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1 Completeness of a Set of Eigenfunctions

1.1 The Neumann Boundary Condition
In this lecture, we begin examining a generalized look at the Laplacian Eigenvalue
Problem, particularly related to generalized domains. Our goal here is to establish
the notion of the completeness of a set of eigenfunctions, which we then use to
justify separation of variables, a tool we so far have taken for granted. Basic
references for this lecture are [1, Sec. 11.3, 11.5], [2, Chap. 11] and [3, Sec. 3.3].
For more advanced treatments, see [4, Sec. 6.5].

In the earlier lectures, we used:
{

νj or λ
(N)
j for the Neumann-Laplacian eigenvalues,

ψj or ϕ
(N)
j for the Neumann-Laplacian eigenfunctions.

For simplicity, let us use (νj, ψj) for Neumann BC and (λj, ϕj) for Dirichlet BC.
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And we number νj in ascending order: 0 = ν1 < ν2 ≤ ν3 ≤ · · · , also recall that
ψ1(x) = const.

Theorem 1.1. For the Neumann Condition, we define a “trial function” as any
w(x) ∈ C2(Ω) such that w(x) 6≡ 0. Then similarly to the Dirichlet case, (MP),
(MP)n, RRA (see Lecture 9), and the minimax principle are all valid.

Note: w ∈ C2(Ω) means that there is no constraint at ∂Ω. In particular, w may not
satisfy the Neumann condition (nor the Dirichlet condition). As such, the Neu-
mann condition is also referred to as the free condition and the Dirichlet condition
is referred to as the fixed condition.

Proof. Define

m = min
w∈C2(Ω)

w 6≡0

{‖∇w‖2

‖w‖
}

.

Let u ∈ C2(Ω) attain this minimum. Set w = u + εv, ∀ v ∈ C2(Ω). The similar
procedure leads to (as a result of variational calculus):

∫

Ω

(−∇u · ∇v + muv) dx = 0, ∀ v ∈ C2(Ω) (1)

By Green’s first identity,

(1) ⇐⇒
∫

Ω

(∆u + mu)v dx =

∫

∂Ω

∂u

∂ν
v dS. (2)

(i) Let’s choose v(x) = v0(x), where

v0(x)
∆
=

{
arbitrary C2 function in Ω,

0 on ∂Ω.

Then the right hand side of (2) equals 0, which implies that ∆u+mu = 0 inside Ω.

(ii) Since ∆u + mu = 0 in Ω for any v ∈ C2(Ω) in (2), we have

(2) = 0 =

∫

∂Ω

∂u

∂ν
v dS =⇒ ∂u

∂ν
= 0 on ∂Ω.
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1.2 Completeness (in the L2 sense)
The notion of completeness for eigenfunctions is similar to that of a complete
basis, which many of us have seen in an analysis class (or any class that signif-
icantly dealt with Fourier series), in which a set of eigenfunctions is complete if
any arbitrary function in the space of concern can be exactly represented as a lin-
ear combination of the eigenfunctions (here, the exact in terms of the norm of that
space). To this end, we begin with the following theorem to illustrate this point.

Theorem 1.2. Both the Dirichlet-Laplacian (DL) and the Neumann-Laplacian
(NL) eigenfunctions are complete in the L2 sense, i.e., ∀ f ∈ L2(Ω),

∥∥∥f −∑N
n=1 cnϕn

∥∥∥
2

→ 0 as N →∞, where cn =
〈f, ϕn〉
〈ϕn, ϕn〉 .∥∥∥f −∑N

n=1 dnψn

∥∥∥
2

→ 0 as N →∞, where dn =
〈f, ψn〉
〈ψn, ψn〉 .

(3)

or 〈f, ϕn〉 = 0, ∀n ∈ N ⇔ f ≡ 0, a.e., and 〈f, ψn〉 = 0, ∀n ∈ N ⇔
f ≡ 0, a.e..

Remark: This is important since {ϕn}, {ψn} are not useful if they are not com-
plete. In other words, if ∃f ∈ L2(Ω), such that ‖f −∑∞

n=1 cnϕn‖ > 0, then {ϕn}
spans only a subspace of L2(Ω).

Proof. The proof depends on the following two facts:

(i) The existence of the minima of the Rayleigh quotient, and

(ii) λn ↑ ∞, νn ↑ ∞, as n → ∞. (will be proved in the lecture of “eigenvalue
asymptotics”)

We’ll prove (3) for all f ∈ C2
0(Ω) for (DL) and for all f ∈ C2(Ω) for (NL),

respectively. For an arbitrary f ∈ L2(Ω), see examples in [4, Sec. 6.5] and [2,
Chap. 11].

Let’s start with the (DL) case. Given an arbitrary function f ∈ C2
0(Ω), set

rN(x)
∆
= f(x)−

N∑
n=1

cnϕn(x) ∈ C2
0(Ω).
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By the orthogonality, for j = 1, ..., n,

〈rN , ϕj〉 =

〈
f −

N∑
n=1

cnϕn, ϕj

〉
= 〈f, ϕj〉 − cj 〈ϕj, ϕj〉 = 0.

So, rN satisfies the conditions of (MP)N+1. Thus, we have

λN+1 = min
w∈C2

0 (Ω), w 6≡0
〈w,ϕj〉=0, j=1,...,N

‖∇w‖2

‖w‖2
≤ ‖∇rN‖2

‖rN‖2
.

Now we have

‖∇rN‖2 =

∫

Ω

|∇(f −∑N
n=1 cnϕn)|2 dx

=

∫

Ω

(
|∇f |2 − 2

∑
n

cn∇f · ∇ϕn +
∑
m

∑
n

cmcn∇ϕn · ∇ϕm

)
dx.

(4)
By Green’s first identity, we have

∫

Ω

∇f · ∇ϕn dx = −
∫

Ω

f∆ϕn dx +

∫

∂Ω

∂ϕn

∂ν
f dS = λn 〈f, ϕn〉 .

and similarly
∫

Ω

∇ϕn · ∇ϕn = δmnλn‖ϕn‖2.

So, (4) will give us

‖∇rN‖2 =

∫

Ω

|∇f |2 dx−
N∑

n=1

c2
nλn‖ϕn‖2.

Since λn > 0, we have

‖∇rN‖2 <

∫

Ω

|∇f |2 dx = ‖∇f‖2.

Therefore,

λN+1 ≤ ‖∇rN‖2

‖rN‖2
=⇒ ‖rN‖2 ≤ ‖∇f‖2

λN+1

.
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As we will show later λN+1 ↑ ∞ as N →∞, we have that ‖rN‖2 ↓ 0 as N →∞.
The Neumann case can be derived similarly.

2 Justification of the Separation of Variables via Com-
pleteness

Prior to all this, we heuristically used the separation of variables technique to
solve certain partial differential equations. With the idea of completeness, we can
justify its use if we have that {ϕn}n∈N and {ψn}n∈N are a complete orthogonal
basis.

2.1 Separation of the Time Variable
To justify the separation of the time variable, we examine the heat equation for
a more practical treatment of the justification. One can adjust this argument to
validate the separation of the time variable in a more general context, but for our
purposes it is not necessary. The heat conduction is modeled by:





ut = k∆u in Ω,
u = 0 on ∂Ω,
u(x, 0) = f(x) in Ω.

(5)

A similar model can be formed for the Neumann and Robin conditions.

As we know, the separation of variables leads to

u(x, t) =
∞∑

n=1

Ane−λnktϕn(x).

But we will prove this by assuming certain differentiability on u and u ∈ H1
0 (Ω)

i.e., ‖u‖2 + ‖∇u‖2 < ∞, instead of the separation of variables. For the details,
see [4, Chap. 7].

Proof. Let u(x, t) be a solution to (5). For each t, u(·, t) ∈ L2(Ω) and satisfies the
Dirichlet condition. Since {ϕn}n∈N is complete in L2(Ω), we can expand u(·, t)
as
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u(x, t) =
∞∑

n=1

cn(t)ϕn(x). (6)

Note that cn(t) is unknown at this point. Plugging (6) into (5) (term-by-term
differentiation of the series is assumed; derivatives taken in this manner fall into
the “weak derivative” sense), we get

∞∑
n=1

c′n(t)ϕn(x) = k

∞∑
n=1

cn(t)∆ϕn(x) =
∞∑

n=1

−kλncn(t)ϕn(x).

Thanks to the completeness of {ϕn}n∈N, we can deduce c′n(t) = −kλncn(t).
Hence we have

cn(t) = Ane−kλnt, An : arbitrary const. (7)

2.2 Separation of the Spatial Variables
For simplicity, we will only justify separation of the spatial variables for the 2D
rectangle Ω = I1 × I2 ⊂ R2 with I1, I2 ⊂ R as shown in Figure 1.

Figure 1: Ω ⊂ R2, with I1, I2 ⊂ R.
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With ∆ =
∂2

∂ x2
+

∂2

∂ y2
= ∂xx+∂yy, let−∂xxϕ

1
n(x) = αnϕ1

n(x) and−∂yyϕ
2
m(y) =

βnϕ
2
n(y) with appropriate boundary conditions for the (D), (N), or (R) cases.

Theorem 2.1. The set of products {ϕ1
n(x)ϕ2

m(y)}(n,m)∈N2 is a complete set of
eigenfunctions for −∆ in Ω with the given boundary conditions.

Proof. We have

−∆
(
ϕ1

n(x)ϕ2
m(y)

)
=

(−∂xxϕ
1
n(x)

)
ϕ2

m(y) + ϕ1
n(x)

(−∂yyϕ
2
m(y)

)

= (αn + βm) ϕ1
n(x)ϕ2

m(y).

Hence, {(αn + βm, ϕ1
n(x)ϕ2

m(y))}(n,m)∈N2 are eigenpairs, and we clearly see that
〈ϕ1

nϕ
2
m, ϕ1

n′ϕ
2
m′〉 = const · δnn′δmm′ .

We know that {ϕj
n}n∈N is complete in L2(Ij), j = 1, 2, so the question is whether

this 2D eigenvalue problem has eigenfunctions other than the product form {ϕ1
nϕ2

m}.

Suppose u is such an eigenfunction (non-product form) so that u satisfies −∆u =
λu, u|∂Ω = 0.

(i) Suppose λ /∈ {αn + βm}(n,m)∈N2 . Then u ⊥ ϕ1
nϕ

2
m via the Fundamental Theo-

rem of orthogonality of Laplacian eigenfunctions (see Lecture 4). Thus, we have

0 =
〈
u, ϕ1

nϕ
2
m

〉
=

∫

I2

(∫

I1

u(x, y)ϕ1
n(x) dx

)
ϕ2

m(y) dy.

By the completeness of {ϕ2
m(y)}m∈N in L2(I2), we must have

∫
I1

u(x, y)ϕ1
n(x) dx =

0 for y ∈ I2, a.e.. Similarly by the completeness of {ϕ1
n(x)}n∈N in L2(I1),

u(x, y) = 0, a.e..

So such a u is not an eigenfunction, which means that we must have λ ∈ {αn + βm}(n,m)∈N2

i.e., λ = αn + βm for some (n,m) ∈ N2. It is possible that αn + βm may have
multipilicity greater than 1. So let {ϕ1

nϕ
2
m}(n,m)∈Λ be the corresponding eigen-

functions where Λ ( N2. Then set

r(x, y)
∆
= u(x, y)−

∑

(n,m)∈Λ

cnmϕ1
n(x)ϕ2

m(y), with cnm =
〈u, ϕ1

nϕ2
m〉

‖ϕ1
nϕ

2
m‖2

.
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Now r(x, y) ⊥ {ϕ1
nϕ

2
m}(n,m)∈Λ by construction. So, r(x, y) ≡ 0 (a.e.) via a

similar argument as before. Thus,

u(x, y) =
∑

(n,m)∈Λ

cnmϕ1
n(x)ϕ2

m(y) a.e.

Therefore, {ϕ1
nϕ

2
m}(n,m)∈N2 is complete in L2(Ω).
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