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The basic references for this lecture are [1, Sec. 11.6], [2, Sec VI.2] and [3, Sec.

11.2].

1 Asymptotics of the Eigenvalues

Our main purpose here is to show λn ↑ ∞ and νn ↑ ∞ as n → ∞ and also to

show how fast the eigenvalues go to infinity.

Theorem 1.1 (Weyl). Consider the following Dirichlet-Laplacian (D-L) problem.

{
−∆u = λu in Ω,
u = 0 on ∂Ω,

where Ω ⊂ R
2, Ω is open, and |Ω| <∞. Then,

lim
n→∞

λn

n
=

4π

|Ω| . (1)

For general domains in higher dimensions, the following are also true:
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• For Ω ⊂ R
3, lim

n→∞

λ
3/2
n

n
=

6π2

|Ω| .

• For Ω ⊂ R
d, lim

n→∞

λ
d/2
n

n
=
C̃d

|Ω| , where C̃d = (4π)d/2Γ

(
d

2
+ 1

)
.

Before discussing a rough proof, let us list a couple of examples.

Example 1.2 (1D interval).

Given Ω = (0, ℓ) for the D-L problem, then

λn =
(nπ
ℓ

)2

and

lim
n→∞

λ
1/2
n

n
=
π

ℓ
=

π

|Ω| .

Notice that for Neumann-Laplacian (N-L) and Robin-Laplacian (R-L) problems,

we have the same results.

Example 1.3 (2D rectangle of sides a and b).

Let Ω = {(x, y) ∈ R
2 | 0 < x < a, 0 < y < b} for the D-L problem, then

λn = λℓ,m =

(
ℓπ

a

)2

+
(mπ
b

)2

, ℓ,m = 1, 2, . . . (2)

Because these are naturally indexed by (ℓ,m), it is difficult to see the relationship

between (1) and (2). So we’ll introduce the so-called enumeration function:

N(λ)
∆
= # {n ∈ N |λn ≤ λ} ,

e.g., if λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . then N(λn) = n.

In this particular case, N(λ) is the number of (ℓ,m) ∈ N
2 satisfying

ℓ2

a2
+
m2

b2
≤ λ

π2
,
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Figure 1: Lattice points contained inside the ellipse in the first quadrant. The

ellipse equation:
(x
a

)2

+
(y
b

)2

=
λ

π2
.

see Figure 1.

For each (ℓ,m) we can associate a square of area 1 which implies

N(λ) ≤ area of the ellipse

4
= π

√
λa

π

√
λb

π

1

4
=
λab

4π
.

Now for large λ, the difference betweenN(λ) and λab
4π

is proportional to the length

of the perimeter. So
λab

4π
− c

√
λ ≤ N(λ) ≤ λab

4π

for some c > 0. By setting λ = λn, we get

λnab

4π
− c

√
λn ≤ n ≤ λnab

4π
,

where c is independent of n. Now we have

4π

ab
≤ λn

n
≤ 4π

ab
+

4π

ab
c

√
λn

n
.

Then

lim
n→∞

λn

n
=

4π

ab
=

4π

|Ω| .
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One can get the same thing for the N-L case. To proceed further, we still need

several other theorems.

Theorem 1.4 (Maximin Principle).

Fix n ∈ N with n ≥ 2. Fix n− 1 arbitrary trial functions,

y1, . . . , yn−1 ∈ C2
0(Ω)

1 for the D-L problem,

y1, . . . , yn−1 ∈ C2(Ω) for the N-L problem.

Define

λn∗
∆
= min

w∈C2

0
(Ω)

〈w,yj〉=0
j=1,...,n−1
w 6=0

‖∇w‖2

‖w‖2
,

νn∗
∆
= min

w∈C2(Ω)
〈w,yj〉=0
j=1,...,n−1
w 6=0

‖∇w‖2

‖w‖2
.

Then,
λn = max

yj∈C2

0
(Ω)

j=1,...,n−1

λn∗,

νn = max
yj∈C2(Ω)
j=1,...,n−1

νn∗.

Proof. We will prove this theorem for D-L case first. The N-L case can be proved

similarly. Note that y1, . . . , yn−1 are fixed at the moment. Given the eigenfunc-

tions {ϕj}nj=1 of D-L problem, let

w =
n∑

j=1

cjϕj(x).

1[2] uses f ∈ C0(Ω) and
∂f

∂xj

∈ PC(Ω).
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From the assumption, we have 〈w, yk〉 = 0 for k = 1, . . . , n − 1. Assume also

‖ϕj‖ = 1 for j = 1, . . . , n. Hence, cj must satisfy

0 =

〈
n∑

j=1

cjϕj, yk

〉
=

n∑

j=1

cj 〈ϕj, yk〉 , k = 1, . . . , n− 1.

Since there are n− 1 equations and n unknowns, we can choose c1, . . . , cn so that

not all of them are zeroes. In particular,
∑n

j=1 c
2
j 6= 0.

Then by the definition of λn∗, we have

λn∗ ≤
‖∇w‖2

‖w‖2
(a)
=

∑

j

∑

k

cjck 〈−∆ϕj, ϕk〉
∑

j

∑

k

cjck 〈ϕj, ϕk〉
=

∑

j

∑

k

cjckλjδj,k

∑

j

∑

k

cjckδj,k

=

n∑

j=1

λjc
2
j

n∑

j=1

c2j

≤ λn.

where (a) is derived by Green’s first identity. This inequality holds for each choice

of {y1, . . . , yn−1}. Hence we have

max
{y1,...,yn−1}⊂C2

0
(Ω)
λn∗ ≤ λn. (3)

To show (3) is in fact equal, we only need to find a special choice of {y1, . . . , yn−1}
that attains equality in (3). So let yj = ϕj, j = 1, . . . , n − 1. By the minimum

principle MPn, and the definition of λn∗, we know that for this choice of yj = ϕj

we have maxλn∗ = λn.

Theorem 1.5.

νj ≤ λj, j = 1, 2, . . .

Note that this is different from the Friedlander Theorem that claims νj+1 ≤ λj
for j = 1, 2, . . ., whose proof is much more difficult.

Proof. By the minimum principle, we have

λ1 = min
w∈C2

0
(Ω)

w 6≡0

‖∇w‖2

‖w‖2
, ν1 = min

w∈C2(Ω)
w 6≡0

‖∇w‖2

‖w‖2
.
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Now C2
0(Ω) ⊂ C2(Ω), so the search space for the Neumann case is larger. There-

fore, λ1 ≥ ν1. Now let n ≥ 2. For the same reason, we have

λn∗ ≥ νn∗.

This holds for each set of n− 1 trial functions. So by the Maximin principle,

λn = max
yj∈C2

0
(Ω)

j=1,...,n−1

λn∗ ≥ max
yj∈C2(Ω)
j=1,...,n−1

νn∗ = νn.

Remark 1.6. Any additional constraint will increase the value of the maximin.

Example 1.7 (1D String).

Let Ω = (0, ℓ). We have

λn =
(nπ
ℓ

)2

≥ νn =

(
(n− 1)π

ℓ

)2

, n = 1, 2, . . . .

Theorem 1.8. If Ω ⊂ Ω′, then λn(Ω) ≥ λn(Ω
′).

Proof. For simplicity, let’s write λn = λn(Ω), λ
′
n = λn(Ω

′).

Let w ∈ C2
0(Ω) be an arbitrary trial function in Ω. Define w′ ∈ C2

0(Ω
′) such that

w′(x)
∆
=

{
w(x) if x ∈ Ω,
0 if x ∈ Ω′ \ Ω.

So every trial function in Ω corresponds to a trial function in Ω′, but not conversely

(i.e., ∃ trial functions for Ω′ that do not satisfy the Dirichlet boundary condition

for Ω). So compared to the trial function for Ω′, the trial function for Ω have the

extra constraint of vanishing on ∂Ω. So by Remark 1.6, we get

λn ≥ λ′n.

Here, we avoided to show w′ ∈ C2
0(Ω), but for the details see [2, Sec. VI.1].

For the Neumann case there exists a counterexample (see [4, Sec. 1.3.2]) as fol-

lows.
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Ω′

Ω′\Ω
w′ = 0

Ω
w′ = w

Figure 2: w′(x)

Example 1.9.

Consider a 2D rectangle of sides a and b with a > b. See Figure 3.

α

β

β

α

Ω′

Ω

︷
︸︸

︷

b

︷︸︸︷

a
Figure 3: Neumann Case Counter Example

Let Ω′ = {(x, y) | 0 < x < a, 0 < y < b} and Ω be the inscribed thin rectangle as

shown in Figure 3. Clearly Ω ⊂ Ω′. We already know the Neumann eigenvalues

and eigenfunctions for a rectangle:

νn = νℓ,m = π2

[( ℓ
a

)2

+
(m
b

)2
]
,

ψn(x, y) = ψℓ,m(x, y) = const · cos
(πℓx
a

)
cos

(mπy
b

)
,

where ℓ,m = 0, 1, 2, . . .

Clearly, ν1 = ν0,0 = 0, ψ1 ≡ c = 2√
ab

. Since a > b, the second smallest

eigenvalue and its corresponding eigenfunction are
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ν2 = ν1,0 =
(π
a

)2

, ψ2 = ψ1,0 = c · cos
(π
a
x
)
.

For ν3, we have several possibilities, depending on the relationship between a and

b. Here are just two examples:

(i) If 2
a
> 1

b
, i.e., b < a < 2b, we have

ν3 = ν0,1 =
(π
b

)2

, ψ3 = ψ0,1 = c · cos
(π
b
y
)
,

(ii) If 2
a
< 1

b
, i.e., a > 2b, we have

ν3 = ν2,0 =

(
2π

a

)2

, ψ3 = ψ2,0 = c · cos
(
2π

a
x

)
.

The point is that the second smallest eigenvalue ν2 of a 2D rectangle only depends

on the longer side of the rectangle, in this case a.

Now the longer side of Ω is equal to
√
(a− α)2 + (b− β)2. By choosing appro-

priate α > 0, β > 0 we can have
√

(a− α)2 + (b− β)2 > a. In other words, we

can have ν2 < ν ′2, even if Ω < Ω′.

2 Subdomains

The next step toward the proof of λn → ∞, λn

n
→ 4π

|Ω| as n → ∞ is to divide Ω
into a finite number of subdomains Ω1, . . . ,Ωm by introducing smooth boundary

surfaces (partitions) Γ1,Γ2, . . . . See Figure 4.

Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues for Ω. Let 0 < λ̃1 ≤ λ̃2 ≤ . . . be the

collection of all the eigenvalues {λj(Ωk)}1≤k≤m, j∈N in the ascending order.

By the Maximin principle, each λ̃n can be obtained as

λ̃n = max
{y1,...,yn−1}

min
w∈C2

0
(Ω)

w⊥{y1,...,yn−1}

‖∇w‖2

‖w‖2
.

But each yj, j = 1, . . . , n − 1 are supported on only one of the subdomains

Ω1, . . . ,Ωm. So λn ≤ λ̃n by Remark 1.6.
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As for the Neumann case, again list all the eigenvalues of the subdomains as

0 = ν̃1 = ν̃2 = · · · = ν̃m < ν̃m+1 ≤ . . . . Now in the Maximin principle the trial

functions {y1, . . . , yn−1} for ν̃n do not have to vanish at ∂Ω and Γj, j = 1, 2, . . .
So, there exist less constraints than in the Dirichlet case for Ω, hence we have

ν̃n ≤ λn. Summarizing all the results so far, we have:

Theorem 2.1.
νn ≤ λn ≤ λ̃n,

ν̃n ≤ λn ≤ λ̃n.

Now let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, where Ωj are all all rectangles, see Figure 5.

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Γ8

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω8

Figure 4: Division of Ω into a finite number of subdomains, Ω1,Ω2, . . . ,Ωm with

smooth boundary surfaces, Γ1,Γ2, . . . .

Let

M(λ̃)
∆
= #

{
n ∈ N | λ̃n ≤ λ̃

}
.
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Then by counting integer lattice points in each rectangle Ωj and Ω, we have

lim
λ̃→∞

M(λ̃)

λ̃
=

∑

j

|Ωj|
4π

=
|Ω|
4π
.

Since M(λ̃n) = n, we get

lim
n→∞

λ̃n

n
=

4π

|Ω| .

Ω

Figure 5: Ω represented as a collection of rectangles.

Similarily, we can get

lim
n→∞

ν̃n

n
=

4π

|Ω| .

By the sandwich theorem, we have

lim
n→∞

λn

n
=

4π

|Ω| .
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Remark 2.2. For a more general domain, it can be approximated by unions of

rectangles. Using the similar arguments as before it is possible to prove

lim
n→∞

λn

n
=

4π

|Ω| (2D version of Weyl’s asymptotic formula).

Ω

Figure 6: Example of an approximation of Ω by the union of a uniform squares.

For the details, see [2, Sec. VI. 2] and [3, Sec. 11.2]
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