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12 Simply-connected regions and Cauchy’s theorem 38

13 The logarithm function 40

14 The Euler gamma function 41

15 The Riemann zeta function 47

16 The prime number theorem 57

17 Introduction to asymptotic analysis 64

Additional reading 74

3



1 Introduction

1. Complex analysis is in my opinion one of the most beautiful areas of mathemat-

ics. It has one of the highest ratios of theorems to definitions (i.e., a very low

“entropy”), and lots of applications to things that seem unrelated to complex

numbers, for example:

• Solving cubic equations that have only real roots (historically, this was the

motivation for introducing complex numbers by Cardano, who published

the famous formula for solving cubic equations in 1543, after learning of

the solution found earlier by Scipione del Ferro).

Example. Using Cardano’s formula, it can be found that the solutions to

the cubic equation

z3 + 6z2 + 9z + 3 = 0

are

z1 = 2 cos(2π/9)− 2,

z2 = 2 cos(8π/9)− 2,

z3 = 2 sin(π/18)− 2.

• Proving Stirling’s formula: n! ∼
√

2πn(n/e)n.

• Proving the prime number theorem: π(n) ∼ n
logn

.

• Proving many other asymptotic formulas in number theory and combina-

torics, e.g., the Hardy-Ramanujan formula

p(n) ∼ 1

4
√

3n
eπ
√

2n/3,

where p(n) is the number of integer partitions of n.

• Evaluation of complicated definite integrals, for example∫ ∞
0

sin(t2) dt =
1

2

√
π

2
.

• Solving physics problems in hydrodynamics, heat conduction, electrostat-

ics and more.

• Analyzing alternating current electrical networks by extending Ohm’s law

to electrical impedance.

• Probability and combinatorics, e.g., the Cardy-Smirnov formula in perco-

lation theory and the connective constant for self-avoiding walks on the

hexagonal lattice.

• It was proved in 2016 that the optimal densities for sphere packing in 8

and 24 dimensions are π4/384 and π12/12!, respectively. The proofs make

spectacular use of complex analysis (and more specifically, modular forms).
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Figure 1: Print Gallery, a lithograph by M.C. Escher which was discovered to

be based on a mathematical structure related to a complex function z 7→ zα

for a certain complex number α, although it was constructed by Escher purely

using geometric intuition. See the paper Artful mathematics: the heritage of

M.C. Escher , by B. de Smit and H.W. Lenstra Jr. (Notices Amer. Math. Soc.

50 (2003), 446–457).

• Nature uses complex numbers in Schrödinger’s equation and quantum field

theory. Why? No one knows.

• Conformal maps, which were used by M.C. Escher (though he had no

mathematical training) to create amazing art, and used by others to better

understand and even to improve Escher’s work. See Fig. 1.

• Complex dynamics, e.g., the iconic Mandelbrot set. See Fig. 2.

2. In the next section I will begin our journey into the subject by illustrating

a few beautiful ideas and along the way begin to review the concepts from

undergraduate complex analysis.

2 The fundamental theorem of algebra

3. The Fundamental Theorem of Algebra. Every nonconstant polynomial

p(z) over the complex numbers has a root.

I will show three proofs. Let me know if you see any “algebra”. . .
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Figure 2: The Mandelbrot set. [Source: Wikipedia]

4. Analytic proof. Let

p(z) = anz
n + an−1z

n−1 + . . .+ a0

be a polynomial of degree n, and consider where |p(z)| attains its infimum.

First, note that it can’t happen as |z| → ∞, since

|p(z)| = |z|n · (|an + an−1z
−1 + an−2z

−2 + . . .+ a0z
−n|),

and in particular lim|z|→∞
|p(z)|
|z|n = |an|, so for large |z| it is guaranteed that

|p(z)| ≥ |p(0)| = |a0|. Fixing some radius R > 0 for which |z| > R implies

|p(z)| ≥ |a0|, we therefore have that

m0 := inf
z∈C
|p(z)| = inf

|z|≤R
|p(z)| = min

|z|≤R
|p(z)| = |p(z0)|

where z0 = arg min
|z|≤R

|p(z)|, and the minimum exists because p(z) is a continuous

function on the disc DR(0).

Denote w0 = p(z0), so that m0 = |w0|. We now claim that m0 = 0. Assume by

contradiction that it doesn’t, and examine the local behavior of p(z) around z0;

more precisely, expanding p(z) in powers of z − z0 we can write

p(z) = w0 +

n∑
j=1

cj(z − z0)j = w0 + ck(z − z0)k + . . .+ cn(z − z0)n,

where k is the minimal positive index for which cj 6= 0. (Exercise: why can we

expand p(z) in this way?) Now imagine starting with z = z0 and traveling away

from z0 in some direction eiθ. What happens to p(z)? Well, the expansion gives

p(z0 + reiθ) = w0 + ckr
keikθ + ck+1r

k+1ei(k+1)θ + . . .+ cnr
neinθ.
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When r is very small, the power rk dominates the other terms rj with k < j ≤ n,

i.e.,

p(z0 + reiθ) = w0 + rk(cke
ikθ + ck+1re

i(k+1)θ + . . .+ cnr
n−keinθ)

= w0 + ckr
keikθ(1 + g(r, θ)),

where limr→0 |g(r, θ)| = 0. To reach a contradiction, it is now enough to choose

θ so that the vector ckr
keikθ “points in the opposite direction” from w0, that is,

such that
ckr

keikθ

w0
∈ (−∞, 0).

Obviously this is possible: take θ = 1
k

(argw0 − arg(ck) + π). It follows that, for

r small enough,

|w0 + ckr
keikθ| < |w0|

and for r small enough (possibly even smaller)

|p(z0 + reiθ)| = |w0 + ckr
keikθ(1 + g(r, θ))| < |w0|,

a contradiction. This completes the proof.

Exercise. Complete the last details of the proof (for which r are the inequalities

valid, and why?) Note that “complex analysis” is part of “analysis” — you need

to develop facility with such estimates until they become second nature.

5. Topological proof. Let w0 = p(0). If w0 = 0, we are done. Otherwise consider

the image under p of the circle |z| = r. Specifically:

(a) For r very small the image is contained in a neighborhood of w0, so it

cannot “go around” the origin.

(b) For r very large we have

p(reiθ) = anr
neinθ

(
1 +

an−1

an
r−1e−iθ + . . .+

a0

an
r−ne−inθ

)
= anr

neinθ(1 + h(r, θ))

where limr→∞ h(r, θ) = 0 (uniformly in θ). As θ goes from 0 to 2π, this

is a closed curve that goes around the origin n times (approximately in a

circular path, that becomes closer and closer to a circle as r →∞).

As we gradually increase r from 0 to a very large number, in order to transition

from a curve that doesn’t go around the origin to a curve that goes around the

origin n times, there has to be a value of r for which the curve crosses 0. That

means the circle |z| = r contains a point such that p(z) = 0, which was the

claim.

6. Remark. The argument presented in the topological proof is imprecise. It can

be made rigorous in a couple of ways — one way we will see a bit later is using

Rouché’s theorem and the argument principle. This already gives a hint as to

the importance of subtle topological arguments in complex analysis.
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7. Remark. The topological proof should be compared to the standard calculus

proof that any odd-degree polynomial over the reals has a real root. That

argument is also “topological,” although much more trivial.

8. Standard textbook proof using Liouville’s theorem. Recall:

Liouville’s theorem. A bounded entire function is constant.

Assuming this result, if p(z) is a polynomial with no root, then 1/p(z) is an entire

function. Moreover, it is bounded, since as we noted before lim|z|→∞
|p(z)|
|z|n =

|an|, so lim|z|→∞ 1/p(z) = 0. It follows that 1/p(z) is a constant, which then

has to be 0, which is a contradiction.

9. Summary. We saw three proofs of FTA. I like the first one best since it is

elementary and doesn’t use Cauchy’s theorem or any of its consequences, or

subtle topological concepts. Moreover, it is a “local” argument that is based

on understanding how a polynomial behaves locally. The other two proofs can

be characterized as “global.” It is a general philosophical principle in analysis

(that has analogies in other areas, such as number theory) that local arguments

are easier than global ones.

3 Analyticity, conformality and the Cauchy-Riemann

equations

10. Definition. A function f(z) of a complex variable is holomorphic (a.k.a.

complex-differentiable, analytic1) at z if

f ′(z) := lim
h→0

f(z + h)− f(z)

h

exists.

11. Geometric meaning of holomorphicity in the case f ′(z) 6= 0: f is locally a

rotation and rescaling.

12. Interpretation: analytic functions are conformal mappings where f ′(z) 6= 0:

if γ1 are two differentiable curves such that γ1(0) = γ2(0) = z, f is differentiable

at z and f ′(z) 6= 0, then, denoting v1 = γ′1(0), v2 = γ′2(0), w1 = (f ◦ γ1)′(0),

w2 = (f ◦ γ2)′(0), we have

〈v1, v2〉 = Re(v1v2),

〈w1, w2〉 = 〈(f ′(γ1(0))γ′1(0)), (f ′(γ2(0))γ′2(0))〉

= f ′(z)f ′(z)〈v1, v2〉 = |f ′(z)|2〈v1, v2〉,

so, if we denote by θ (resp. ϕ the angle between v1, v2 (resp. w1, w2), we have

cosϕ =
〈w1, w2〉
|w1| |w2|

=
|f ′(z)|2〈v1, v2〉
|f ′(z)v1| |f ′(z)v2|

=
〈v1, v2〉
|v1| |v2|

= cos θ.

1Note: some people use “analytic” and “holomorphic” with two a priori different definitions

that are then proved to be equivalent; I find this needlessly confusing so I may use these two

terms interchangeably.
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13. Conversely, if f is conformal in a neighborhood of z then (under some additional

mild assumptions) it is analytic — we will prove this below after discussing the

Cauchy-Riemann equations.

14. Properties of derivatives: under appropriate assumptions (explain them precisely

— see Proposition 2.2 on page 10 of [Stein-Shakarchi]),

(f + g)′(z) = f ′(z) + g′(z),

(fg)(z) = f ′(z)g(z) + f(z)g′(z),(
1

f

)′
= − f

′(z)

f(z)2
,(

f

g

)′
=
f ′(z)g(z)− f(z)g′(z)

g(z)2
,

(f ◦ g)′(z) = f ′(g(z))g′(z).

15. Denote z = x+ iy, f = u+ iv. Note that if f is analytic at z then

f ′(z) = lim
h→0

f(z + h)− f(z)

h

= lim
h→0, h∈R

u(x+ h+ iy)− u(x+ iy)

h
+ i

v(x+ h+ iy)− v(x+ iy)

h

=
∂u

∂x
+ i

∂v

∂x
.

On the other hand also

f ′(z) = lim
h→0

f(z + h)− f(z)

h

= lim
h→0, h∈iR

u(x+ h+ iy)− u(x+ iy)

h
+ i

v(x+ h+ iy)− v(x+ iy)

h

= lim
h→0, h∈R

u(x+ iy + ih)− u(x+ iy)

ih
+ i

v(x+ iy + ih)− v(x+ iy)

ih

= −i∂u
∂y
− i · i ∂v

∂y
=
∂v

∂y
− i∂u

∂y
.

Since these limits are equal, by equating their real and imaginary parts we get

the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
.

16. Conversely, if f = u+iv is continuously differentiable (in the real analysis sense)

at z = x+ iy and satisfies the C-R equations there, f is analytic at z.

Proof. The assumption implies that f has a differential at z, i.e., in the notation

of vector calculus, denoting f = (u, v), z = (x, y)>, ∆z = (h1, h2)>, we have

f(z + ∆z) =

(
u(z)

v(z)

)
+

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)(
h1

h2

)
+ E(h1, h2),
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where E(h1, h2) = o(|∆z|) as |∆z| → 0. Now, by the assumption that the C-R

equations hold, we also have(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)(
h1

h2

)
=

(
∂u
∂x
h1 + ∂u

∂y
h2

− ∂u
∂y
h1 + ∂u

∂x
h2

)
,

which is the vector calculus notation for the complex number(
∂u

∂x
− i∂u

∂y

)
(h1 + ih2) =

(
∂u

∂x
− i∂u

∂y

)
∆z.

So, we have shown that (again, in complex analysis notation)

lim
∆z→0

f(z + ∆z)− f(z)

∆z
= lim

∆z→0

(
∂u

∂x
− i∂u

∂y
+
E(∆z)

∆z

)
=
∂u

∂x
− i∂u

∂y
.

This proves that f is holomorphic at z with derivative given by f ′(z) = ∂u
∂x
−

i ∂u
∂y

.

17. Interesting consequence of C-R (1). Theorem: if f = u + iv is conformal at

z, continuously differentiable in the real analysis sense, and satisfies det Jf > 0

(i.e., f preserves orientation as a planar map), then f is holomorphic at z.

Proof. In the notation of the proof above, we have as before that

f(z + ∆z) =

(
u(z)

v(z)

)
+

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)(
h1

h2

)
+ E(h1, h2),

where E(h1, h2) = o(|∆z|) as |∆z| → 0. The assumption is that the differential

map

Jf =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
preserves orientation and is conformal; the conclusion is that the Cauchy-Riemann

equations are satisfied (which would imply that f is holomorphic at z by the

result shown above. So the whole thing reduces to proving the following simple

claim about 2× 2 matrices:

Conformality lemma. Assume that A =

(
a b

c d

)
is a 2× 2 real matrix. The

following are equivalent:

(a) A preserves orientation (that is, detA > 0) and is conformal, that is

〈Aw1, Aw2〉
|Aw1| |Aw2|

=
〈w1, w2〉
|w1| |w2|

for all w1, w2 ∈ R2.

(b) A takes the form A =

(
a b

−b a

)
for some a, b ∈ R with a2 + b2 > 0.
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Figure 3: The level curves for the (a) real and (b) imaginary parts of z2 =

(x2 − y2) + i(2xy). (c) shows the superposition of both families of level curves.

(c) A takes the form A = r

(
cos θ − sin θ

sin θ cos θ

)
for some r > 0 and θ ∈ R. (That

is, geometrically A acts by a rotation followed by a scaling.)

Proof that (a) =⇒ (b). Note that both columns of A are nonzero vectors by

the assumption that detA > 0. Now applying the conformality assumption with

w1 = (1, 0)>, w2 = (0, 1)> yields that (a, c) ⊥ (b, d), so that (b, d) = κ(−c, a)

for some κ ∈ R \ {0}. On the other hand, applying the conformality assumption

with w1 = (1, 1)> and w2 = (1,−1)> yields that (a + b, c + d) ⊥ (a − b, c − d),

which is easily seen to be equivalent to a2 + c2 = b2 + d2. Together with the

previous relation that implies that κ = ±1. So A is of one of the two forms(
a −c
c a

)
or

(
a c

c −a

)
. Finally, the assumption that detA > 0 means it is the

first of those two possibilities that must occur.

Exercise. Show also that (b)⇐⇒ (c) and that (b) =⇒ (a).

18. Interesting consequence of C-R (2): orthogonality of level curves of u and of v:

if f = u+ iv is analytic then

∇u · ∇v = (ux, uy) ⊥ (vx, vy) = uxvx + uyvy = vyvx − vxvy = 0.

Since ∇u (resp. ∇v) is orthogonal to the level curve {u = c} (resp. the level

curve {v = d}, this proves that the level curves {u = c}, {v = d} meet at right

angles whenever they intersect.

19. Interesting consequence of C-R (3): Assume that f is analytic at z and twice

continuously differentiable there. Then

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
=

∂

∂x

(
∂v

∂y

)
− ∂

∂y

(
∂v

∂x

)
=

∂2v

∂x∂y
− ∂2v

∂y∂x
= 0.
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Figure 4: The level curves for the real and imaginary parts of z−1 = x
x2+y2 −

i y
x2+y2 .

Similarly (check), v also satisfies

∂2v

∂x2
+
∂2v

∂y2
= 0.

That is, we have shown that u and v are harmonic functions. This is an

extremely important connection between complex analysis and the theory of

partial differential equations, which also relates to many other areas of real

analysis.

20. We will later see that the assumption of twice continuous differentiability is

unnecessary.

21. The Jacobian of an analytic function considered as a two-dimensional map: if

f = u+ iv then

Jf = det

(
ux uy

vx vy

)
= uxvy − uyvx = u2

x + v2
x = |ux + ivx| = |f ′(z)|2.

This can also be understood geometrically (exercise: how?).

4 Power series

22. Power series are functions of a complex variable, defined by

f(z) =

∞∑
n=0

anz
n

where (an)∞n=0 is a sequence of complex numbers, or more generally by

g(z) = f(z − z0) =

∞∑
n=0

an(z − z0)n.
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23. Where does this formula make sense? It is not hard to see that it converges

absolutely precisely for 0 ≤ |z| < R where

R =

(
lim sup
n→∞

|an|1/n
)−1

.

R is called the radius of convergence of the power series.

Proof. Assume 0 < R < ∞ (the edge cases R = 0 and R = ∞ are left as

an exercise). The defining property of R is that for all ε > 0, we have that

|an| <
(

1
R

+ ε
)n

if n is large enough, and R is the minimal number with that

property. Let z ∈ DR(0). Since |z| < R, we have |z|
(

1
R

+ ε
)
< 1 for some fixed

ε > 0 chosen small enough. That implies that for n > N (for some large enough

N as a function of ε),

∞∑
n=N

|anzn| <
∞∑
n=N

[(
1

R
+ ε

)
|z|
]n
,

so the series is dominated by a convergent geometric series, and hence converges.

Conversely, if |z| > R, then, |z|
(

1
R
− ε
)
> 1 for some small enough fixed ε > 0.

Taking a subsequence (ank )∞k=1 for which |ank | >
(

1
R
− ε
)nk (guaranteed to exist

by the definition of R), we see that

∞∑
n=0

|anzn| ≥
∞∑
k=1

[
|z|
(

1

R
− ε
)]nk

=∞,

so the power series diverges.

Exercise. Complete the argument in the extreme cases R = 0,∞.

24. Another important theorem is: power series are holomorphic functions and can

be differentiated termwise in the disc of convergence.

Proof. Denote

f(z) =

∞∑
n=0

anz
n = SN (z) + EN (z),

SN (z) =

N∑
n=0

anz
n,

EN (z) =
∞∑

n=N+1

anz
n,

g(z) =

∞∑
n=0

nanz
n.

The claim is that f is differentiable on the disc of convergence and its derivative

is the power series g. Since n1/n → 1 as n→∞, it is easy to see that f(z) and

g(z) have the same radius of convergence. Fix z0 with |z| < r < R. We wish to

13



show that f(z0+h)−f(z0)
h

converges to g(z0) as h→ 0. Observe that

f(z0 + h)− f(z0)

h
− g(z0) =

(
SN (z0 + h)− SN (z0)

h
− S′N (z0)

)
+
EN (z0 + h)− EN (z0)

h
+ (S′N (z0)− g(z0))

The first term converges to 0 as h → 0 for any fixed N . To bound the second

term, fix some ε > 0, and note that, if we assume that not only |z0| < r but also

|z0 +h| < r (an assumption that’s clearly satisfied for h close enough to 0) then∣∣∣∣EN (z0 + h)− EN (z0)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣ (z0 + h)n − zn0

h

∣∣∣∣
=

∞∑
n=N+1

|an|

∣∣∣∣∣h
∑n−1
k=0 h

k(z0 + h)n−1−k

h

∣∣∣∣∣
≤

∞∑
n=N+1

|an|nrn−1,

where we use the algebraic identity

an − bn = (a− b)(an−1 + an−2b+ . . .+ abn−2 + bn−1).

The last expression in this chain of inequalities is the tail of an absolutely con-

vergent series, so can be made < ε be taking N large enough (before taking the

limit as h→ 0).

Third, when choosing N also make sure it is chosen so that |S′N (z0)−g(z0)| < ε,

which of course is possible since S′N (z0) → g(z0) as N → ∞. Finally, having

thus chosen N , we get that

lim sup
h→0

∣∣∣∣f(z0 + h)− f(z0)

h
− g(z0)

∣∣∣∣ ≤ 0 + ε+ ε = 2ε.

Since ε was an arbitrary positive number, this shows that f(z0+h)−f(z0)
h

→ g(z0)

as h→ 0, as claimed.

25. The proof above can be thought of as a special case of the following more

conceptual result: if gn is a sequence of holomorphic functions on a region Ω,

and gn → g uniformly on closed discs in Ω, g′n → h uniformly on closed discs

on Ω, and h is continuous, then g is holomorphic and g′ = h on Ω. (Exercise:

prove this, and explain the connection to the previous result.)

26. Corollary. Analytic functions defined as power series are (complex-)differentiable

infinitely many times in the disc of convergence.

27. Corollary. For a power series g(z) =
∑∞
n=0 an(z − z0)n with a positive radius

of convergence, we have

an =
g(n)(z0)

n!
.

In other words g(z) satisfies Taylor’s formula

g(z) =

∞∑
n=0

g(n)(z0)

n!
(z − z0)n.
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5 Contour integrals

28. Parametrized curves: γ : [a, b] → C. Two curves γ1 : [a, b] → C, γ2 : [c, d] → C
are equivalent, denoted γ1 ∼ γ2, if γ2(t) = γ1(I(t)) where I : [c, d] → [a, b] is a

continuous, one-to-one, onto, increasing function. A “curve” is an equivalence

class of parametrized curves.

In practice, we will usually refer to parametrized curves as “curves”, which is the

usual abuse of terminology (that one sees in various places in mathematics), in

which one blurs the distinction between equivalence classes and their members,

remembering that various arguments need to “respect the equivalence” in the

sense that they do not depend of the choice of member. (Meta-exercise: think

of 2–3 other examples of this phenomenon.)

29. We shall assume all our curves are piecewise continuously differentiable. (More

generally, one can assume them to be rectifiable, but we will not bother to

develop that theory).

30. Reminder from vector calculus: line integrals of the first and second kind:∫
γ

u(z)ds = lim
max
j

∆sj→0

n∑
j=1

u(zj)∆sj (line integral of the first kind),

∫
γ

F · ds =

∫
γ

P dx+Qdy = lim
max
j

∆sj→0

n∑
j=1

P (zj)∆xj +Q(zj)∆yj

(F = (P,Q); line integral of the second kind).

31. Standard fact from calculus: the line integrals can be computed as∫
γ

u(z) ds =

∫ b

a

u(γ(t))|γ′(t)| dt,∫
γ

P dx+Qdy =

∫ b

a

F(γ(t)) · γ′(t) dt.

32. Reminder: the fundamental theorem of calculus for line integrals: if F = ∇u
then ∫

γ

F · ds = u(γ(b))− u(γ(a)).

33. Important definition: contour integrals. For a function f = u + iv of a

complex variable z and a curve γ, define∫
γ

f(z) dz = “

∫
γ

(u+ iv)(dx+ idy)”

=

(∫
γ

u dx− v dy
)

+ i

(∫
γ

v dx+ u dy

)
=

∫ b

a

f(γ(t))γ′(t) dt (contour integral),∫
γ

f(z) |dz| =
∫
γ

f(z) ds =

∫
γ

u ds+ i

∫
γ

v ds (arc length integral).
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If γ is a closed curve (the two endpoints are the same, i.e., it satisfies γ(a) =

γ(b)), we denote the contour integral as
∮
γ

f(z) dz.

34. A special case of an arc length integral is the length of the curve, defined by the

integral of the constant function 1:

len(γ) =

∫
γ

|dz| =
∫ b

a

|γ′(t)| dt.

35. These definitions do not depend on the parametrization of the curve. Indeed, if

γ2(t) = γ1(I(t)), then (using the change of variables formula for real integrals)

we have that∫
γ2

f(z) dz =

∫ d

c

f(γ2(t))γ′2(t)dt =

∫ d

c

f(γ1(I(t)))(γ1 ◦ I)′(t) dt

=

∫ d

c

f(γ1(I(t)))γ′1(I(t))I ′(t) dt =

∫ b

a

f(γ1(τ))γ′1(τ) dτ

=

∫
γ1

f(z) dz.

Exercise. Show that the integral with respect to arc length also does not

depend on the parametrization.

36. Proposition (properties of contour integrals). Contour integrals satisfy

the following properties:

(a) Linearity (as an operator on functions):
∫
γ
(αf(z)+βg(z)) dz = α

∫
γ
f(z) dz+

β
∫
γ
g(z) dz.

(b) Linearity (as an operator on curves): if a contour Γ is a “composition” of

two contours γ1 and γ2 (in a sense that is easy to define graphically, but

tedious to write down precisely), then∫
Γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

Similarly, if γ2 is the “reverse” contour of γ1, then∫
γ2

f(z) dz = −
∫
γ1

f(z) dz.

(c) Triangle inequality:∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ ∫ |f(z)| |dz| ≤ len(γ) · sup
z∈γ
|f(z)|.

Exercise. Prove this claim (part of the exercise is to define precisely the notions

of “composition of curves” and “reverse curve”).

16



37. The fundamental theorem of calculus for contour integrals. If γ is

a curve connecting two points w1, w2 in a region Ω on which a function F is

holomorphic, then ∫
γ

F ′(z) dz = F (w2)− F (w1).

Equivalently, to compute the contour integral
∫
γ
f(z) dz, try to find a primitive

to f , that is, a function F such that F ′(z) = f(z) on all of Ω. Then
∫
γ
f(z) dz

is given by F (w2)− F (w1).

Proof. For smooth curves,∫
γ

F ′(z) dz =

∫ b

a

F ′(γ(t))γ′(t) dt =

∫ b

a

(F ◦ γ)′(t) dt = (F ◦ γ)(t)|t=bt=a

= F (γ(b))− F (γ(a)) = F (w2)− F (w1).

For piecewise smooth curves, this is a trivial extension that is left as an exercise.

38. Corollary. If f = F ′ where F is holomorphic on a region Ω (in that case we

say that f has a primitive), γ is a closed curve in Ω, then∮
γ

f(z) dz = 0.

39. A converse to the last claim: if f : Ω → C is a continuous function on a region

Ω such that ∮
γ

f(z) dz = 0

holds for any closed contour in Ω, then f has a primitive.

Proof. Fix some z0 ∈ Ω. For any z ∈ Ω, there is some path γ(z0, z) connecting

z0 and z (since Ω is connected and open, hence pathwise-connected — a standard

exercise in topology, see the exercises in Chapter 1 of [Stein-Shakarchi]). Define

F (z) =

∫
γ(z0,z)

f(w) dw.

By the assumption, this integral does not depend on which contour γ(z0, z)

connecting z0 and z was chosen, so F (z) is well-defined. We now claim that F

is holomorphic and its derivative is equal to f . To see this, note that

F (z + h)− F (z)

h
− f(z)

=
1

h

(∫
γ(z0,z+h)

f(w) dw −
∫
γ(z0,z)

f(w) dw

)
− f(z)

=
1

h

∫
γ(z,z+h)

f(w) dw − f(z) =
1

h

∫
γ(z,z+h)

(f(w)− f(z)) dw

where γ(z, z + h) denotes a contour connecting z and z + h. When |h| is suffi-

ciently small so that the disc D(z, h) is contained in Ω, one can take γ(z, z+ h)
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as the straight line segment connecting z and z + h. For such h we get that∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ 1

h
len(γ(z, z + h)) sup

w∈D(z,h)

|f(w)− f(z)|

= sup
w∈D(z,h)

|f(w)− f(z)| −−−→
h→0

0,

by continuity of f .

40. Remark. Note that with the last result, if we knew that holomorphic functions

are differentiable infinitely many times (the so-called regularity theorem), we

could conclude that a function that satisfies the assumption that all its contour

integrals on closed contours were 0 is holomorphic. This is in fact true, and is

called Morera’s theorem (and is an important fact in complex analysis), but

we won’t be able to prove it until we’ve proved Cauchy’s theorem.

41. Example. Compute
∮
|z|=1

zn dz for n ∈ Z. What do we learn from the fact

that the integral is not zero for n = −1? (Hint: something; but what?) And

what do we learn from the fact that it’s 0 when n 6= −1? (Hint: nothing; but

why?)

42. If f is holomorphic on Ω and f ′ ≡ 0 then f is a constant.

Proof. Fix some z0 ∈ Ω. For any z ∈ Ω, as we discussed above there is a path

γ(z0, z) connecting z0 and z. Then

f(z)− f(z0) =

∫
γ(z0,z)

f ′(w) dw = 0,

hence f(z) ≡ f(z0), so f is constant.

6 Cauchy’s theorem

43. One of the central results in complex analysis is Cauchy’s theorem:

Cauchy’s theorem. If f is holomorphic on a simply-connected region Ω,

then for any closed curve in Ω we have∮
γ

f(z) dz = 0.

The challenges are: first, to prove Cauchy’s theorem for curves and regions

that are relatively simple (where we do not have to deal with subtle topological

considerations); second, to define what simply-connected means; third, which

will take a bit longer and we won’t do immediately, to extend the theorem to

the most general setting.

44. Two other theorems that are closely related to Cauchy’s theorem are Goursat’s

theorem and Morera’s theorem.
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45. Goursat’s theorem (a relatively easy special case of Cauchy’s theo-

rem). If f is holomorphic on a region Ω, and T is a triangle contained in Ω,

then
∮
∂T
f(z) dz = 0 (where T refers to the “full” triangle, and ∂T refers to its

boundary considered as a curve oriented in the usual positive direction).

46. Morera’s theorem (“the converse of Cauchy’s theorem”). If f : Ω→ C
is a continuous function on a region Ω such that∮

γ

f(z) dz = 0

holds for any closed contour in Ω, then f is holomorphic on Ω.

47. Proof of Goursat’s theorem. The proof idea: “localize the damage”. Namely,

try to translate a global statement about the integral around the triangle to a

local statement about behavior near a specific point inside the triangle, which

would become manageable since we have a good understanding of the local be-

havior of a holomorphic function near a point. If something goes wrong with the

global integral, something has to go wrong at the local level, and we will show

that can’t happen (although technically the proof is not a proof by contradiction,

conceptually I find this a helpful way to think about it).

The idea can be made more precise using triangle subdivision. Specifically, let

T (0) = T , and define a hierarchy of subdivided triangles

order 0 triangle: T (0),

order 1 triangles: T
(1)
j , 1 ≤ j ≤ 4,

order 2 triangles: T
(2)
j,k , 1 ≤ j, k ≤ 4

order 3 triangles: T
(3)
j,k,`, 1 ≤ j, k, ` ≤ 4,

...

order n triangles: T
(n)
j1,...,jn

, 1 ≤ j1, . . . , jn ≤ 4.

...

Here, the triangles T
(n)
j1,...,jn

for jn = 1, 2, 3, 4 are obtained by subdividing the

order n−1 triangle T
(n−1)
j1,...,jn−1

into 4 subtriangles whose vertices are the vertices

and/or edge bisectors of T
(n−1)
j1,...,jn−1

(see Figure 1 on page 35 of [Stein-Shakarchi]).

Now, given the way this subdivision was done, it is clear that we have the

equality ∮
∂T

(n−1)
j1,...,jn−1

f(z) dz =

4∑
jn=1

∮
∂T

(n)
j1,...,jn

f(z) dz

due to cancellation along the internal edges, and hence∮
∂T (0)

f(z) dz =

4∑
j1,...,jn=1

∮
∂T

(n)
j1,...,jn

f(z) dz.
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That is, the integral along the boundary of the original triangle is equal to the

sum of the integrals over all 4n triangles of order n. Now, the crucial observation

is that one of these integrals has to have a modulus that is at least as big as the

average. That is, we have∣∣∣∣∮
∂T (0)

f(z) dz

∣∣∣∣ ≤ 4∑
j1,...,jn=1

∣∣∣∣∣
∮
∂T

(n)
j1,...,jn

f(z) dz

∣∣∣∣∣ ≤ 4n

∣∣∣∣∣
∮
∂T

(n)
j(n)

f(z) dz

∣∣∣∣∣
where j(n) = (j

(n)
1 , . . . , j

(n)
n ) is some n-tuple chosen such that the second in-

equality holds. Moreover, we can choose j(n) inductively in such a way that the

triangles T
(n)

j(n) are nested — that is, T
(n)

j(n) ⊂ T
(n−1)

j(n−1) for n ≥ 1, or equivalently

j(n) = (j
(n−1)
1 , . . . , j

(n−1)
n−1 , k) for some 1 ≤ k ≤ 4 — to make this happen, choose

k to be such that

∣∣∣∣∮∂T (n)
(j(n−1),k)

f(z) dz

∣∣∣∣ is greater than (or equal to) the average

1

4

4∑
d=1

∣∣∣∣∣
∮
∂T

(n)
(j(n−1),d)

f(z) dz

∣∣∣∣∣ ,
which in turn is (by induction) greater than or equal to∣∣∣∣∣14

4∑
d=1

∮
∂T

(n)
(j(n−1),d)

f(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∮
∂T

(n−1)
j(n−1)

f(z) dz

∣∣∣∣∣ ≥ 4−(n−1)

∮
∂T

f(z) dz.

Now observe that the sequence of nested triangles shrinks to a single point. That

is, we have
∞⋂
n=0

T
(n)

j(n) = {z0}

for some point z0 ∈ T . This is true because the diameter of the triangles goes to

0 as n → ∞, so certainly there can’t be two distinct points in the intersection;

whereas, on the other hand, the intersection cannot be empty, since the sequence

(zn)∞n=0 of centers (in some obvious sense, e.g., intersection of the angle bisectors)

of each of the triangles is easily seen to be a Cauchy sequence (and hence a

convergent sequence, by the completeness property of the complex numbers),

whose limit must be an element of the intersection.

Having defined z0, write f(z) for z near z0 as

f(z) = f(z0) + f ′(z0)(z − z0) + ψ(z)(z − z0),

where

ψ(z) =
f(z)− f(z0)

z − z0
− f ′(z0).

The holomorphicity of f at z0 implies that ψ(z)→ 0 as z → z0. Denote by d(n)

the diameter of T
(n)

j(n) and by p(n) its perimeter. Each subdivision shrinks both

the diameter and perimeter by a factor of 2, so we have

d(n) = 2−nd(0), p(n) = 2−np(0).
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It follows that∣∣∣∣∣
∫
∂T

(n)
j(n)

f(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂T

(n)
j(n)

f(z0) + f ′(z0)(z − z0) + ψ(z)(z − z0) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫
∂T

(n)
j(n)

ψ(z)(z − z0) dz

∣∣∣∣∣ ≤ p(n)d(n) sup
z∈T (n)

j(n)

|ψ(z)|

Finally, combining this with the relationship between
∣∣∮
∂T (0) f(z) dz

∣∣ and |
∫
∂T

(n)
j(n)

f(z) dz|,
we get that ∣∣∣∣∫

∂T (0)

f(z) dz

∣∣∣∣ ≤ p(0)d(0) sup
z∈T (n)

j(n)

|ψ(z)| −−−−→
n→∞

0,

which finishes the proof.

48. Goursat’s theorem for rectangles. The theorem is also true when we replace

the word “triangle” with “rectangle”, since a rectangle can be decomposed as

the union of two triangles, with the contour integral around the rectangle being

the sum of the integrals around the two triangles.

49. Corollary: existence of a primitive for a holomorphic function on a

disc. If f is holomorphic on a disc D, then f = F ′ for some holomorphic

function F on D.

Proof. The idea is similar to the proof of the result in 39 above. If we knew

that all contour integrals of f around closed contours vanished, that result would

give us what we want. As it is, we know this is true but only for triangular

contours. How can we make use of that information? [Stein-Shakarchi] gives a

clever approach in which the contour γ(z0, z) is comprised of a horizontal line

segment followed by a vertical line segment. Then one shows in three steps,

each involving a use of Goursat’s theorem (see Figure 4 on page 38 of [Stein-

Shakarchi]), that F (z0 +h)−F (z0) is precisely the contour integral over the line

segment connecting z0 and z0 + h. From there the theorem proceeds in exactly

the same way as before.

50. Corollary: Cauchy’s theorem for a disc. If f is holomorphic on a disc,

then
∮
γ
f dz = 0 for any closed contour γ in the disc.

Proof. f has a primitive, and we saw that that implies the claimed consequence.

51. Cauchy’s theorem for a region enclosed by a “toy contour”. Repeat

the same ideas, going from Goursat’s theorem, to the fact that the function has

a primitive, to the fact that its contour integrals along closed curves vanish.

The difficulty as the toy contour gets more complicated is to make sure that

the geometry works out when proving the existence of the primitive — see for

example the (incomplete) discussion of the case of “keyhole contours” on pages

40–41 of [Stein-Shakarchi].
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7 Consequences of Cauchy’s theorem

52. Cauchy’s integral formula. If f is holomorphic on a region Ω, and C = ∂D

is a circular contour contained in Ω, then

1

2πi

∮
C

f(w)

w − z dw =


f(z) if z ∈ D,

0 if z ∈ Ω \D,

undefined if z ∈ C.

Proof. The case when z /∈ D is covered by Cauchy’s theorem in a disc, since

in that case the function w 7→ f(w)/(w − z) is holomorphic in an open set

containing D. It remains to deal with the case z ∈ D. In this case, denote by

z0 the center of the circle C. The idea is now to consider instead the integral∮
Γε,δ

Fz(w) dw =

∮
Γε,δ

f(w)

w − z dw,

where Γε,δ is a so-called keyhole contour, namely a contour comprised of a

large circular arc around z0 that is a subset of the circle C, and another smaller

circular arc of radius ε centered at z, with two straight line segments connecting

the two circular arcs to form a closed curve, such that the width of the “neck”

of the keyhole is δ (think of δ as being much smaller than ε); see Fig. 5. Note

that the function Fz(w) is holomorphic inside the region enclosed by Γε,δ, so

Cauchy’s theorem for toy contours gives that∮
Γε,δ

Fz(w) dw = 0.

As δ → 0, the two parts of the integral along the “neck” of the contour Γε,δ

cancel out in the limit because Fz is continuous, and hence uniformly continuous,

on the compact set D \D(z, ε). So we can conclude that∮
C

Fz(w) dw =

∮
|w−z|=ε

Fz(w) dw.

The next, and final, step, is to take the limit as ε→ 0 of the right-hand side of

this equation, after first decomposing Fz(w) as

Fz(w) =
f(w)− f(z)

w − z + f(z) · 1

w − z ,

Integrating each term separately, we have for the first term∣∣∣∣∮
C

f(w)− f(z)

w − z dw

∣∣∣∣ ≤ 2πε · sup
|w−z|=ε

|f(w)− f(z)|
ε

= 2π sup
|w−z|=ε

|f(w)− f(z)| −−−→
ε→0

0,
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C

z0

z
ε

δ

Figure 5: The keyhole contour used in the proof of Cauchy’s integral formula.

by continuity of f ; and for the second term,∮
|w−z|=ε

f(z) · 1

w − z dw = f(z)

∮
|w−z|=ε

1

w − z dw = 2πif(z)

(by a standard calculation, see 41 above). Putting everything together gives∮
C

1
2πi

Fz(w) dw = f(z), which was the formula to be proved.

53. Example: in the case when z is the center of the circle C = {w : |w− z| = r},
Cauchy’s formula gives that

f(z) =
1

2π

∮
|w−z|=r

f(w)
dw

i(w − z) =
1

2π

∫ 2π

0

f(z + reit)dt.

In other words, we have proved:

Theorem (the mean value property for holomorphic functions). The

value of a holomorphic function f at z is equal to the average of its values around

a circle |w − z| = r (assuming it is holomorphic on an open set containing the

disc |w − z| ≤ r).
54. Considering what the mean value property means for the real and imaginary

parts of f = u+ iv, which are harmonic functions, we see that they in turn also

satisfy a similar mean value property:

u(x, y) =
1

2π

∫ 2π

0

u(x+ r cos t, y + r sin t) dt.

This is in fact true for all harmonic functions — a fact, known as the mean

value property for harmonic functions, that can be proved separately using

PDE/real analysis methods, or derived from the above considerations by proving

that every harmonic function in a disc is the real part of a holomorphic function.
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55. Cauchy’s integral formula, extended version. Under the same assump-

tions, f is infinitely differentiable, and for z ∈ D its derivatives f (n)(z) are given

by

f (n)(z) =
n!

2πi

∮
C

f(w)

(w − z)n+1
dw.

The fact that holomorphic functions are differentiable infinitely many times is

referred to by [Stein-Shakarchi] as the regularity theorem.

Proof. The key observation is that the expression on the right-hand side of

Cauchy’s integral formula for f(z) (which is the case n = 0 of the “extended”

version) can be differentiated under the integral sign. To make this precise, let

n ≥ 1, and assume inductively that we proved

f (n−1)(z) =
(n− 1)!

2πi

∮
C

f(w)

(w − z)n dw.

Then

f (n−1)(z + h)− f (n−1)(z)

h

=
(n− 1)!

2πi

∮
C

f(w) · 1

h

(
1

(w − z − h)n
− 1

(w − z)n

)
dw.

It is easily seen that as h → 0, the divided difference (w−z−h)−n−(w−z)−n
h

con-

verges to n(w − z)−n−1, uniformly over w ∈ C. (The same claim without the

uniformity is just the rule for differentiation of a power function; to get the

uniformity one needs to “go back to basics” and repeat the elementary algebraic

calculation that was originally used to derive this power rule — an illustration

of the idea that in mathematics it is important not just to understand results

but also the techniques used to derive them.) It follows that we can go to the

limit h→ 0 in the above integral representation, to get

f (n)(z) =
(n− 1)!

2πi

∮
C

f(w)n(w − z)−n−1 dz,

which is precisely the nth case of Cauchy’s integral formula.

56. Proof of Morera’s theorem. We already proved that if f is a function all of

whose contour integrals over closed curves vanish, then f has a primitive F . The

regularity property now implies that the derivative F ′ = f is also holomorphic,

hence f is holomorphic, which was the claim of Morera’s theorem.

57. As another immediate corollary to Cauchy’s integral formula, we now get an ex-

tremely useful family of inequalities that bounds a function f(z) and its deriva-

tives at some specific point z ∈ C in terms of the values of the function on the

boundary of a circle centered at z.

Cauchy inequalities. For f holomorphic in a region Ω that contains the closed

disc DR(z), we have

|f (n)(z)| ≤ n!R−n sup
z∈∂DR(z)

|f(z)|

(where ∂DR(z) refers to the circle of radius R around z).
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58. Analyticity of holomorphic functions. If f is holomorphic in a region Ω

that contains a closed disc DR(z0), then f has a power series expansion at z0

f(z) =

∞∑
n=0

an(z − z0)n,

that is convergent for all z ∈ DR(z0), where (of course) an = f (n)(z0)/n!.

Proof. The idea is that Cauchy’s integral formula gives us a representation of

f(z) as a weighted “sum” (=an integral, which is a limit of sums) of functions

of the form z 7→ (w − z)−1. Each such function has a power series expansion

since it is, more or less, a geometric series, so the sum also has a power series

expansion.

To make this precise, write

1

w − z =
1

(w − z0)− (z − z0)
=

1

w − z0
· 1

1−
(
z−z0
w−z0

)
=

1

w − z0

∞∑
n=0

(
z − z0

w − z0

)n
=

∞∑
n=0

(w − z0)−n−1(z − z0)n.

This is a power series in z− z0 that, assuming w ∈ CR(z0), converges absolutely

for all z such that |z − z0| < R (that is, for all z ∈ DR(z0)). Moreover the

convergence is clearly uniform in w ∈ CR(z0). Since infinite summations that

are absolutely and uniformly convergent can be interchanged with integration

operations, we then get, using the extended version of Cauchy’s integral formula,

that

f(z) =
1

2πi

∮
CR(z0)

f(w)

w − z dw

=
1

2πi

∮
CR(z0)

f(w)

∞∑
n=0

(w − z0)−n−1(z − z0)n dw

=

∞∑
n=0

(
1

2πi

∮
CR(z0)

f(w)(w − z0)n−1 dw

)
(z − z0)n

=

∞∑
n=0

f (n)(z0)

n!
(z − z0)n,

which is precisely the expansion we were after.

59. Remark. In the above proof, if we only knew the simple (n = 0) case of

Cauchy’s integral formula (and in particular didn’t know the regularity theorem

that follows from the extended case of this formula), we would still conclude from

the penultimate expression in the above chain of equalities that f(z) has a power

series expansion of the form
∑
n an(z−z0)n, with an = (2πi)−1

∫
CR(z0)

f(w)(w−
z)−n−1. It would then follow from earlier results we proved that f(z) is differ-

entiable infinitely many times, and that an = f (n)(z0)/n!, which would again

give the extended version of Cauchy’s integral formula.
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60. Liouville’s theorem. A bounded entire function is constant.

Proof. An easy application of the (case n = 1 of the) Cauchy inequalities gives

upon taking the limit R → ∞ that f ′(z) = 0 for all z, hence, as we already

proved, f must be constant.

61. Theorem. If f is holomorphic on a region Ω, and f = 0 for z in a set containing

a limit point in Ω, then f is identically zero on Ω.

Proof. If the limit point is z0 ∈ Ω, that means there is a sequence (wk)∞k=0 of

points in Ω such that f(wk) = 0 for all n, wk → z, and wk 6= z0 for all k. We

know that in a neighborhood of z0, f has a convergent power series expansion.

If we assume that f is not identically zero in a neighborhood of z0, then we can

write the power series expansion as

f(z) =
∑
n=0

an(z − z0)k =

∞∑
n=m

an(z − z0)∞

= am(z − z0)m
∞∑
n=0

an+m

am
(z − z0)n = am(z − z0)m(1 + g(z)),

wherem is the smallest index such that am 6= 0, and where g(z) =
∑∞
n=1

an+m

am
(z−

z0)n is a holomorphic function in the neighborhood of z0 that satisfies g(z0) = 0.

It follows that for all k,

am(wk − z0)m(1 + g(wk)) = f(wk) = 0,

but for large enough k this is impossible, since wk − z0 6= 0 for all k and

g(wk)→ g(z0) = 0 as k →∞.

The conclusion is that f is identically zero at least in a neighborhood of z0. But

now we claim that that also implies that f is identically zero on all of Ω, because

Ω is a region (open and connected). More precisely, denote by U the set of points

z ∈ Ω such that f is equal to 0 in a neighborhood of z. It is obvious that U

is open, hence also relatively open in Ω since Ω itself is open; U is also closed,

by the argument above; and U is nonempty (it contains z0, again by what we

showed above). It follows that U = Ω by the well-known characterization of a

connected topological space as a topological space that has no “’clopen” (closed

and open) sets other than the empty set and the entire space.

An alternative way to finish the proof is the following. For every point z ∈ Ω,

let r(z) be the radius of convergence of the power series expansion of f around

z. Thus the discs {Dr(z)(z) : z ∈ Ω} form an open covering of Ω. Take w ∈ Ω

(with z0 being as above), and take a path γ : [a, b] → Ω connecting z0 and w

(it exists because Ω is open and connected, hence pathwise-connected). The

open covering of Ω by discs is also an open covering of the compact set γ[a, b]

(the range of γ). By the Heine-Borel property of compact sets, it has a finite

subcovering {Dr(zj)(zj) : j = 0, . . . ,m} (where we take w = zm+1. The proof

above shows that f is identically zero on Dr(z0)(z0), and also shows that if we

know f is zero on Dr(zj)(zj) then we can conclude that it is zero on the next disc
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Dr(zj+1)(zj+1). It follows that we can get all the way to the last disc Dr(w)(w).

In particular, f(w) = 0, as claimed.

62. Remark. The above result is also sometimes described under the heading zeros

of holomorphic functions are isolated, since it can be formulated as the

following statement: if f is holomorphic on Ω, is not identically zero on Ω,

and f(z0) = 0 for z0 ∈ Ω, then for some ε > 0, the punctured neighborhood

Dε(z0) \ {z0} of z0 contains no zeros of f . In other words, the set of zeros of f

contains only isolated points.

63. Remark 2. The condition that the limit point z0 be in Ω is needed. Note that

it is possible to have a sequence zn → z0 of points in Ω such that f(zn) = 0

for all n. For example, consider the function e1/z − 1 — it has zeros in every

neighborhood of z0 = 0.

64. Corollary. If f, g are holomorphic on a region Ω, and f(z) = g(z) for z in a

set with limit point in Ω (e.g., an open disc, or even a sequence of points zn

converging to some z ∈ Ω), then f ≡ g everywhere in Ω.

Proof. Apply the previous result to f − g.

65. The previous result is usually reformulated slightly as the following conceptually

important result:

Principle of analytic continuation. If f is holomorphic on a region Ω, and

f+ is holomorphic on a bigger region Ω+ ⊃ Ω and satisfies f(z) = f+(z) for all

z ∈ Ω, then f+ is the unique such extension, in the sense that if f̃+ is another

function with the same properties then f+(z) = f̃+(z) for all z ∈ Ω+.

66. Example. In real analysis, we learn that “formulas” such as

1− 1 + 1− 1 + 1− 1 + . . . =
1

2
,

1 + 2 + 4 + 8 + 16 + 32 + . . . = −1

don’t have any meaning. However, in the context of complex analysis one can

in fact make perfect sense of such identities, using the principle of analytic

continuation! Do you see how? We will also learn later in the course about

additional such amusing identities, the most famous of which being

1 + 2 + 3 + 4 + . . . = − 1

12
,

1− 2 + 3− 4 + . . . =
1

4
.

Such supposedly “astounding” formulas have attracted a lot of attention re-

cently, being the subject of a popular Numberphile video, a New York Times

article, a discussion on the popular math blog by Terry Tao, a Wikipedia article,

a discussion on Mathematics StackExchange, and more.

67. A “toy” (but stil very interesting) example of analytic continuation:

removable singularities. A point z0 ∈ Ω is called a removable singularity
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of a function f : Ω → C ∪ {undefined} if f is holomorphic in a punctured

neighborhood of Ω, is not holomorphic at z0, but its value at z0 can be redefined

so as to make it holomorphic at z0.

Riemann’s removable singularities theorem. If f is holomorphic in Ω

except at a point z0 ∈ Ω (where it may be undefined, or be defined but not

known to be holomorphic or even continuous). Assume that f is bounded in

a punctured neighborhood Dr(z0) \ {z0} of z0. Then f can be extended to a

holomorphic function f̃ on all of Ω by defining (or redefining) its value at z0

appropriately.

Proof. Fix some disc D = DR(z0) around z0 whose closure is contained in Ω.

The idea is to prove that the Cauchy integral representation formula

f(z) =
1

2πi

∮
CR(z0)

f(w)

w − z dw =: f̃(z)

is satisfied for all z ∈ D \ {z0}. Once we show this, we will set f̃(z0) to be

defined by the same integral representation, and it will be easy to see that that

gives the desired extension.

To prove that the representation above holds, consider a “double keyhole” con-

tour Γε,δ that surrounds most of circle C = ∂D but makes diversions to avoid

the points z0 and z, circling them in the negative direction around most of a

circle of radius ε. After applying a limiting argument similar to the one used in

the proof of Cauchy’s integral formula, we get that

1

2πi

∮
C

f(w)

w − z =
1

2πi

∮
Cε(z)

f(w)

w − z +
1

2πi

∮
Cε(z0)

f(w)

w − z .

On the right-hand side, the first term is f(z) by Cauchy’s integral formula (since

f is known to be holomorphic on an open set containing Dε(z)). The second

term can be bounded in magnitude using the assumption that f is bounded in

a neighborhood of z0; more precisely, we have∣∣∣∣∣
∮
Cε(z0)

f(w)

w − z

∣∣∣∣∣ ≤ 2πε sup
w∈Cε(z0)

|f(w)| · 1

|z − z0| − ε
−−−→
ε→0

0.

Thus by taking the limit as ε→ 0 we obtain precisely the desired representation

for f .

Finally, once we have the integral representation f̃ (defined only in terms of the

values of f(w) for w ∈ CR(z0)), the fact that this defines a holomorphic function

on all of DR(z0) is easy to see, and is something we implicitly were aware of

already. For example, the relevant argument (involving a direct manipulation

of the divided differences 1
h

(f̃(z + h) − f̃(z))) appeared in the proof of the

extended version of Cauchy’s integral formula. Another approach is to show

that integrating f̃ over closed contours gives 0 (which requires interchanging

the order of two integration operations, which will not be hard to justify) and

then use Morera’s theorem. The details are left as an exercise.

28



68. Definition: Uniform convergence on compact subsets. If f, (fn)∞n=0 are

holomorphic functions on a region Ω, we say that the sequence fn converges to f

uniformly on compact subsets if for any compact set K ⊂ Ω, fn(z)→ fn(z)

uniformly on K.

69. Theorem. If fn → f uniformly on compact subsets in Ω and fn are holo-

morphic, then f is holomorphic, and f ′n → f ′ uniformly on compact subsets in

Ω.

Proof. The fact that f is holomorphic is an easy consequence of a combination

of Cauchy’s theorem and Morera’s theorem. More precisely, note that for each

closed disc D = Dr(z0) ⊂ Ω we have fn(z)→ f uniformly on D. In particular,

for each curve γ whose image is contained in the open disc D = Dr(z0),∫
γ

fn(z) dz −−−−→
n→∞

∫
γ

f(z) dz.

By Cauchy’s theorem, the integrals in this sequence are all 0, so
∫
γ
f(z) dz is

also zero. Since this is true for all such γ, by Morera’s theorem f is holomorphic

on D. This was true for any disc in Ω, and holomorphicity is a local property,

so in other words f is holomorphic on all of Ω.

Next, let D = Dr(z0) be a disc whose closure D satisfies D ⊂ Ω. for z ∈ D we

have by Cauchy’s integral formula that

f ′n(z)− f ′(z) =
1

2πi

∮
∂D

fn(w)

(w − z)2
dw − 1

2πi

∮
∂D

f(w)

(w − z)2
dw

=
1

2πi

∮
∂D

fn(w)− f(w)

(w − z)2
dw.

It is easy to see therefore that f ′n(z)→ f ′(z) as n→∞, uniformly as z ranges

on the disc Dr/2(z0), since fn(w) → f(w) uniformly for w ∈ ∂D ⊂ D, and

|w − z|−2 ≤ (r/2)−2 for z ∈ Dr/2(z0), w ∈ ∂D.

Finally, let K ⊂ D be compact. For each z ∈ K let r(z) be the radius of a

disc Dr(z)(z) around z whose closure is contained in Ω. The family of discs

{Dz = Dr(z)/2(z) : z ∈ Ω} is an open covering of K, so by the Heine-Borel

property of compact sets it has a finite subcovering Dz1 , . . . , Dzn . We showed

that f ′n(z)→ f ′(z) uniformly on every Dzj , so we also have uniform convergence

on their union, which contains K, so we get that f ′n → f ′ uniformly on K, as

claimed.

8 Zeros, poles, and the residue theorem

70. Definition (zeros). z0 is a zero of a holomorphic function f if f(z0) = 0.

71. Lemma/Definition. If f is a holomorphic function on a region Ω that is not

identically zero and z0 is a zero of f , then f can be represented in the form

f(z) = (z − z0)mg(z)
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in some neighborhood of z0, where m ≥ 1 and g is a holomorphic function in

that neighborhood such that g(z) 6= 0. The number m is determined uniquely

and is called the order of the zero z0, i.e, z0 will be described as “a zero of

order m.”

Remark 1. In the case when z0 is not a zero of f , the same representation

holds with m = 0 (and g = f), so in certain contexts one may occasionally say

that z0 is a zero of order 0.

Remark 2. A zero of order 1 is called a simple zero.

Proof. Power series expansions – this is similar to the argument used in the

proof that zeros of holomorphic functions are isolated. That is, write the power

series expansion (known to converge in a neighborhood of z0)

f(z) =

∞∑
n=0

an(z − z0)n =

∞∑
n=m

an(z − z0)n

= (z − z0)m
∞∑
n=0

am+n(z − z0)n =: (z − z0)mg(z),

where m is the smallest index ≥ 0 such that am 6= 0. This gives the desired rep-

resentation. On the other hand, given a representation of this form, expanding

g(z) as a power series shows that m has to be the smallest index of a nonzero

coefficient in the power series expansion of f(z), which proves the uniqueness

claim.

72. Definition (poles). If f is defined and holomorphic in a punctured neighbor-

hood of a point z0, we say that it has a pole of order m at z0 if the function

h(z) = 1/f(z) (defined to be 0 at z0) has a zero of order m at z0. A pole of

order 1 is called a simple pole.

Remark. As with the case of zeros, one can extend this definition in an obvious

way to define a notion of a “pole of order 0”. If f(z) is actually holomorphic and

nonzero at z0 (or has a removable singularity at z0 and can be made holomorphic

and nonzero by defining its value at z0 appropriately), we define the order of

the pole as 0 and consider f to have a pole of order 0 at z0.

73. Lemma. f has a pole of order m at z0 if and only if it can be represented in

the form

f(z) = (z − z0)−mg(z)

in a punctured neighborhood of z0, where g is holomorphic in a neighborhood

of z0 and satisfies g(z0) 6= 0.

Proof. Apply the previous lemma to 1/f(z).

74. Theorem. If f has a pole of order m at z0, then it can be represented uniquely

as

f(z) =
a−m

(z − z0)m
+

a−m+1

(z − z0)m−1
+ . . .+

a−1

z − z0
+G(z)

where G is holomorphic in a neighborhood of z0.
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Proof. This follows immediately on expressing f(z) as (z − z0)−mg(z) as in

the previous lemma and separating the power series expansion of g(z) into the

powers (z − z0)k with 0 ≤ k ≤ m− 1 and the powers with k ≥ m.

75. Definition. The expansion
a−m

(z−z0)m
+

a−m+1

(z−z0)m−1 + . . . +
a−1

z−z0
in the above

representation is called the principal part of f at the pole z0. The coefficient

a−1 is called the residue of f at z0 and denoted Resz0(f).

76. Exercise. The definitions of the order of a zero and a pole can be consistently

unified into a single definition of the (generalized) order of a zero, where if

f has a pole of order m at z0 then we say instead that f has a zero of order

−m. Denote the order of a zero of f at z0 by ordz0(f). With these definitions,

prove that

ordz0(f + g) ≥ min (ordz0(f), ordz0(g))

(can you give a useful condition when equality holds?), and that

ordz0(fg) = ordz0(f) + ordz0(g).

77. The residue theorem (simple version). Assume that f is holomorphic in a

region containing a closed disc D, except for a pole at z0 ∈ D. Then∮
∂D

f(z) dz = 2πiResz0(f).

Proof. By the standard argument involving a keyhole contour, we see that the

circle C = ∂D in the integral can be replaced with a circle Cε = Cε(z0) of a

small radius ε > 0 around z0, that is , we have∮
∂D

f(z) dz =

∮
Cε

f(z) dz.

When ε is small enough, inside Cε we can use the decomposition

f(z) =

−1∑
k=−m

ak(z − z0)k +G(z)

for f into its principal part and a remaining holomorphic part. Integrating

termwise gives 0 for the integral of G(z), by Cauchy’s theorem; 0 for the integral

powers (z−z0)k with −m ≤ k ≤ −2, by a standard computation; and 2πia−1 =

2πiResz0(f) for the integral of r(z− z0)−1, by the same standard computation.

This gives the result.

78. The residue theorem (extended version). Assume that f is holomorphic

in a region containing a closed disc D, except for a finite number of poles at

z1, . . . , zN ∈ D. Then ∮
∂D

f(z) dz = 2πi

N∑
k=1

Reszk (f).
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Proof. The idea is the same, except one now uses a contour with multiple

keyholes to deduce after a limiting argument that∮
∂D

f(z) dz =

N∑
k=1

∮
Cε(zk)

f(z) dz

for a small enough ε, and then proceeds as before.

(Note: The above argument seems slightly dishonest to me, since it relies on

the assertion that a multiple keyhole contour with arbitrary many keyholes is

a “toy contour”; while this is intuitively plausible, it will be undoubtedly quite

difficult to think of, and write, a detailed proof of this argument.)

79. The residue theorem (version for general toy contours). Assume that

f is holomorphic in a region containing a toy contour γ (oriented in the posi-

tive direction) and the region Rγ enclosed by it, except for poles at the points

z1, . . . , zN ∈ Rγ . Then ∮
γ

f(z) dz = 2πi

N∑
k=1

Reszk (f).

Proof. Again, construct a multiple keyhole version of the same contour γ

(assuming that one can believably argue that the resulting contour is still a toy

contour), and then use a limiting argument to conclude that∮
γ

f(z) dz =

N∑
k=1

∮
Cε(zk)

f(z) dz,

for a small enough ε. Then proceed as before.

9 Meromorphic functions, holomorphicity at ∞
and the Riemann sphere

80. Definition (meromorphic functions). A meromorphic function on a region

Ω is a function f : Ω → C ∪ {undefined} such that f is holomorphic except for

an isolated set of poles.

81. Definition (holomorphicity at ∞). Let U ⊂ C be an open set containing

the complement C \DR(0) of a closed disc around 0. A function f : U → C is

holomorphic at ∞ if g(z) = f(1/z) (defined on a neighborhood D1/R(0) of 0)

has a removable singularity at 0. In that case we define f(∞) = g(0) (the value

that makes g holomorphic at 0).

82. Definition (order of a zero/pole at ∞). Let U ⊂ C be an open set contain-

ing the complement C\DR(0) of a closed disc around 0. We say that a function

f : U → C has a zero (resp. pole) of order m at ∞ if g(z) = f(1/z) has a zero

(resp. pole) at z = 0, after appropriately defining the value of g at 0.
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83. Conceptually, it is useful to think of meromorphic functions as holomorphic

functions with range in the Riemann sphere Ĉ. Let’s define what that means.

84. Definition. The Riemann sphere (a.k.a. the extended complex numbers)

is the set Ĉ = C ∪ {∞}, equipped with the following additional structure:

• Topologically, we think of Ĉ as the 1-point compactification of C; that

is, we add to C an additional element ∞ (called “the point at infinity”)

and say that the neighborhoods of∞ are the complements of compact sets

in C. This turns Ĉ into a topological space in a simple way.

• Geometrically, we can identify Ĉ with an actual sphere embedded in R3,

namely

S2 =
{

(x, y, z) ∈ R3 : x2 + y2 +
(
z − 1

2

)2
= 1

2

}
.

The identification is via stereographic projection, given explicitly by

the formula

(X,Y, Z) ∈ S2 7−→

x+ iy = X
1−Z + i Y

1−Z if (X,Y, Z) 6= (0, 0, 1),

∞ if (X,Y, Z) = (0, 0, 1).

See page 88 in [Stein-Shakarchi] for a more detailed explanation. One can

check that this geometric identification is a homeomorphism between S2

(equipped with the obvious topology inherited from R3) and Ĉ (with the

1-point compactification topology defined above).

• Analytically, the above definition of what it means for a function on a

neighborhood of∞ to be holomorphic at∞ provides a way of giving Ĉ the

structure of a Riemann surface (the simplest case of a manifold with a

complex-analytic structure). The details can be found in many textbooks

and online resources, and we will not discuss them in this course.

85. With the above definitions, the concept of a meromorphic function f : Ω→ C∪
{undefined} can be seen to coincide with the notion of a holomorphic function f :

Ω→ Ĉ — that is, the underlying concept of the definition is still holomorphicity,

but it concerns functions taking values in Ĉ, a different Riemann surface, instead

of C.

86. Definition (classification of singularities). If a function f : Ω → Ĉ ∪
{undefined} is holomorphic in a punctured neighborhood Dr(z0) \ {z0} of z0,

we say that f has a singularity at z0 if f is not holomorphic at z0. We classify

singularities into three types, two of which we already defined:

• Removable singularities: when f can be made holomorphic at z0 by

defining or redefining its value at z0.

• Poles.

• Any singularity that is not removable or a pole is called an essential

singularity.
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For a function defined on a neighborhood of ∞ that is not holomorphic at ∞,

we say that f has a singularity at∞, and classify the singularity as a removable

singularity, a pole, or an essential singularity, according to the type of singularity

that z 7→ f(1/z) has at z = 0.

87. Theorem (Casorati-Weierstrass theorem on essential singularities). If

f is holomorphic in a punctured neighborhood Dr(z0) \ {z0} of z0 and has an

essential singularity at z0, the image f(Dr(z0) \ {z0}) of the punctured neigh-

borhood under f is dense in C.

Proof. Assume that the closure f(Dr(z0) \ {z0}) does not contain a point

w ∈ C. Then g(z) = 1
f(z)−w is a function that’s holomorphic and bounded in

Dr(z0) \ {z0}. By Riemann’s removable singularity theorem, its singularity at

z0 is removable, so we can assume it is holomorphic at z0 after defining its value

there. It then follows that

f(z) = w +
1

g(z)

has either a pole or a removable singularity at z0, depending on whether g(z0) =

0 or not.

10 The argument principle

88. Definition. The logarithmic derivative of a holomorphic function f(z) is

f ′(z)/f(z).

89. Lemma. The logarithmic derivative of a product is the sum of the logarithmic

derivatives. That is, (∏n
k=1 fk

)′∏n
k=1 fk

=

n∑
k=1

f ′k(z)

fk(z)
.

Proof. Show this for n = 2 and proceed by induction.

90. Theorem (the argument principle). Assume that f is meromorphic in a

region Ω containing a closed disc D, such that f has no poles on the circle ∂D.

Denote its zeros and poles inside D by z1, . . . , zn, where zk is a zero of order

mk = ordzk (f) (in the sense mentioned above, where mk = m is a positive

integer if zk is a zero of order m, and mk = −m is a negative integer if zk is a

pole of order m). Then

1

2πi

∮
∂D

f ′(z)

f(z)
dz =

n∑
k=1

mk

= [total number of zeros of f inside D]

− [total number of poles of f inside D].

Proof. Define

g(z) =

n∏
k=1

(z − zk)−mkf(z).
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Then g(z) is meromorphic on Ω, has no singularities zeros on ∂D, and inside

D it has no poles or zeros, only removable singularities at z1, . . . , zn (so after

redefining its values at these points we can assume it is holomorphic on D). It

follows that

f(z) =

n∏
k=1

(z − zk)mkg(z).

Taking the logarithmic derivative of this equation gives that

f ′(z)

f(z)
=

n∑
k=1

mk

z − zk
+
g′(z)

g(z)
.

The result now follows by integrating this equation and using the residue the-

orem (the term g′(z)/g(z) is holomorpic on D so does not contribute anything

to the integral).

91. By similar reasoning, the theorem also holds when the circle is replaced by a

toy contour γ.

92. Intuitive explanation for the argument principle. Note that the integral

in the argument principle can be represented as

1

2πi

∮
γ

f ′(z)

f(z)
dz =

1

2πi

∫ b

a

f ′(γ(t))γ′(t)

f(γ(t)
dt =

1

2πi

∫ b

a

(f ◦ γ)′(t)

(f ◦ γ)(t)
dt

=
1

2πi

∫
f◦γ

1

w
dw,

that is, an integral of dw/w over the contour f ◦ γ — the image of γ under f .

Now note that the differential form dw/w has a special geometric meaning in

complex analysis, namely we have

dw

w
= “d (logw) ” = “d (log |w|+ i argw) ”.

We put these expressions in quotes since the logarithm and argument are not

single-valued functions so it needs to be explained what such formulas mean.

However, at least log |w| is well-defined for a curve that does not cross 0, so when

integrating over the closed curve f ◦ γ, the real part is zero by the fundamental

theorem of calculus. The imaginary part (which becomes real after dividing by

2πi) can be interpreted intuitively as the change in the argument over the

curve — that is, initially at time t = a one fixes a specific value of argw =

arg γ(a); then as t increases from t = a to t = b, one tracks the increase or

decrease in the argument as one travels along the curve γ(t); if this is done

correctly (i.e., in a continuous fashion), at the end the argument must have a

well-defined value. Since the curve is closed, the total change in the argument

must be an integer multiple of 2π, so the division by 2πi turns it into an integer.

Of course, this explanation also explains the name “the argument principle,”

which may sound arbitrary and uninformative when you first hear it.
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93. Connection to winding numbers. What the above reasoning shows is that

in general, an integral of the form

1

2πi

∮
γ

f(w)

w
dw

over a closed curve γ that does not cross 0 carries the meaning of “the total

number of times the curve γ goes around the origin,” with the number being

positive if the curve goes in the positive direction around the origin; negative if

the curve goes in the negative direction around the origin; or zero if there is no

net change in the argument. This number is more properly called the winding

number of f around w = 0 (also sometimes referred to as the index of the

curve around 0), and denoted

Ind0(f) =
1

2πi

∮
γ

f(z)

z
dz.

More generally, one can define the winding number at z = z0 as the number of

times a curve γ winds around an arbitrary point z0, which (it is easy to see) will

be given by

Indz0(f) =
1

2πi

∮
γ

f(z)

z − z0
dz,

assuming that γ does not cross z0.

Note that winding number is a topological concept of planar geometry that can

be considered and studied without any reference to complex analysis; indeed,

in my opinion that is the correct approach. It is possible, and not especially

difficult, to define it in purely topological terms without mentioning contour

integrals, and then show that the complex analytic and topological definitions

coincide. Try to think what such a definition might look like.

94. Rouché’s theorem. Assume that f, g are holomorphic on a region Ω containing

a circle γ = C and its interior (or, more generally, a toy contour γ and the region

U enclosed by it). If |f(z)| > |g(z)| for all z ∈ γ then f and f + g have the same

number of zeros inside the region U .

Proof. Define ft(z) = f(z) + tg(z) for t ∈ [0, 1], and note that f0 = f and

f1 = f + g, and that the condition |f(z)| > |g(z)| on γ implies that ft has no

zeros on γ for any t ∈ [0, 1]. Denote

nt =
1

2πi

∮
γ

f ′t(z)

ft(z)
dz,

which by the argument principle is the number of “generalized zeros” (zeros or

poles, counting multiplicities) of ft in U . In particular, the function t 7→ nt is

integer-valued. If we also knew that it was continuous, then it would have to

be constant (by the easy exercise: any integer-valued continuous function on an

interval [a, b] is constant), so in particular we would get the desired conclusion

that n1 = n0.
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To prove continuity of nt, note that the function g(t, z) = f ′t(z)/ft(z) is con-

tinuous, hence also uniformly continuous, on the compact set [0, 1] × γ. For

s, t ∈ [0, 1] satisfying |t− s| < δ, we can write

|nt − ns| ≤
1

2πi

∮
γ

|g(t, z)− g(s, z)| · |dz|

≤ 1

2πi
len(γ) sup{|g(u, z)− g(v, z)| : z ∈ γ, u, v ∈ [0, 1], |u− v| < δ}.

Given ε > 0, we can choose δ that ensures that this expression is < ε if |t−s| < δ,

by the uniform continuity. This is precisely what is needed to show that t 7→ nt

is continuous.

95. Intuitive explanation for Rouché’s theorem: “walking the dog”. The

following intuitive explanation for Rouché’s theorem appears in the book Visual

Complex Analysis by Tristan Needham. Imagine that you are walking in a large

empty park containing at some “origin” point 0 a large pole (in the English sense

of a metal post sticking out of the ground, not the complex analysis sense). You

start at some point X and go for a walk along some curve, ending back at the

same starting point X. Let N denote your winding number around the pole at

the origin — that is, the total number of times you went around the pole, with

the appropriate sign.

Now imagine that you also have a dog that is walking alongside you in some

erratic path that is sometimes close to you, sometimes less close. As you traverse

your curve C1, the dog walks along on its own curve C2, which also begins and

ends in the same place. Let M denote the dog’s winding number around the pole

at the origin. Can we say that N = M? The answer is: yes, we can, provided

that we know the dog’s distance to you was always less than your distance to the

pole. To see this, imagine that you had the dog on a leash of variable length;

if the distance condition was not satisfied, it would be possible for the dog to

reach the pole and go in a short tour around it while you were still far away

and not turning around the pole, causing an entanglement of the leash with the

pole.

Amazingly, the above scenario maps in a precise way to Rouché’s theorem, using

the following dictionary: the curve f ◦γ represents your path; the curve (f+g)◦γ
represents the dog’s path; g ◦ γ represents the vector pointing from you to the

dog; the condition |f | > |g| along γ is precisely the correct condition that the

dog stays closer to you than your distance to the pole; and the conclusion that

the two winding numbers are the same is precisely the theorem’s assertion that

f and f + g have the same number of generalized zeros in the region U enclosed

by γ (see the discussion above regarding the connection between the integral

(2πi)−1
∮
γ
f ′/f dz and the winding number of f ◦ γ around 0).

Exercise. Spend a few minutes thinking about the above correspondence and

make sure you understand it. You will probably forget the technical details of

the proof of Rouché’s theorem in a few weeks or months, but I hope you will

remember this intuitive explanation for a long time.
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96. As another small cryptic remark to think about, the proof of Rouché’s theorem

given above can be thought of as an argument about the invariance of a certain

integral under the homotopy between two curves. Can you see how?

11 Applications of Rouché’s theorem

97. Topological proof of the fundamental theorem of algebra. At the begin-

ning of the course we discussed the topological proof of FTA. We can now make

that argument precise using Rouché’s theorem. The details will be assigned as

a homework exercise.

98. The open mapping theorem. Holomorphic functions are open mappings,

that is, they map open sets to open sets.

Proof. Let f be holomorphic in a region Ω, z0 ∈ Ω, and denote w0 = f(z0).

What we need to show is that the image of any neighborhood Dε(z0) for ε > 0

contains a neighborhood Dδ(z0) of w0 for some δ > 0. Fixing w (visualized as

being near w0), denote

h(z) = f(z)− w = (f(z)− w0) + (w0 − w) =: F (z) +G(z).

The idea is now to apply Rouché’s theorem to F (z) and G(z). Fix ε > 0 small

enough so that the disc Dε(z0) is contained in Ω and does not contain solutions

of the equation f(z) = w0 other than z0 (this is possible, by the property that

zeros of holomorphic functions are isolated). Defining

δ = inf{|f(z)− w0| : z ∈ Dε(z0)},

we therefore have that δ > 0 and |f(z)−w0| ≥ δ for z on the circle |z− z0| = ε.

That means that under the assumption that |w − w0| < δ (i.e., if w is assumed

to be close enough to w0), the condition |F (z)| > |G(z)| in Rouché’s theorem

will be satisfied for z ∈ Dε(z0). The conclusion is that the equation h(z) = 0 (or

equivalently f(z) = w) has the same number in solutions (in particular, at least

one solution) as the equation f(z) = w0 in the disc Dε(z0). This was precisely

the claim to be proved.

99. Corollary: the maximum modulus principle. If f is a non-constant holo-

morphic function on a region Ω, then |f | cannot attain a maximum on Ω.

Proof. Trivial exercise.

12 Simply-connected regions and the general ver-

sion of Cauchy’s theorem

100. Definition (homotopy of curves). Given a region Ω ⊂ C, two parametrized

curves γ1, γ2 : [0, 1] → Ω (assumed for simplicity of notation to be defined on

[0, 1]) are said to be homotopic (with fixed endpoints) if γ1(0) = γ2(0),

γ1(1) = γ2(1), and there exists a function F : [0, 1]× [0, 1]→ Ω such that
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(a) F is continuous.

(b) F (0, t) = γ1(t) for all t ∈ [0, 1].

(c) F (1, t) = γ2(t) for all t ∈ [0, 1].

(d) F (s, 0) = γ1(0) for all s ∈ [0, 1].

(e) F (s, 1) = γ1(1) for all s ∈ [0, 1].

The map F is called a homotopy between γ1 and γ2. Intuitively, for each s ∈ [0, 1]

the function t 7→ F (s, t) defines a curve connecting the two endpoints γ1(0),

γ1(1). As s grows from 0 to 1, this family of curves transitions in a continuous

way between the curve γ1 and γ2, with the endpoints being fixed in place.

101. Exercise. Prove that the relation of being homotopic is an equivalence relation.

102. Definition (simply-connected regions). A region Ω is called simply-connected

if any two curves γ1, γ2 in Ω with the same endpoints are homotopic.

103. Remark. A common alternative way to define the notion of homotopy of curves

is for closed curves, where the endpoints are not fixed but the homotopy must

keep the curves closed as it is deforming them. The definition of a simply-

connected region then becomes a region in which any two closed curves are

homotopic. It is not hard to show that those two definitions are equivalent.

104. Theorem. If f is a holomorphic function on a region Ω, and γ1,γ2 are two

curves on Ω with the same endpoints that are homotopic, then∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

105. Proof. See pages 93–95 in [Stein-Shakarchi].

106. Cauchy’s theorem (general version). If f is holomorphic on a simply-

connected region Ω, then for any closed curve in Ω we have∮
γ

f(z) dz = 0.

107. Proof. Assume for simplicity that γ is parametrized as a curve on [0, 1]. Then

it can be thought of as the concatenation of two curves γ1 and −γ2, where

γ1 = γ|[0,1/2] and γ2 is the “reverse” of the curve γ|[1/2,1]. Note that γ1 and γ2

have the same endpoints. By the invariance property of contour integrals under

homotopy proved above, we have∫
γ

f(z) dz =

∫
γ1−γ2

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz = 0.

108. Corollary. Any holomorphic function on a simply-connected region has a prim-

itive.
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13 The logarithm function

109. The logarithm function can be defined as

log z = log |z|+ i arg z

on any region Ω that does not contain 0 and where one can make a consistent,

smoothly varying choice of arg z as z ranges over Ω. It is easy to see that this

formula gives an inverse to the exponential function.

For example, if

Ω = C \ (−∞, 0]

(the “slit complex plane” with the negative real axis removed), we can set

Log z = log |z|+ iArg z

where Arg z is set to take values in (−π, π). This is called the principal branch

of the logarithm. However, sometimes we may want to consider the logarithm

function on more strange or complicated regions. When can this be made to

work? The answer is: precisely when Ω is simply-connected.

110. Theorem. Assume that Ω is a simply-connected region with 0 /∈ Ω, 1 ∈ Ω.

Then there exists a function F (z) = logΩ(z) with the properties:

(a) F is holomorphic in Ω.

(b) eF (z) = z for all z ∈ Ω.

(c) F (r) = log r (the usual logarithm for real numbers) for all real numbers

r ∈ Ω sufficiently close to 1.

Proof. We define F as a primitive function of the function z 7→ 1/z, that is, as

F (z) =

∫ z

1

dw

w
,

where the integral is computed along a curve γ connecting 1 to z. By the

general version of Cauchy’s theorem for simply-connected regions, this integral

is independent of the choice of curve. As we have already seen, this function is

holomorphic and satisfies F ′(z) = 1/z for all z ∈ Ω. It follows that

d

dz

(
ze−F (z)

)
= e−F (z) − zF ′(z)e−F (z) = e−F (z)(1− z/z) = 0,

so ze−F (z) is a constant function. Since its value at z = 1 is 1, we see that eF (z) =

z, as required. Finally, for real r close to 1 we have that F (z) =
∫ r

1
dw
w

= log r,

which can be seen by taking the integral to be along the straight line segment

connecting 1 and r.

111. Exercise. Prove that the principal branch of the logarithm has the Taylor series

expansion

Log z =

∞∑
n=1

(−1)n−1

n
(z − 1)n (|z| < 1).
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112. Exercise. Modify the proof above to prove the existence of a branch of the

logarithm function in any simply-connected region Ω not containing 0, without

the assumption that 1 ∈ Ω. In what way is the conclusion weakened in that

case?

113. Exercise. Explain in what sense the logarithm functions F (z) = logΩ(z) sat-

isfying the properties proved in the theorem above (and its generalization de-

scribed in the previous exercise) are unique.

114. Exercise. Prove the following generalization of the logarithm construction

above: if f is a holomorphic function on a simply-connected region Ω, and

f 6= 0 on Ω, then there exists a holomorphic function g on Ω, referred to as a

branch of the logarithm of f , satisfying

eg(z) = f(z).

115. Definition (power functions and nth roots). On a simply-connected region

Ω we can now define the power function z 7→ zα for an arbitrary α ∈ C by setting

zα = eα log z.

In the special case α = 1/n this has the meaning of the nth root function

z 7→ z1/n, which satisfies

(z1/n)n =
(
e

1
n

log z
)n

= en
1
n

log z = elog z = z.

Note that if f(z) = z1/n is one choice of an nth root function, then for any

0 ≤ k ≤ n−1, the function g(z) = e2πik/nf(z) will be another function satisfying

g(z)n = z. Conversely, it is easy to see that those are precisely the possible

choices for an nth root function.

14 The Euler gamma function

116. The Euler gamma function (often referred to simply as the gamma func-

tion) is one of the most important special functions in mathematics. It has

applications to many areas, such as combinatorics, number theory, differential

equations, probability, and more, and is probably the most ubiquitous transcen-

dental function after the “elementary” transcendental functions (the exponential

function, logarithms, trigonometric functions and their inverses) that one learns

about in calculus. It is a natural meromorphic function of a complex variable

that extends the factorial function to non-integer values. In complex analysis it

is particularly important in connection with the theory of the Mellin transform

(a version of the Fourier transform associated with the multiplicative group of

positive real numbers).

117. Most textbooks define the gamma function in one way and proceed to prove

several other equivalent representations of it. However, the truth is that none
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of the representations of the gamma function is more fundamental or “natural”

than the others. So, it seems more logical to start by simply listing the various

formulas and properties associated with it, and then proving that the different

representations are equivalent and that the claimed properties hold.

Theorem (the Euler gamma function). There exists a unique function Γ(s)

of a complex variable s that has the following properties:

(a) Γ(s) is a meromorphic function on C.

(b) Connection to factorials: Γ(n+ 1) = n! for n = 0, 1, 2, . . ..

(c) Important special value: Γ(1/2) =
√
π.

(d) Integral representation:

Γ(s) =

∫ ∞
0

e−xxs−1 dx (Re s > 0).

(e) Hybrid series-integral representation:

Γ(s) =

∞∑
n=0

(−1)n

n!(n+ s)
+

∫ ∞
1

e−xxs−1 dx (s ∈ C).

(f) Infinite product representation:

Γ(s)−1 = seγs
∞∏
n=1

(
1 +

s

n

)
e−s/n (s ∈ C),

where γ = limn→∞
(
1 + 1

2
+ 1

3
+ . . .+ 1

n
− logn

) .
= 0.577215 is the Euler-

Mascheroni constant.

(g) Limit of finite products representation:

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
(s ∈ C).

(h) Zeros: the gamma function has no zeros (so Γ(s)−1 is an entire function).

(i) Poles: the gamma function has poles precisely at the non-positive integers

s = 0,−1,−2, . . ., and is holomorphic everywhere else. The pole at s = −n
is a simple pole with residue

Ress=−n(Γ) =
(−1)n

n!
(n = 0, 1, 2, . . .).

(j) Functional equation:

Γ(s+ 1) = sΓ(s) (s ∈ C).

(k) The reflection formula (a surprising connection to trigonometry):

Γ(s)Γ(1− s) =
π

sin(πs)
(s ∈ C).
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118. To begin the proofs, let’s take the formula

Γ(s) =

∫ ∞
0

e−xxs−1 dx

as our working definition of Γ(s). This improper integral is easily seen to con-

verge absolutely for Re(s) > 0, since∣∣∣∣∫ ∞
0

e−xxs−1 dx

∣∣∣∣ ≤ ∫ ∞
0

e−x|xs−1| dx =

∫ ∞
0

e−xxRe(s)−1 dx.

I leave it as an exercise to check (or read the easy explanation in the book) that

the function it defines is holomorphic in that region.

119. Next, perform an integration by parts, to get that, again for Re(s) > 0, we have

Γ(s+ 1) =

∫ ∞
0

e−xxs dx = −e−xxs
∣∣x=∞
x=0

+

∫ ∞
0

e−xsxs−1 dx = sΓ(s),

which is the functional equation.

120. Combining the trivial evaluation Γ(1) =
∫∞

0
e−x dx = 1 with the functional

equation shows by induction that Γ(n+ 1) = n!.

121. The special value Γ(1/2) =
√
π follows immediately by a change of variable x =

u2 in the integral and an appeal to the standard Gaussian integral
∫∞
−∞ e

−u2

du =
√
π:

Γ(1/2) =

∫ ∞
0

e−xx−1/2 dx =

∫ ∞
0

e−u
2

2 du =

∫ ∞
−∞

e−u
2

du =
√
π.

122. The functional equation can now be used to perform an analytic continuation

of Γ(s) to a meromorphic function on C: for example, we can define

Γ1(s) =
Γ(s+ 1)

s
,

which is a function that is holomorphic on Re(s) > −1, s 6= 0 and coincides with

γ(s) for Re(s) > 0. By the principle of analytic continuation this provides a

unique extension of Γ(s) to the region Re(s) > −1. Because of the factor 1/s

and the fact that Γ(1) = 1 we also see that Γ1(s) has a simple pole at s = 0

with residue 1.

Next, for Re(s) > −2 we define

Γ2(s) =
Γ1(s+ 1)

s
=

Γ(s+ 2)

s(s+ 1)
,

a function that is holomorphic on Re(s) > −2, s 6= 0,−1, and coincides with

Γ1(s) for Re(s) > −1, s 6= 0. Again, this provides an analytic continuation of

Γ(s) to that region. The factors 1/s(s+ 1) show that Γ2(s) has a simple pole at

s = −1 with residue −1.
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Continuing by induction, having defined an analytic continuation Γn−1(s) of

Γ(s) to the region Re(s) > −n+ 1, s 6= 0,−1,−2, . . . ,−n+ 2, we now define

Γn(s) =
Γn−1(s+ 1)

s
= . . . =

Γ(s+ n)

s(s+ 1) · · · (s+ n− 1)
.

By inspection we see that this gives a meromorphic function in Re(s) > −n
whose poles are precisely at s = −n+ 1, . . . , 0 and have the claimed residues.

123. An alternative way to perform the analytic continuation is to separate the inte-

gral defining Γ(s) into

Γ(s) =

∫ 1

0

e−xxs−1 dx+

∫ ∞
1

e−xxs−1 dx

and to note that the integral over [1,∞) converges (and defines a holomorphic

function of s) for all s ∈ C, and the integral over [0, 1] can be computed by

expanding e−x as a power series in x and integrating term by term. That is, for

Re(s) > 0 we have∫ 1

0

e−xxs−1 dx =

∫ 1

0

∞∑
n=0

(−1)n

n!
xn+s−1 dx =

∞∑
n=0

(−1)n

n!

∫ 1

0

xn+s−1 dx

=

∞∑
n=0

(−1)n

n!(n+ s)

The justification for interchanging the summation and integration operations is

easy and is left as an exercise. Thus, we have obtained not just an alternative

proof for the meromorphic continuation of Γ(s), but a proof of the hybrid series-

integral representation of Γ(s), which also clearly shows where the poles of Γ(s)

are and that they are simple poles with the correct residues.

124. Lemma. For Re(s) > 0 we have

Γ(s) = lim
n→∞

∫ n

0

(
1− x

n

)n
xs−1 dx.

Proof. As n→∞, the integrand converges to e−xxs−1 pointwise. Furthermore,

the factor
(
1− x

n

)n
is bounded from above by the function e−x (because of the

elementary inequality 1− t ≤ e−t that holds for all real t). The claim therefore

follows from the dominated convergence theorem.

125. Lemma. For Re(s) > 0 we have∫ n

0

(
1− x

n

)n
xs−1 dx =

n!ns

s(s+ 1) · · · (s+ n)
.

Proof. For n = 1, the claim is that∫ 1

0

(1− x)xs−1 dx =
1

s(s+ 1)
,
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which is easy to verify directly. For the general claim, using a linear change of

variables and an integration by parts we see that∫ n

0

(
1− x

n

)n
xs−1 dx = ns

∫ 1

0

(1− t)nts−1 dt

= ns
[
(1− t)n t

s

s

∣∣∣t=1

t=0
+

∫ 1

0

n(1− t)n−1 t
s

s
dt

]
= ns · n

s

∫ 1

0

(1− t)n−1t(s+1)−1 dt,

so the claim follows by induction on n.

126. Corollary. For Re(s) > 0 we have

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
.

127. Proof of the infinite product representation for Γ(s). For Re(s) > 0 we

have

Γ(s)−1 = lim
n→∞

s(s+ 1) · · · (s+ n)

n!ns

= s lim
n→∞

e−s logn
(

1 +
s

1

)(
1 +

s

2

)
· · ·
(

1 +
s

n

)
= s lim

n→∞
es(

∑n
k=1

1
k
−logn)

n∏
k=1

(
1 +

s

k

)
e−s/k

= seγs
∞∏
n=1

(
1 +

s

n

)
e−s/n.

128. We now check that the infinite product actually converges absolutely and uni-

formly on compact subsets in all of C, so defines an entire function. Let’s start

with some preliminary elementary observations on infinite products.

Lemma. For a sequence of complex numbers (an)∞n=1, we have
∏∞
n=1(1+|an|) ∈

(0,∞) if and only if none of the factors an is equal to −1 and
∑∞
n=1 |an| <∞.

Proof. Assume all an’s are not equal to −1, and
∑
n |an| < ∞. In particular

all an’s for large enough n satisfy |an| < 1/2, so we can assume without loss of

generality that this holds for all n. We therefore have

n∏
k=1

(1 + ak) =

n∏
k=1

exp (Log(1 + ak)) = exp

(
n∑
k=1

Log(1 + ak)

)
,

where Log(z) denotes the principal branch of the logarithm function, which has

the Taylor expansion around z = 1

Log(z) =

∞∑
m=1

(−1)m−1

m
(z − 1)m (|z| < 1).
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In particular, for z near 0 we have

Log(1 + z) = z +O(z2),

i.e., for example |z|−10|z|2 ≤ |Log(1+z)| ≤ |z|+10|z|2 in some sufficiently small

neighborhood of z = 0. It follows that if
∑
n |an| < ∞ then also

∑
n |Log(1 +

an)| <∞, so the product
∏n
k=1(1 + ak) converges. Conversely, it is easily seen

from the same inequality that if
∑
n |Log(1 + an)| <∞ and an → 0 as n→∞

(which would be a consequence of
∏
n(1+an) converging to a number in (0,∞))

then
∑
n |an| <∞

Lemma. Let (fn)∞n=1 be a sequence of functions that are holomorphic and

nonzero on some region Ω. Then
∏∞
n=1(1 + fn) converges absolutely uniformly

on compact subsets in Ω to a nonzero holomorphic function if and only if the

series
∑∞
n=1 fn also converges absolutely uniformly on compact subsets in Ω.

Proof. Use the same estimates in the previous proof together with the uni-

formity of the convergence on compacts to ensure that the inequalities hold

uniformly so the limiting function is holomorphic.

129. Proof that
∏∞
n=1

(
1 + z

n

)
e−z/n is an entire function.

∞∑
n=1

∣∣∣(1 +
z

n

)
e−z/n − 1

∣∣∣ =

∞∑
n=1

∣∣∣∣(1 +
z

n

)(
1− z

n
+O

(
z2

n2

))
− 1

∣∣∣∣
=

∞∑
n=1

∣∣∣∣O( z2

n2

)∣∣∣∣ <∞,
The convergence is uniform on compacts on C, but to apply the previous result

(which requires the functions to be nonzero) one needs to be a bit more careful

and separate out the zeros: for a fixed disc DN+1/2(0) of radius N + 1/2 around

0, consider only the product starting at n = N+1 — those functions are nonzero

in the disc so the previous result applies to give a function that’s holomorphic

and nonzero in DN (0). Then separately the factors (1 + z/n), n = 1, . . . , N

contribute simple zeros at z = −1, . . . ,−N .

130. Corollary (the reflection formula). Γ(s)Γ(1− s) =
π

sinπs
.

Proof.

1

Γ(s)Γ(1− s) = Γ(s)−1(−s)−1Γ(−s)−1

=
−1

s
· seγs

∞∏
n=1

(
1 +

s

n

)
e−s/n · (−s)e−γs

∞∏
n=1

(
1− s

n

)
es/n

= s

∞∏
n=1

(
1− s2

n2

)
= s

sin(πs)

πs
=

sin(πs)

π
,

where we used the product representation sin(πz) = πz
∏∞
n=1(1−z2/n2) for the

sine function derived in a homework problem.
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131. Alternative derivation of the reflection formula ([Stein-Shakarchi],

page 164). By analytic continuation, it is enough to prove the formula for

real s in (0, 1). For such s we have

Γ(s)Γ(1− s) =

∫ ∞
0

e−tt−sΓ(s) dt

=

∫ ∞
0

e−tt−s
(
t

∫ ∞
0

e−vt(vt)s−1 dv

)
dt

=

∫ ∞
0

∫ ∞
0

e−t(1+v)vs−1 dv dt =

∫ ∞
0

(∫ ∞
0

e−t(1+v) dt

)
vs−1 dv

=

∫ ∞
0

vs−1

1 + v
dv =

∫ ∞
−∞

esx

1 + ex
dx (by setting v = ex).

So it is enough to prove that for 0 < s < 1 we have∫ ∞
−∞

esx

1 + ex
dx =

π

sin(πs)
.

This integral can be evaluated using residue calculus; see Example 2 in Section

2.1, Chapter 3, pages 79–81 of [Stein-Shakarchi] for the details.

132. Note that by combining the alternative derivation of the reflection formula given

above with the infinite product representation for the gamma function, we get

a new proof of the infinite product representation for sin(πz).

15 The Riemann zeta function

133. The Riemann zeta function (often referred to simply as the zeta function

when there is no risk of confusion), like the gamma function is considered one

of the most important special functions in “higher” mathematics. However, the

Riemann zeta function is a lot more mysterious than the gamma function, and

remains the subject of many famous open problems, including the most famous

of them all: the Riemann hypothesis, considered by many (including myself)

as the most important open problem in mathematics.

134. The main reason for the zeta function’s importance is its connection with prime

numbers and other concepts and quantities from number theory. Its study,

and in particular the attempts to prove the Riemann hypothesis, have also

stimulated an unusually large number of important developments in many areas

of mathematics.

135. As with the gamma function, the Riemann zeta function is usually defined on

only part of the complex plane and its definition is then extended by analytic

continuation. Again, I will formulate this as a theorem asserting the existence

of the zeta function and its various properties.

136. Theorem. There exists a unique function, denoted ζ(s), of a complex variable

s, having the following properties:
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(a) ζ(s) is a meromorphic function on C.

(b) For Re(s) > 1, ζ(s) is given by the series

ζ(s) =

∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ . . . .

(c) Euler product formula: for Re(s) > 1, ζ(s) also has an infinite product

representation

ζ(s) =
∏
p

1

1− p−s ,

where the product ranges over the prime numbers p = 2, 3, 5, 7, 11, . . ..

(d) ζ(s) has no zeros in the region Re(s) > 1.

(e) ζ(s) has no zeros on the line Re(s) = 1 (this requires a separate proof from

the previous claim).

(f) The “trivial” zeros: the zeros of ζ(s) in the region Re(s) ≤ 0 are pre-

cisely at s = −2,−4,−6, . . ..

(g) ζ(s) has a unique pole located at s = 1. It is a simple pole with residue 1.

(h) The “Basel problem” and its generalizations: the values of ζ(s) at

even positive integers are given by Euler’s formula

ζ(2n) =
(−1)n−1(2π)2n

2(2n)!
B2n (n = 1, 2, . . .),

where (Bm)∞m=0 are the Bernoulli numbers, defined as the coefficients in

the Taylor expansion

z

ez − 1
=

∞∑
m=0

Bm
m!

zm.

Many of the properties of these amazing numbers were discussed in our

homework problem sets.

(i) Values at negative odd integers: we have

ζ(−n) = −Bn+1

n+ 1
.

(j) Functional equation: the zeta function satisfies

ζ∗(1− s) = ζ∗(s),

where we denote by ζ∗(s) the symmetrized zeta function

ζ∗(s) = π−s/2Γ
( s

2

)
ζ(s).

(k) Mellin transform representation: an expression for ζ(s) valid for all

s ∈ C is

π−s/2Γ
( s

2

)
ζ(s)

= − 1

1− s −
1

s
+

1

2

∫ ∞
1

(
t−

s+1
2 + t

s−2
2

)
(ϑ(t)− 1) dt,
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where the function ϑ(t) is one of Jacobi theta series, defined as

ϑ(t) =

∞∑
n=−∞

e−πn
2t = 1 + 2

∞∑
n=1

e−πn
2t.

(l) Contour integral representation: another expression for ζ(s) valid for

all s ∈ C is

ζ(s) =
Γ(1− s)

2πi

∫
C

(−x)s

ex − 1

dx

x
,

where C is a keyhole contour coming from +∞ to 0 slightly above the

positive x-axis, then circling the origin in a counterclockwise direction

around a circle of small radius, then going back to +∞ slightly below the

positive x-axis.

(m) Connection to prime number enumeration — the “explicit for-

mula of number theory”: define Von Mangoldt’s weighted prime count-

ing function

ψ(x) =
∑
pk≤x

log p,

where the sum is over all prime powers less than or equal to x. Then for

non-integer x > 1,

ψ(x) = x−
∑
ρ

xρ

ρ
− log(2π),

where the sum ranges over all zeros ρ of the Riemann zeta function. (In

most textbooks the sum is separated into two sums, one ranging over the

trivial zeros which can be evaluated explicitly, and the other ranging over

the much less trivial zeros in the strip 0 < Re(s) < 1.)

137. The explicit formula of number theory illustrates that knowing where the zeros of

ζ(s) has important consequences for prime number enumeration. In particular,

proving that Re(s) has no zeros in Re(s) ≥ 1 will enable us to prove one of the

most famous theorems in mathematics.

The prime number theorem. Let π(x) denote the number of prime numbers

less than or equal to x. Then we have

lim
x→∞

π(x)

x/ log x
= 1.

138. The Riemann hypothesis. All the nontrivial zeros of ζ(s) are on the “critical

strip” Re(s) = 1/2.

139. Proofs. To begin the proof, again, let’s take as the definition of ζ(s) the

standard representation

ζ(s) =

∞∑
n=1

1

ns
.
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Since
∑
n |n

−s| =
∑
n n
−Re(s), we see that the series converges absolutely pre-

cisely when Re(s) > 1, and that the convergence is uniform on any half-plane

of the form Re(s) > α where α > 1. In particular, it is uniform on compact

subsets, so ζ(s) is holomorphic in this region.

140. Similarly, the Euler product Z(s) :=
∏
p(1 − p−s)−1 converges absolutely if

and only if the series
∑
p |p
−s| =

∑
p p
−Re(s) converges, and in particular if

Re(s) > 1. It follows that Z(s) is well-defined, holomorphic and nonzero for

Re(s) > 1.

141. We now prove that Z(s) = ζ(s). This can be done by manipulating the partial

products associated with the infinite product defining Z(s), as follows:

ζN (s) :=
∏
p≤N

1

1− p−s =
∏
p≤N

(1 + p−s + p−2s + p−3s + . . .)

=
∑

n=p
j1
1 ···p

jk
k

p1,...,pk primes ≤N

1

ns
,

where the last equality follows from the fundamental theorem of arithmetic,

together with the fact that when multiplying two (or a finite number of) infinitely

convergent series, the summands can be rearranged and summed in any order

we desire. So, we have represented ζN (s) as a series of a similar form as the

series defining ζ(s), but involving terms of the form n−s only for those positive

integers n whose prime factorization contains only primes ≤ N . It follows that

|ζ(s)− ζN (s)| ≤
∑
n>N

1

ns
.

Taking the limit as N → ∞ shows that Z(s) = limN→∞ ζN (s) = ζ(s). This

proves the validity of the Euler product formula.

142. Corollary: ζ(s) has no zeros in the region Re(s) > 1.

Proof. The Euler product formula gives a convergent product for ζ(s) in this

region where each factor (1− p−s)−1 has no zeros.

143. Theorem (the Poisson summation formula). For a sufficiently well-behaved

function f : R→ R, we have

∞∑
n=−∞

f(n) =
∞∑

k=−∞

f̂(k),

where

f̂(k) =

∫ ∞
−∞

f(x)e−2πikx dx.

is the Fourier transform of f .

Proof. Define a function g : [0, 1]→ R by

g(x) =

∞∑
n=−∞

f(x+ n),
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the “periodiciziation” of f . Assume that f(x) is sufficiently well-behaved (i.e.,

decays fast enough as x → ±∞ so that g(x) is in turn well-behaved, and has

reasonable smoothness properties). In that case, g(x) will have a convergent

Fourier expansion of the form

g(x) =

∞∑
k=−∞

ĝ(k)e2πikx,

where the Fourier coefficients ĝ(k) can be computed as

ĝ(k) =

∫ 1

0

g(x)e−2πikx dx.

In particular, setting x = 0 in the formula for g(x) gives the standard result

that

g(0) =

∞∑
k=−∞

ĝ(k).

However, note that g(0) =
∑∞
n=−∞ f(n), the quantity on the left-hand side of

the Poisson summation formula. On the other hand, the Fourier coefficient ĝ(k)

can be expressed in terms of the Fourier coefficients of the original function f(x):

ĝ(k) =

∫ 1

0

g(x)e−2πikx dx =

∫ 1

0

∞∑
n=−∞

f(x+ n)e−2πikx dx

=

∞∑
n=−∞

∫ 1

0

f(x+ n)e−2πikx dx =

∞∑
n=−∞

∫ n+1

n

f(u)e−2πiku du

=

∫ ∞
−∞

f(u)e−2πiku du = f̂(k).

Combining these observations gives the result, modulo a few details we’ve glossed

over concerning the precise assumptions that need to be made about f(x) (we

will only apply the Poisson summation formula for one extremely well-behaved

function, so I will not bother discussing those details).

144. Theorem. The Jacobi theta function ϑ(t) satisfies the functional equation

ϑ(t) =
1√
t
ϑ(1/t) (t > 0).

(Note: equations of this form are studied in the theory of modular forms, an

area of mathematics combining number theory, complex analysis and algebra in

a very surprising and beautiful way.)

Proof. The idea is to apply the Poisson summation formula to the function

f(x) = e−πtx
2

,

for which it can be checked that

f̂(k) = t−1/2e−πk
2/t,
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using a simple change of variables from the standard integral evaluation∫ ∞
−∞

e−πx
2

e−2πixu du = e−πu
2

(that is, the fact that the function e−πx
2

is its own Fourier transform); this

evaluation appears in Example 1, Chapter 2, pages 42–44 in [Stein-Shakarchi].

With the above substitution for f(x) and f̂(k), the Poisson summation formula

becomes precisely the functional equation for ϑ(t).

145. Exercise. (a) Use the residue theorem to evaluate the contour integral∮
γN

e−πz
2t

e2πiz − 1
dz,

where γN is the rectangle with vertices ±(N+1/2)±i (with N a positive integer),

then take the limit as N →∞ to derive the integral representation

ϑ(t) =

∫ ∞−i
−∞−i

e−πz
2t

e2πiz − 1
dz −

∫ ∞+i

−∞+i

e−πz
2t

e2πiz − 1
dz

for the Jacobi theta function.

(b) In this representation, expand the factor (e2πiz − 1)−1 as a geometric series

in e−2πiz (for the first integral) and as a geometric series in e2πiz (for the second

integral). Evaluate the resulting infinite series, rigorously justifying all steps, to

obtain an alternative proof of the functional equation for ϑ(t).

146. Lemma. The asymptotic behavior of ϑ(t) near t = 0 and t = +∞ is given by

ϑ(t) = O

(
1√
t

)
(t→ 0+),

ϑ(t) = 1 +O(e−πt) (t→∞).

Proof. The asymptotics as t→∞ is immediate from

ϑ(t)− 1 = 2

∞∑
n=1

e−πn
2t ≤ 2

∞∑
n=1

e−πnt =
2e−πt

1− e−πt ,

which is bounded by Ce−πt if t > 10. Using the functional equation now gives

that ϑ(t) = t−1/2(1 +O(e−π/t)) = O(t−1/2) as t→ 0+.

147. Proof of the analytic continuation of ζ(s). Start with the formula

Γ
( s

2

)
=

∫ ∞
0

e−xxs/2−1 dx,

valid for Re(s) > 0. A linear change of variable x = πn2t brings this to the form

π−s/2Γ
( s

2

)
n−s =

∫ ∞
0

e−πn
2tts/2−1 dt.
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Summing the left-hand side over n = 1, 2, . . . gives π−s/2Γ
(
s
2

)
ζ(s) — the func-

tion we denoted ζ∗(s) — adding the stronger assumption that Re(s) > 1. For

the right-hand side we have that

∞∑
n=1

∫ ∞
0

e−πn
2tts/2−1 dt. =

∫ ∞
0

(
∞∑
n=1

e−πn
2t

)
ts/2−1 dt

=

∫ ∞
0

ϑ(t)− 1

2
ts/2−1 dt,

where the estimates in the lemma are needed to justify interchanging the order

of the summation and integration, and show that the integral converges for

Re(s) > 1. Thus we have obtained the representation

ζ∗(s) =
1

2

∫ ∞
0

(ϑ(t)− 1)ts/2−1 dt =

∫ ∞
0

ϕ(t)ts/2−1 dt,

where we denote ϕ(t) = 1
2
(ϑ(t) − 1). Next, the idea is to use the functional

equation for ϑ(t) to bring this to a new form that can be seen to be well-defined

for all s ∈ C except s = 1. Specifically, we note that the functional equation for

can be expressed in the form

ϕ(t) = t−1/2ϕ(1/t) + 1
2
t−1/2 − 1

2
.

We can therefore write

ζ∗(s) =

∫ 1

0

ϕ(t)ts/2−1 dt+

∫ ∞
1

ϕ(t)ts/2−1 dt

=

∫ 1

0

(
t−1/2ϕ(1/t) + 1

2
t−1/2 − 1

2

)
ts/2−1 dt+

∫ ∞
1

ϕ(t)ts/2−1 dt

= − 1

1− s −
1

s
+

∫ ∞
1

(
t−s/2−1/2 + ts/2−1

)
ϕ(t) dt.

We have derived a formula for ζ∗(s) (one of the formulas claimed in the main

theorem above) that is now seen to define a meromorphic function on all of C —

the integrand decays rapidly as t→∞ so actually defines an entire function, so

the only poles are due to the two terms −1/s and 1/(s− 1). We have therefore

proved that ζ(s) can be analytically continued to a meromorphic function on

C.

148. Corollary. The zeta function satisfies the functional equation

ζ∗(1− s) = ζ∗(s).

Equivalently, because of the reflection formula satisfied by the gamma function,

it is easy to check that the functional equation can be rewritten in the form

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Proof. The representation we derived for ζ∗(s) is manifestly symmetric with

respect to replacing each occurrence of s by 1− s.

53



149. Corollary. The only pole of ζ(s) is a simple pole at s = 1 with residue 1.

Proof. Our representation for ζ∗(s) expresses it as a sum of − 1
s
, 1
s−1

, and an

entire function. Thus the poles of ζ∗(s) are simple poles at s = 0, 1 with residues

−1 and 1, respectively. It follows that

ζ(s) = πs/2Γ(s/2)−1ζ∗(s)

has a pole at s = 1 with residue π1/2Γ(1/2)−1 = 1, and a pole (that turns out

to be a removable singularity) at s = 0 with residue π0Γ(0)−1 = 0. (That is, the

pole of ζ∗(s) at s = 0 is cancelled out by the zero of Γ(s/2).)

150. Corollary. ζ(−n) = −Bn+1/(n+ 1) for n = 1, 2, 3, . . ..

Proof. Using the functional equation, we have that

ζ(−n) = 2−nπ−n−1 sin(−πn/2)Γ(n+ 1)ζ(n+ 1)

= 2−nπ−n−1 sin(−πn/2)n!ζ(n+ 1).

If n = 2k is even, then sin(−πn/2) = sin(−πk) = 0, so we get that ζ(−2k) = 0

(that is, n = 2k is one of the so-called “trivial zeros”). We also know that

B2k+1 = 0 for k = 1, 2, 3, . . ., so the formula ζ(−n) = Bn+1/(n + 1) is satisfied

in this case.

If on the other hand n = 2k − 1 is odd, then sin(−π(2k − 1)/2) = (−1)k, and

therefore we get, using the formula expressing ζ(2k) in terms of the Bernoulli

numbers (derived in the homework and in the textbook), that

ζ(−n) = (−1)k2−2k+1π−2k(2k − 1)!ζ(2k)

= (−1)k2−2k+1π−2k(2k − 1)!
(−1)k−1(2π)2k

2(2k)!
B2k

= −B2k

2k
= −Bn+1

n+ 1
,

so again the formula is satisfied.

151. Corollary. The zeros of ζ(s) in the region Re(s) < 0 are precisely the trivial

zeros s = −2,−4,−6, . . ..

152. Proof. We already established the existence of the trivial zeros. The fact that

there are no other zeros also follows easily from the functional equation and is

left as an exercise.

153. An alternative approach to the analytic continuation of ζ(s). There

is a more “down-to-earth” approach to the analytic continuation of ζ(s) based

on the standard idea from numerical analysis of approximating an integral by

a sum (or in this case going in the other direction, approximating a sum by

an integral). The technical name for this procedure, when it is done in a more
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systematic way, is Euler-Maclaurin summation.

ζ(s) =

∞∑
n=1

1

ns
=

∞∑
n=1

(∫ n+1

n

dx

xs
+

(
1

ns
−
∫ n+1

n

dx

xs

))

=

∫ ∞
1

dx

xs
+

∞∑
n=1

∫ n+1

n

(
1

ns
− 1

xs

)
dx

=
1

s− 1
−
∫ ∞

1

(
x−s − bxc−s

)
dx.

This representation is certainly valid for Re(s) > 1. However, note that we have

the bound ∣∣x−s − bxc−s∣∣ ≤ |s| · bxc−Re(s)−1 (x ≥ 1)

by the mean value theorem. Thus, the integral is actually an absolutely conver-

gent integral in the larger region Re(s) > 0, and the representation we derived

gives an analytic continuation of ζ(s) to a meromorphic function on Re(s) > 0,

which has a single pole at s = 1 (a simple pole with residue 1) and is holomorphic

everywhere else.

154. An elaboration of this idea using what is known as the Euler-Maclaurin summa-

tion formula can be used to perform the analytic continuation of ζ(s) to a mero-

morphic function on C by extending it inductively from each region Re(s) > −n
to Re(s) > −n − 1, as we saw could be done for the gamma function. An-

other approach is to use the analytic continuation for Re(s) > 0 shown above,

then prove that the functional equation ζ(1 − s) = ζ∗(s) holds in the region

0 < Re(s) < 1, and then use the functional equation to analytically continue

ζ(s) to Re(s) ≤ 0 (which is the reflection of the region Re(s) ≥ 1 under the

transformation s 7→ 1− s).

155. Next, we prove a nontrivial and very important fact about the zeta function

that will play a critical role in our proof of the prime number theorem.

Theorem. ζ(s) has no zeros on the line Re(s) = 1.

This theorem can also be thought of as a “toy” version of the Riemann hypoth-

esis. If you ever want to try solving this famous open problem, getting a good

understanding of its toy version seems like a good idea...

Proof. For this proof, denote s = σ + it, where we assume σ > 1 and t is real

and nonzero. The proof is based on investigating simultaneously the behavior

of ζ(σ + it), ζ(σ + 2it), and ζ(σ), for fixed t as σ ↘ 1. Consider the following

somewhat mysterious quantity

X = log |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)|.
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We can evaluate “X” as

log |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)|

= 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|

= 3 log

(∏
p

|1− p−σ|−1

)
+ 4 log

(∏
p

|1− p−σ−it|−1

)

+ log

(∏
p

|1− p−σ−2it|−1

)

=
∑
p

(
− 3 log |1− p−σ| − 4 log |1− p−σ−it| − log |1− p−σ−2it|

)
=
∑
p

(
− 3 Re

[
Log(1− p−σ)

]
− 4 Re

[
Log(1− p−σ−it)

]
− Re Log

[
1− p−σ−2it]),

where Log(·) denotes the principal branch of the logarithm function. Now note

that for z = a+ ib with a > 1 and p prime we have |p−z| = p−a < 1, so

−Log(1− p−z) =

∞∑
m=1

p−mz

m
,

and

−Re
[

Log(1− p−z)
]

=

∞∑
m=1

p−ma

m
Re
[

cos(mb log p) + i sin(mb log p)
]

=

∞∑
m=1

p−ma

m
cos(mb log p).

So we can rewrite X as

X =

∞∑
n=1

cnn
−σ(3 + 4 cos θn + cos(2θn))

where θn = t logn and cn = 1/m if n = pm for some prime p. We can now use

a simple trigonometric identity

3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2,

to rewrite X yet again as

X = 2
∞∑
n=1

cnn
−σ(1 + cos θn)2.

We have proved a crucial fact, namely that X ≥ 0, or equivalently that

eX = |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1.

We now claim that this innocent-looking inequality is incompatible with the

existence of a zero of ζ(s) on the line Re(s) = 1. Indeed, assume by contradiction
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that ζ(1 + it) = 0 for some real t 6= 0. Then the three quantities ζ(σ), ζ(σ + it)

and ζ(σ + 2it) have the following asymptotic behavior as σ ↘ 1:

|ζ(σ)| = 1

σ − 1
+O(1) (since ζ(s) has a pole at s = 1),

|ζ(σ + it)| = O(σ − 1) (since ζ(s) has a zero at s = 1 + it),

|ζ(σ + 2it)| = O(1) (since ζ(s) is holomorphic at s = 1 + 2it).

Combining these results we have that

eX = |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| = O((σ − 1)−3(σ − 1)4) = O(σ − 1).

In particular, eX → 0 as σ ↘ 1, in contradiction to the result we proved above

that eX ≥ 1. This proves the claim that ζ(s) cannot have a zero on the line

Re(s) = 1.

156. Exercise. The above proof that eX ≥ 1 (which immediately implied the claim of

the theorem) relied on showing that for any prime number p, the corresponding

factors in the Euler product formula satisfy the inequality

(1− p−σ)−3|1− p−σp−it|−4|1− p−σp−2it|−1 ≥ 1,

and this was proved by taking the logarithm of the left hand-side, expanding in a

power series and using the elementary trigonometric identity 3+4 cos θ+cos 2θ =

2(1 + cos θ)2. However, one can imagine a more direct approach that starts as

follows: denote x = p−σ and z = p−it = e−it log p. Then the inequality reduces

to the claim that

(1− x)3|1− zx|4|1− z2x| ≤ 1

for all x ∈ [0, 1] and z satisfying |z| = 1. Since this is an elementary inequality,

it seems like it ought to have an elementary proof (i.e., a proof that does not

involve logarithms and power series expansions). Can you find such a proof?

16 The prime number theorem

157. The prime number theorem was proved in 1896 by Jacques Hadamard and in-

dependently by Charles Jean de la Vallée Poussin, using the groundbreaking

ideas from Riemann’s famous 1859 paper in which he introduced the use of the

Riemann zeta function as a tool for counting prime numbers. (This was the only

number theory paper Riemann wrote in his career!) The history (including all

the technical details) of these developments is described extremely well in the

classic textbook Riemann’s Zeta Function by H. M. Edwards, which I highly

recommend.

The original proofs of the prime number theorem were very complicated and re-

lied on the “explicit formula of number theory” (that I mentioned in the previous

section) and some of its variants. Throughout the 20th century, mathematicians

worked hard to find simpler ways to derive the prime number theorem. This
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resulted in several important developments (such as the Wiener tauberian the-

orem and the Hardy-Littlewood tauberian theorem) that advanced not just the

state of analytic number theory but also complex analysis, harmonic analysis

and functional analysis. Despite all the efforts and the discovery of several

paths to a proof that were simpler than the original approach, all proofs re-

mained quite difficult. . . until 1980, when the mathematician Donald Newman

discovered a wonderfully simple way to derive the theorem using a completely

elementary use of complex analysis. It is Newman’s proof (as presented in the

note Newman’s short proof of the prime number theorem by Don Zagier, Amer.

Math. Monthly 104 (1997), 705–708) that I present here.

158. Define the weighted prime counting functions

π(x) = #{p prime : p ≤ x} =
∑
p≤x

1,

ψ(x) =
∑
pk≤x

log p =
∑
p≤x

log p

⌊
log x

log p

⌋
,

with the convention that the symbol p in a summation denotes a prime number,

and pk denotes a prime power, so that summation over p ≤ x denotes summation

over all primes ≤ x, and the summation over pk denotes summation over all

prime powers ≤ x. Another customary way to write the function ψ(x) is as

ψ(x) =
∑
n≤x

Λ(n),

where the function Λ(n), called the von Mangoldt function, is defined by

Λ(n) =

log p if n = pk, p prime,

0 otherwise.

159. Lemma. The prime number theorem π(x) ∼ x
log x

is equivalent to the statement

that ψ(x) ∼ x.

Proof. Note the inequality

ψ(x) =
∑
p≤x

log p

⌊
log x

log p

⌋
≤
∑
p≤x

log p
log x

log p
=
∑
p≤x

log x = log x · π(x).

In the opposite direction, we have a similar (but slightly less elegant) inequality,

namely that for any 0 < ε < 1 and x ≥ 2,

ψ(x) ≥
∑
p≤x

log p ≥
∑

x1−ε<p≤x

log p ≥
∑

x1−ε<p≤x

log
(
x1−ε)

= (1− ε) log x
(
π(x)− π(x1−ε)

)
≥ (1− ε) log x

(
π(x)− x1−ε

)
.

Now assume that ψ(x) ∼ x as x→∞. Then the first of the two bounds above

implies that

π(x) ≥ ψ(x)

log x
,
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so

lim inf
x→∞

π(x)/

(
x

log x

)
≥ 1.

On the other hand, the second of the two bounds implies that

π(x) ≤ 1

1− ε ·
ψ(x)

log x
+ x1−ε,

which implies that lim supx→∞ π(x)/
(

x
log x

)
≤ 1

1−ε + lim supx→∞
log x
xε

= 1
1−ε .

Since ε was an arbitrary number in (0, 1), it follows that

lim sup
x→∞

π(x)/

(
x

log x

)
≤ 1.

Combining the two results about the lim inf and the lim sup gives that π(x) ∼
x/ log x.

Now assume that π(x) ∼ x
log x

, and apply the inequalities we derived above in

the opposite direction from before. That is, we have

ψ(x) ≤ log x · π(x),

so

lim sup
x→∞

ψ(x)/x ≤ 1.

On the other hand,

ψ(x) ≥ (1− ε) log x(π(x)− x1−ε)

implies that

lim inf
x→∞

ψ(x)/x ≥ lim
x→∞

(1− ε)
(

1− log x

xε

)
= 1− ε.

Again, since ε ∈ (0, 1) was arbitrary, it follows that lim infx→∞
ψ(x)
x

= 1. Com-

bining the two results about the lim inf and lim sup proves that limx→∞
ψ(x)
x

=

1, as claimed.

160. Lemma. For Re(s) > 1 we have

−ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)n−s.

Proof. Using the Euler product formula and taking the logarithmic derivative

(which is an operation that works as it should when applied to infinite products

of holomorphic functions that are uniformly convergent on compact subsets),

we have

−ζ
′(s)

ζ(s)
=
∑
p

d
ds

(1− p−s)
1− p−s =

∑
p

log p · p−s

1− p−s

=
∑
p

log p (p−s + p−2s + p−3s + . . .) =
∑

p prime

∞∑
k=1

log p · p−ks

=

∞∑
n=1

Λ(n)n−s.
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161. Lemma. There is a constant C > 0 such that ψ(x) < Cx for all x ≥ 1.

Proof. The idea of the proof is that the binomial coefficient
(

2n
n

)
is not too large

on the one hand, but is divisible by many primes (all primes between n and 2n)

on the other hand — hence it follows that there cannot be too many primes, and

in particular the weighted prime-counting function ψ(x) can be easily bounded

from above using such an argument. Specifically, we have that

22n = (1 + 1)2n =

2n∑
k=0

(
2n

k

)
>

(
2n

n

)
≥

∏
n<p≤2n

p = exp

 ∑
n<p≤2n

log p


= exp

(
ψ(2n)− ψ(n)−

∑
n<pk≤2n, k>1

log p
)
.

≥ exp
(
ψ(2n)− ψ(n)−O(

√
n log2 n)

)
.

(The estimate O(
√
n log2 n) for the sum of log p for prime powers higher than 1

is easy and is left as an exercise.) Taking the logarithm of both sides, this gives

the bound

ψ(2n)− ψ(n) ≤ 2n log 2 + C1

√
n logn ≤ C2n,

valid for all n ≥ 1 with some constant C2 > 0. It follows that

ψ(2m) = (ψ(2m)− ψ(2m−1))

+ (ψ(2m−1)− ψ(2m−2)) + . . .+ (ψ(21)− ψ(20))

≤ C2(2m−1 + . . .+ 20) ≤ C22m,

so the inequality ψ(x) ≤ C2x is satisfied for x = 2m. It is now easy to see that

this implies the result also for general x, since for x = 2m + ` with 0 ≤ ` < 2m

we have

ψ(x) = ψ(2m + `) ≤ ψ(2m+1) ≤ C22m+1 ≤ 2C22m ≤ 2C2x.

162. Newman’s tauberian theorem. Let f : [0,∞) → R be a bounded function

that is integrable on compact intervals. Define a function g(z) of a complex

variable z by

g(z) =

∫ ∞
0

f(t)e−zt dt

(g is known as the Laplace transform of f). Clearly g(z) is defined and

holomorphic in the open half-plane Re(z) > 0. Assume that g(z) has an analytic

continuation to an open region Ω containing the closed half-plane Re(z) ≥ 0.

Then
∫∞

0
f(t) dt exists and is equal to g(0) (the value at z = 0 of the analytic

continuation of g).

Proof. Define a truncated version of the integral defining g(z), namely

gT (z) =

∫ T

0

f(t)e−zt dt
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Figure 6: The contours C, C+, C− and C ′−.

for T > 0, which for any T is an entire function of z. Our goal is to show

that limT→∞ gT (0) = g(0). This can be achieved using a clever application of

Cauchy’s integral formula. Fix some large R > 0 and a small δ > 0 (which

depends on R in a way that will be explained shortly), and consider the contour

C consisting of the part of the circle |z| = R that lies in the half-plane Re(z) ≥
−δ, together with the straight line segment along the line Re(z) = −δ connecting

the top and bottom intersection points of this circle with the line (see Fig. 6(a)).

Assume that δ is small enough so that g(z) (which extends analytically at least

slightly to the right of Re(z) = 0) is holomorphic in an open set containing C

and the region enclosed by it. Then by Cauchy’s integral formula we have

g(0)− gT (0) =
1

2πi

∫
C

(g(z)− gT (z))eTz
(

1 +
z2

R2

)
dz

z

=
1

2πi

(∫
C+

+

∫
C−

)
(g(z)− gT (z))eTz

(
1 +

z2

R2

)
dz

z
,

where we separate the contour into two parts, a semicircular arc C+ that lies in

the half-plane Re(z) > 0, and the remaining part C− in the half-plane Re(z) < 0

(Fig. 6(b)). We now bound the integral separately on C+ and on C−. First, for

z lying on C+ we have

|g(z)− gT (z)| =
∣∣∣∣∫ ∞
T

f(t)e−zt dt

∣∣∣∣ ≤ B ∫ ∞
T

|e−zt| dt =
Be−Re(z)T

Re(z)
,

where B = supt≥0 |f(t)|, and∣∣∣∣eTz (1 +
z2

R2

)∣∣∣∣ = eRe(z)T 2 Re(z)

R

(by the trivial identity |1 + eit|2 = |eit(eit + eit)|2 = 2 cos(t), valid for t ∈ R).
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So in combination we have∣∣∣∣∣ 1

2πi

∫
C+

(g(z)− gT (z))eTz
(

1 +
z2

R2

)
dz

z

∣∣∣∣∣ ≤ (πR)
2B

2πR2
=
B

R
.

Next, for C−, we bound the integral by bounding the contributions from g(z) and

gT (z) separately. In the case of gT (z), the function is entire, so we can deform

the contour, replacing it with the semicircular arc C′− = {|z| = R,Re(z) < 0}
(Fig. 6(c)). On this contour we have the estimate

|gT (z)| =
∣∣∣∣∫ T

0

f(t)e−zt dt

∣∣∣∣ ≤ B ∫ T

−∞
|e−zt| dt =

Be−Re(z)T

|Re(z)| ,

which leads using a similar calculation as before to the estimate

1

2πi

∫
C′−

∣∣∣∣gT (z)eTz
(

1 +
z2

R2

)∣∣∣∣ |dz||z| ≤ B

R
.

The remaining integral

1

2πi

∫
C−

∣∣∣∣g(z)eTz
(

1 +
z2

R2

)∣∣∣∣ |dz||z|
tends to 0 as T →∞, since the dependence on T is only through the factor eTz,

which converges to 0 uniformly on compact sets in Re(z) < 0 as T →∞.

Combining the above estimates, we have shown that

lim sup
T→∞

|g(0)− gT (0)| ≤ 2B

R
.

Since R was an arbitrary positive number, the lim sup must be 0, and the

theorem is proved.

163. An application of Newman’s theorem. Take

f(t) = ψ(et)e−t − 1 (t ≥ 0),

which is bounded by the lemma we proved above, as our function f(t). The

associated function g(z) is then

g(z) =

∫ ∞
0

(ψ(et)e−t − 1)e−zt dt =

∫ ∞
1

(
ψ(x)

x
− 1

)
x−z−1 dx

=

∫ ∞
1

ψ(x)x−z−2 dx− 1

z
=

∫ ∞
1

∑
n≤x

Λ(n)

x−z−2 dx− 1

z

=

∞∑
n=1

Λ(n)

(∫ ∞
n

x−z−2 dx

)
− 1

z
=

∞∑
n=1

Λ(n)
x−z−1

−z − 1

∣∣∣∣∞
n

− 1

z

=
1

z + 1

∞∑
n=1

Λ(n)n−z−1 − 1

z
= − 1

z + 1
· ζ
′(z + 1)

ζ(z + 1)
− 1

z
(Re(z) > 0).
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Recall that −ζ′(s)/ζ(s) has a simple pole at s = 1 with residue 1 (because

ζ(s) has a simple pole at s = 1; it is useful to remember the more general

fact that if a holomorphic function h(z) has a zero of order k at z = z0 then

the logarithmic derivative h′(z)/h(z) has a simple pole at z = z0 with residue

k). So − 1
z+1
· ζ
′(z+1)
ζ(z+1)

has a simple pole with residue 1 at z = 0, and therefore

− 1
z+1
· ζ
′(z+1)
ζ(z+1)

− 1
z

has a removable singularity at z = 0. Thus, the identity

g(z) = − 1
z+1
· ζ
′(z+1)
ζ(z+1)

− 1
z

shows that g(z) extends analytically to a holomorphic

function in the set

{z ∈ C : ζ(z + 1) 6= 0}.

By the “toy Riemann Hypothesis” — the theorem we proved according to which

ζ(s) has no zeros on the line Re(s) = 1, g(z) in particular extends holomorphi-

cally to an open set containing the half-plane Re(z) ≥ 0. Thus, f(t) satisfies

the assumption of Newman’s theorem. We conclude from the theorem that the

integral ∫ ∞
0

f(t) dt =

∫ ∞
0

(ψ(et)e−t − 1)dt =

∫ ∞
1

(
ψ(x)

x
− 1

)
dx

x

=

∫ ∞
1

ψ(x)− x
x2

dx

converges.

164. Proof of the prime number theorem. We will prove that ψ(x) ∼ x, which

we already showed is equivalent to the prime number theorem. Assume by

contradiction that lim supx→∞
ψ(x)
x

> 1 or lim infx→∞
ψ(x)
x

< 1. In the first

case, that means there exists a number λ > 1 such that ψ(x) ≥ λx for arbitrarily

large x. For such values of x it then follows that∫ λx

x

ψ(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt =

∫ λ

1

λ− t
t2

dt =: A > 0,

but this is inconsistent with the fact that the integral
∫∞

1
(ψ(x) − x)x−2 dx

converges.

Similarly, in the event that lim infx→∞
ψ(x)
x

< 1, that means that there exists a

µ < 1 such that ψ(x) ≤ µx for arbitrarily large x, in which case we have that∫ x

λx

ψ(t)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt =

∫ 1

λ

λ− t
t2

dt =: B < 0,

again giving a contradiction to the convergence of the integral.
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17 Introduction to asymptotic analysis

165. In this section we’ll learn how to use complex analysis to prove asymptotic

formulas such as

n! ∼
√

2πn
(n
e

)n
(Stirling’s formula),

p(n) ∼ 1

4
√

3n
eπ
√

2n/3 (the Hardy-Ramanujan formula),

Ai(x) ∼ 1

2
√
π
x−1/4 exp

(
−2

3
x3/2

)
(asymptotics for the Airy function),

and more. At the heart of many such results is an important technique known

as the saddle point method. Some related techniques (that are all minor

variations on the same theme) are Laplace’s method, the steepest descent

method and the stationary phase method.

166. A toy estimate for n!. For x > 0 real, we have

xn

n!
≤
∞∑
n=0

xn

n!
= ex,

which gives a lower bound

n! ≥ e−xxn.

for n!. It makes sense to try to get the best lower bound possible by looking for

the x where the lower-bounding function is maximal. This happens when

0 =
d

dx

(
e−xxn

)
= e−x

(
−xn + nxn−1) = e−xxn−1(−x+ n),

i.e., when x = n. Plugging this value into the inequality gives the bound

n! ≥ (n/e)n (n ≥ 1).

This is of course a standard and very easy result. The point of this computation

is that, as we shall see below, there is something special about the value x = n

that resulted from this maximization operation; when interpreted in the context

of complex analysis, it corresponds to a so-called “saddle point,” since it is a

local minimum of ex/xn as one moves along the real axis, but it will be a local

maximum when one moves in the orthogonal direction parallel to the imaginary

axis.

167. First example: Stirling’s formula. Start with the power series expansion

ez =

∞∑
n=0

zn

n!
.

As we know very well from our study of Cauchy’s integral formula and the

residue theorem, the nth Taylor coefficient can be extracted from the function

by contour integration, namely by writing

1

n!
=

1

2πi

∮
|z|=r

ez

zn+1
dz,
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where the radius r of the circle chosen as the contour of integration is an arbitrary

positive number. It turns out that some values of r are better than others when

one is trying to do asymptotics. We select r = n (I’ll explain later where that

seemingly inspired choice comes from), to get

1

n!
=

1

2πi

∮
|z|=n

ez

zn+1
dz =

1

2πi

∫ π

−π
exp

(
neit

)
n−ne−inti dt

=
1

2π nn

∫ π

−π
exp

(
n(eit − it)

)
dt

=
en

2π nn

∫ π

−π
exp

(
n(eit − 1− it)

)
dt,

where we have strategically massaged the integrand (by pulling out the factor

en) to cancel out a term in the Taylor expansion of eit, in addition to a term

that was already canceled out. For convenience, rewrite this as

nn

enn!
=

1

2π

∫ π

−π
exp

(
n(eit − 1− it)

)
dt.

Now noting that

n
(
eit − 1− it

)
= −nt

2

2
+O(nt3) =

(
√
nt)2

2
+O

(
(
√
nt)3

√
n

)
,

for |t| small, we see that a change of variable u =
√
nt in the integral will enable

us to rewrite this as

n

(
eiu/

√
n − 1− iu√

n

)
= −u

2

2
+O

(
u3

√
n

)
.

Performing the change of variable and moving a factor of
√
n to the left-hand

side, the integral then becomes

√
nnn

enn!
=

1

2π

∫ π
√
n

−π
√
n

exp

(
n

(
eiu/

√
n − 1− iu√

n

))
du.

The integrand converges pointwise to e−u
2/2 (for u fixed and n → ∞), so it’s

reasonable to guess that the integral should converge to
∫∞
−∞ e

−u2/2 du =
√

2π,

which would lead to the formula
√
nnn

enn!
≈ 1√

2π
,

or

n! ≈
√

2πn
(n
e

)n
,

which is precisely Stirling’s formula. However, note that the O(u3/
√
n) estimate

holds whenever t = u/
√
n is in a neighborhood of 0, and since u actually ranges

in [−π
√
n, π
√
n], we need to be more careful to get a precise asymptotic result.
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To proceed, it makes sense to divide the integral into two parts. Denote M =

n1/10, and let

I =

∫ π
√
n

−π
√
n

exp

(
n

(
eiu/

√
n − 1− iu√

n

))
du = I1 + I2,

I1 =

∫ M

−M
exp

(
n

(
eiu/

√
n − 1− iu√

n

))
du,

I2 =

∫
[−π
√
n,π
√
n]\[−M,M ]

exp

(
n

(
eiu/

√
n − 1− iu√

n

))
du.

We now estimate each of I1 and I2 separately. For I1, we have

I1 =

∫ M

−M
exp

(
−u

2

2
+O

(
u3

√
n

))
du

=

∫ M

−M
e−u

2/2 exp

(
O

(
u3

√
n

))
du

=

∫ M

−M

(
1 +O

(
u3

√
n

))
e−u

2/2du =
(

1 +O(n−1/5)
)∫ M

−M
e−u

2/2du

=
(

1 +O(n−1/5)
)(∫ ∞

−∞
−2

∫ ∞
M

)
e−u

2/2du

=
(

1 +O(n−1/5)
)(√

2π −O
(

exp
(
−n−1/5

)))
=
(

1 +O(n−1/5)
)√

2π.

For I2, we have

|I2| ≤ 2

∫ π
√
n

M

∣∣∣∣exp

(
n

(
eiu/

√
n − 1− iu√

n

))∣∣∣∣ du
= 2

∫ π
√
n

M

exp
(
nRe

(
eiu/

√
n − 1

))
du

= 2

∫ π
√
n

M

exp

[
n

(
cos

(
u√
n

)
− 1

)]
du

Now use the elementary fact that cos(t) ≤ 1 − t2/8 for x ∈ [−π, π] (see Fig. 7)

to infer further that

|I2| ≤ 2

∫ π
√
n

M

exp
(
−u2/8

)
du ≤ 2π

√
n exp

(
−n1/5

)
= O(n−1/5).

Combining the above results, we have proved the following version of Stirling’s

formula with a quantitative (though suboptimal) bound:

Theorem. As n→∞ we have n! =
(

1 +O(n−1/5)
)√

2πn
(n
e

)n
.

168. Second example: the central binomial coefficient. Let an =
(

2n
n

)
= (2n)!

(n!)2
.

A standard way to find the asymptotic behavior for an as n → ∞ is to use

Stirling’s formula. This easily gives that(
2n

n

)
= (1 + o(1))

4n√
πn

.
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Figure 7: Illustration of the inequality cos(t) ≤ 1− t2/8.

(Note that this is not too far from the trivial upper bound
(

2n
n

)
≤ (1 + 1)2n =

22n.) It is instructive to rederive this result using the saddle-point method,

starting from the expansion

(1 + z)2n =

2n∑
k=0

(
2n

k

)
zn,

which in particular gives the contour integral representation(
2n

n

)
=

1

2πi

∮
|z|=r

(1 + z)2n

zn+1
dz.

By the same trivial method for deriving upper bounds that we used in the case

of the Taylor coefficients 1/n! of the function ez, we have that for each x > 0,(
2n

n

)
≤ (1 + x)2n/xn = exp (log(1 + x)− n log x) .

We optimize over x by differentiating the expression log(1 + x)− n log x inside

the exponent and setting the derivative equal to 0. This gives x = 1, the location

of the saddle point. For this value of x, we again recover the trivial inequality(
2n
n

)
≤ 22n.

Next, equipped with the knowledge of the saddle point, we set r = 1 in the

contour integral formula, to get(
2n

n

)
=

1

2πi

∮
|z|=r

(1 + z)2n

zn+1
dz =

1

2π

∫ π

−π
(1 + eit)2ne−int dt

=
1

2π

∫ π

−π
exp

(
n
(

2 log(1 + eit)− t
))

dt.

Now note that the expression in the exponent has the Taylor expansion

n(2 log(1 + eit)− t) = 2 log 2− 1

4
nt2 +O(nt4) as t→ 0.
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Again, we see that a change of variables u = t/
√
n will bring the integrand to

an asymptotically scale-free form. More precisely, we have(
2n

n

)
=

1

2π

∫ π

−π
exp

(
n

(
2 log 2− 1

4
nt2 +O(nt4)

))
dt

=
4n

2π
√
n

∫ π

−π
exp

(
−1

4
u2 +O

(
u4

n

))
du.

It is now reasonable to guess that in the limit as n→∞, the pointwise limit of

the integrands translates to a limit of the integrals, so that we get the approxi-

mation (
2n

n

)
≈ 4n

2π
√
n

∫ ∞
−∞

e−u
2/4 du =

4n

2π
√
n

2
√
π =

4n√
πn

,

as required. Indeed, this is correct, but it remains to make this argument precise

by breaking up the integral into two parts, a “central part” where the O(u4/n)

error term can be shown to be small, and the remaining part that has to be

bounded separately.

169. Exercise. Complete this analysis to give a rigorous proof using this method of

the asymptotic formula
(

2n
n

)
= (1 + o(1))4n/

√
πn.

170. Exercise. Repeat this analysis for the sequence (bn)∞n=1 of central trinomial

coefficients, where bn is defined as the coefficient of xn in the expansion of

(1 + x + x2)n, a definition that immediately gives rise to the contour integral

representation

bn =
1

2πi

∮
|z|=r

(1 + z + z2)n

zn+1
dz.

Like their more famous cousins the central binomial coefficients, these coeffi-

cients are important in combinatorics and probability theory. Specifically, an

and bn correspond to the numbers of random walks on Z that start and end at

0 and have n steps, where in the case of the central binomial coefficients the

allowed steps of the walk are −1 or +1, and in the case of the central trinomial

coefficients the allowed steps are −1, 0 or 1; see Fig. 8.

Using a saddle point analysis, show that the asymptotic behavior of bn as n→∞
is given by

bn ∼
√

3 · 3n√
πn

.

171. A conceptual explanation. In both the examples of Stirling’s formula and

the central binomial coefficient we analyzed above, the quantities we were trying

to estimate took a particular form, where for some function g(z) we had

a(n) =
1

2πi

∮
|z|=r

e−ng(z)

zn
dz

z
=

1

2πi

∮
|z|=r

exp
(
− n(g(z) + log z)

)dz
z

=
1

2π

∫ π

−π
e−ng(re

it)r−ne−int dt

=
1

2π

∫ π

−π
exp

(
− n(g(reit) + it− log r)

)
dt.
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Figure 8: An illustration (with n = 40) of the random walks enumerated by (a)

the central binomial coefficients and (b) the central trinomial coefficients.

(Sometimes g(z) would actually be gn(z), a sequence of functions that depends

on n.) The idea is to choose the contour radius r as the solution to the equation

d

dz
(g(z) + log z) = g′(z) +

1

z
= 0.

This causes the first-order term in the Taylor expansion of g(z)+log z around z =

r to disappear. One is then left with a constant term, that can be pulled outside

of the integral; a second order term, which (in favorable circumstances where

this technique actually works) causes the integrand to be well-approximated by

a Gaussian density function e−u
2/2 near z = r; and lower-order terms which can

be shown to be asymptotically negligible.

Geometrically, if one plots the graph of |g(z)+1/z| then one finds the emergence

of a saddle point at z = r, and this is the origin of the term “saddle point

method.” This phenomenon is illustrated with many beautiful examples and

graphical figures in the lecture slides prepared by Sedgewick and Flajolet as an

online resource to accompany their excellent textbook Analytic Combinatorics.

The lecture slides can be accessed at

http://ac.cs.princeton.edu/lectures/lectures13/AC08-Saddle.pdf.

172. Exercise. It is instructive to see an example where the saddle point analysis

fails if applied mindlessly without checking that the part of the integral that is

usually assumed to make a negligible contribution actually behaves that way. A

simple example illustrating what can go wrong is the function

f(z) = ez
2

=
∞∑
n=0

z2n

n!
=

∞∑
n=0

bnz
n,

where the Taylor coefficients are

bn =

 1
(n/2)!

n even,

0 otherwise.
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Clearly any analysis, asymptotic or not, needs to address and take into account

the fact that bn behaves differently according to whether n is even or odd. Try

to apply the method we developed to derive an asymptotic formula for bn. The

method fails, but the failure can easily be turned into a success by noting that

there are actually two saddle points, each of which makes a contribution to the

integral, in such a way that for odd n the contributions cancel and for even n

they reinforce each other. This shows that periodicities are one common pitfall

to look out for when doing asymptotic analysis.

173. Exercise. As another amusing example, apply the saddle point method to the

function f(z) = 1/(1−z) =
∑∞
n=0 dnz

n, for which the Taylor coefficients dn = 1

are all equal to 1. Can you succeed in deriving an asymptotic formula for the

constant function 1?

174. Third example: Stirling’s formula for the gamma function. Our next

goal is to prove a stronger version of Stirling’s formula that gives an asymptotic

formula for Γ(t), the extension of the factorial function to non-integer arguments.

Specifically, we will prove.

Theorem. For a real-valued argument t, the gamma function satisfies the

asymptotic formula

Γ(t) =
(

1 +O(t−1/5)
)√2π

t

(
t

e

)t
(t→∞).

Proof. We use a method called Laplace’s method, which is a variant of

the saddle-point method adapted to estimating real integrals instead of contour

integrals around a circle. Start with the integral formula

Γ(t) =

∫ ∞
0

e−xxt−1 dx

Performing the change of variables x = tu in the integral gives that

Γ(t) = tt
∫ ∞

0

e−tuut−1 du = tte−t
∫ ∞

0

e−tu+tut−1 du

= tte−t
∫ ∞

0

e−tu+tut−1 du = tte−t
∫ ∞

0

e−tΦ(u) du

u
=

(
t

e

)t
I(t),

where we define

Φ(u) = u− 1− log u,

I(t) =

∫ ∞
0

e−tΦ(u) du

u
.

(Again, note that we massaged the integrand to cancel the Taylor expansion of

− log u around u = 1 up to the first order.) Our goal is to prove that

I(t) =

√
2π

t
+O(t−7/10) as t→∞.
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Figure 9: The function Φ(u) = u− 1− log u.

As before, this will be done by splitting the integral into a main term and error

terms. The idea is that for large t, the bulk of the contribution to the integral

comes from a region very near the point where Φ(u) takes its minimum. It is

easy to check by differentiation that this minimum is obtained at u = 1, and

that we have

Φ(1) = 0, Φ′(1) = 0, Φ′′(1) = 1,

and Φ(u) ≥ 0 for all u ≥ 0. See Fig. 9. Denote

I1 =

∫ 1/2

0

e−tΦ(u) du

u
,

I2 =

∫ 2

1/2

e−tΦ(u) du

u
,

I3 =

∫ ∞
2

e−tΦ(u) du

u
,

so that I(t) = I1 +I2 +I3. The main contribution will come from I2, the part of

the integral that contains the critical point u = 1, so let us examine that term

first. Expanding Φ(u) in a Taylor series around u = 1, we have

Φ(u) =
(u− 1)2

2
+O((u− 1)3)

for u ∈ [1/2, 2] (in fact the explicit bound
∣∣∣Φ(u)− (u−1)2

2

∣∣∣ ≤ (u − 1)3 on this

interval can be easily checked). As before, noting that

t

[
(u− 1)2

2
+O((u− 1)3)

]
=

1

2
(
√
t(u− 1))2 +O

(
(
√
t(u− 1))3

√
t

)
,

we see that it is natural to apply a linear change of variables v =
√
t(u− 1) to
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bring the integrand to a scale-free, centered form. This results in

I2 =
1√
t

∫ √t
− 1

2

√
t

exp

(
−tΦ

(
1 +

v√
t

))
1

1 + v/
√
t
dv

=
1√
t

∫ √t
− 1

2

√
t

exp

(
−v

2

2
+O

(
v3

√
t

))(
1 +O

(
t√
t

))
dv.

As before, we actually need to split up this integral into two parts to take into

account the fact that the O(v3/
√
t) term can blow up when v is large enough.

Let M = t1/10, and denote

J1 =
1√
t

∫ M

−M
exp

(
−tΦ

(
1 +

v√
t

))
1

1 + v/
√
t
dv,

J2 =
1√
t

∫
[− 1

2

√
t,
√
t]\[−M,M ]

exp

(
−tΦ

(
1 +

v√
t

))
1

1 + v/
√
t
dv,

so that I2 = J1 + J2. For J1 we have

J1 =
1√
t

∫ M

−M
exp

(
−tΦ

(
1 +

v√
t

))
1

1 + v/
√
t
dv

=
1√
t

∫ M

−M
e−v

2/2

(
1 +O

(
v3

√
t

))(
1 +O

(
v√
t

))
dv

=
1√
t

(
1 +O(t−1/5)

)∫ M

−M
e−v

2/2dv =

√
2π

t

(
1 +O(t−1/5)

)
,

in the last step using a similar estimate as the one we used in our proof of

Stirling’s approximation for n!. Next, for J2 we use the elementary inequality

(prove it as an exercise)

Φ(u) ≥ (u− 1)2

2
(0 ≤ u ≤ 1),

and the more obvious fact that 1/(1 + v/
√
t) ≤ 2 for v ∈ [− 1

2

√
t,
√
t] to get that

J2 ≤
2√
t

∫
[− 1

2

√
t,
√
t]\[−M,M ]

e−v
2/2 dv ≤ 4√

t

∫ ∞
M

e−v
2/2 dv

= O(e−M ) =
1√
t
O(t−1/5).

as in our earlier proof. Combining the above results, we have shown that

I2 =
(

1 +O(t−1/5)
)√2π

t
.

Next, we bound I1. Here we use a different method since there is a different

source of potential trouble near the left end u = 0 of the integration interval.

Considering first a truncated integral over [ε, 1/2] and performing an integration
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by parts, we have∫ 1/2

ε

e−tΦ(u) du

u
= −1

t

∫ 1/2

ε

d

du

(
e−tΦ(u)

) 1

Φ′(u)u
du

= −1

t

[
e−tΦ(u)

u− 1

]u=1/2

u=ε

− 1

t

∫ 1/2

ε

e−tΦ(u) du

(u− 1)2
.

Taking the limit as ε→ 0 (and noting that Φ(ε)→ +∞ in this limit) yields the

formula

I1 =
2

t
e−tΦ(1/2) − 1

t

∫ 1/2

0

e−tΦ(u) du

(u− 1)2
= O

(
1

t

)
as t→∞.

Finally, I leave it as an exercise to obtain a similar estimate I3 = O(1/t) for

the remaining integral on [2,∞). Combining the various estimates yields the

claimed result that

I(t) = I1 + I2 + I3 =
(

1 +O(t−1/5)
)√2π

t
.

175. The proof above is a simplified version of the analysis in Appendix A of [Stein-

Shakarchi]. The more detailed analysis there shows that the asymptotic formula

we proved for Γ(t) remains valid for complex t. Specifically, they prove that for

complex s in the “Pac-Man shaped” region

Sδ = {z ∈ C : | arg z| ≥ π − δ}

(for each fixed 0 < δ < π) the gamma function satisfies

Γ(s) =
(

1 +O(|s|−1/2)
)√

2πss−1/2e−s as |s| → ∞, s ∈ Sδ.

Here, ss−1/2 is defined as exp((s− 1/2) Log s), where Log denotes as usual the

principal branch of the logarithm function.
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Additional reading

While preparing these notes I consulted the following sources, which contain a large

amount of additional interesting material related to the topics we covered.

[1] H. M. Edwards. Riemann’s Zeta Function. Dover Publications, 2001.

[2] P. Flajolet, R. Sedgewick. Analytic Combinatorics. Cambridge University Press,

2009.

[3] P. Flajolet, R. Sedgewick. Analytic Combinatorics Lecture Slides. Online re-

source: http://ac.cs.princeton.edu/lectures/. Accessed March 6, 2016.

[4] B. de Smit, H. W. Lenstra Jr. Artful mathematics: the heritage of M.C. Escher.

Notices Amer. Math. Soc. 50 (2003), 446–457.

[5] E. M. Stein, R. Shakarchi, Complex Analysis. Princeton University Press, 2003.

104 (1997), 705–708.

[6] A. Ivić. The Riemann Zeta-Function: Theory and Applications. Dover Publi-

cations, 2003.

[7] D. Zagier. Newman’s short proof of the prime number theorem. Amer. Math.

Monthly 104 (1997), 705–708.
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