When N is large, one can find an approxi-
mate optimal transport path G using methods illustrated in
Ref. [12]. In our calculations, we take N = 400.
Figures 2–5 illustrate some approximated optimal trans-

port paths from the Lebesgue measure on the unit ball
B�0�1� to the Dirac mass ��0�0� at the origin under various
values of parameter 	 < 1.

Ramark 3.4. Here, we assume a is uniformly distributed
on grid points in the unit ball. Instead, one may also

Fig. 6. An approximated 2/3-optimal transport path from randomly
distributed points in the unit ball to the origin.

Fig. 7. An approximated 0�85-optimal transport path from randomly
distributed points in the unit ball to the origin.

assume a is randomly distributed in the unit balls. In this
case, approximated 	-optimal transport paths look like the
figures shown in Figures 6 and 7.
Since the values corresponding to randomly distributed

masses may vary for each calculation, for simplicity, we
still assume the support of a is uniformly distributed in
our calculation.

As a result, for any 	< 1, one can find approximate val-
ues C	�P�, S	�P� and E	�P� for any placenta P = �D�O�.
In practice we picked 	= 0�85 to give the rate of branch-
ing that would give 6 vessels coming from the umbilical
cord when the placenta is a typical placenta as illustrated
by Figure 8.

Fig. 8. An example of modeling blood vessels of a placenta by an
optimal transport path.
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4. RESULTS
For each placenta P in the available data and 	 = 0�85,
we calculate the transport cost C	�P�, shape-factor S	�P�
as well as the transport efficiency E	�P�.

4.1. Transport Cost versus Birth Weight
Figure 9 illustrates that the average of transport cost C	

is nearly a linear function of birth weight. Here, for each
birth weight B in �500�1000� � � ��5000� grams, we cal-
culate the average of transport costs of placentas whose
birth weights are among �B−500�B+500� grams. Trans-
port cost C is positively correlated with birth weight as
expected given that C primarily reflects placental size, and
on average will vary with larger and smaller placental and
fetal weights.

4.2. Transport Efficiency versus Birth Weight
We also investigate the relationship between average trans-
port efficiency and birth weights. Again, for each birth
weight B in �500�1000� � � � �5000� grams, we calculate the
average of transport efficiency of placentas whose birth
weights are among �B− 500�B+ 500� grams. Figure 10
indicates that averaged transport efficiency is roughly an
increasing function of birth weights. The small the birth
weight, the less efficient was the placenta. This demon-
strates that transport efficiency of the placenta has an
important role in the eventual birth weight. By contrast,
in Ref. [16], the authors found a 0�75 power relationship
between birth weight and placental weight, not efficiency.
Figure 11 indicates that the contribution of placen-

tal transport efficiency to the eventual birth weight
plateaus above a certain level of transport efficiency.
In Figure 11, for each fixed transport efficiency E in
�0�3�0�4� � � � �1�2�, we calculate the mean birth weight
of newborns whose placentas have transport efficiency
in the range of �E−0�2�E+0�2�. Average birth weight

Fig. 9. Average transport cost C	 is nearly a linear function of birth
weights.

Fig. 10. Average transport efficiency is roughly an increasing function
of birth weights.

still increases as transport efficiency increases, but with a
decreased slop, indicating a smaller effect.

4.3. Transport Efficiency versus Gestational Age
Finally, we investigate the relationship between average
transport efficiency and gestational age. For each gesta-
tional age W in [35, 42] weeks, we calculate the aver-
age of transport efficiency of placentas whose gestational
age are among �W − 1�W + 1� weeks. Again, Figure 12
indicates that transport efficiency is roughly an increasing
function of gestational ages. Preterm newborns typically
have less efficient placentas compared to infants born at
term. This is consistent with the progressive development
of vasculosyncytial membranes from the beginning of the
third trimester.�5�

Fig. 11. Transport efficiency still has a positive relationship with aver-
aged birth weights.

6 http://www.aspbs.com/jcsmd J. Coupled Syst. Multiscale Dyn., Vol. 2(1), 1–8
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Fig. 12. Averaged transport efficiency has also a positive relationship
with the gestational age.

Fig. 13. Average gestational age is nearly an increasing and concave
function of transport efficiency.

On the other hand, the correlation between placental
transport efficiency and gestational age plateaus above
a certain level of transport efficiency. In Figure 13, for
each fixed transport efficiency E in �0�3�0�4� � � � �1�2�, we
calculate the average gestational age of newborns whose
placentas have transport efficiency in the range of �E −
0�2�E + 0�2�. Average gestational age still increases as
transport efficiency increases, but again with a decreased
slop, indicating a smaller effect.

Summary
We have shown that placental efficiency as calculated from
simple measures of perimeter and the distance of umbilical
cord displacement from the center of the chorionic plate
is correlated with birth weight and gestational age, and
also that this relationship changes over gestational age and

birth weight ranges consistent with what is well appreci-
ated clinically.�8�

Moreover, the calculated transport efficiency demon-
strates transitions that allow clear distinctions to be pro-
posed between newborns exposed to an inefficient placenta
(and hence to a compromised intrauterine environment)
and those with adequate placental transport efficiency. Fur-
ther studies will evaluate the multivariate contributions of
gestational age and placental transport efficiency to birth
weight.
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