MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lectures 12+13: Laplacian Eigenvalue Problems for General Domains: IV. Asymptotics of the Eigenvalues

Lecturer: Naoki Saito
Scribe: Ernest Woei/Allen Xue

May 8 \& 10, 2007

The basic references for this lecture are [1, Sec. 11.6], [2, Sec VI.2] and [3, Sec. 11.2].

1 Asymptotics of the Eigenvalues

Our main purpose here is to show $\lambda_{n} \uparrow \infty$ and $\nu_{n} \uparrow \infty$ as $n \rightarrow \infty$ and also to show how fast the eigenvalues go to infinity.

Theorem 1.1 (Weyl). Consider the following Dirichlet-Laplacian (D-L) problem.

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{2}, \Omega$ is open, and $|\Omega|<\infty$. Then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=\frac{4 \pi}{|\Omega|} \tag{1}
\end{equation*}
$$

For general domains in higher dimensions, the following are also true:

- For $\Omega \subset \mathbb{R}^{3}, \lim _{n \rightarrow \infty} \frac{\lambda_{n}^{3 / 2}}{n}=\frac{6 \pi^{2}}{|\Omega|}$.
- For $\Omega \subset \mathbb{R}^{d}, \lim _{n \rightarrow \infty} \frac{\lambda_{n}^{d / 2}}{n}=\frac{\widetilde{C}_{d}}{|\Omega|}$, where $\widetilde{C}_{d}=(4 \pi)^{d / 2} \Gamma\left(\frac{d}{2}+1\right)$.

Before discussing a rough proof, let us list a couple of examples.
Example 1.2 (1D interval).
Given $\Omega=(0, \ell)$ for the D-L problem, then

$$
\lambda_{n}=\left(\frac{n \pi}{\ell}\right)^{2}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}^{1 / 2}}{n}=\frac{\pi}{\ell}=\frac{\pi}{|\Omega|}
$$

Notice that for Neumann-Laplacian (N-L) and Robin-Laplacian (R-L) problems, we have the same results.

Example 1.3 (2D rectangle of sides a and b).
Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<a, 0<y<b\right\}$ for the D-L problem, then

$$
\begin{equation*}
\lambda_{n}=\lambda_{\ell, m}=\left(\frac{\ell \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}, \ell, m=1,2, \ldots \tag{2}
\end{equation*}
$$

Because these are naturally indexed by (ℓ, m), it is difficult to see the relationship between (1) and (2). So we'll introduce the so-called enumeration function:

$$
N(\lambda) \triangleq \#\left\{n \in \mathbb{N} \mid \lambda_{n} \leq \lambda\right\}
$$

e.g., if $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \leq \ldots$ then $N\left(\lambda_{n}\right)=n$.

In this particular case, $N(\lambda)$ is the number of $(\ell, m) \in \mathbb{N}^{2}$ satisfying

$$
\frac{\ell^{2}}{a^{2}}+\frac{m^{2}}{b^{2}} \leq \frac{\lambda}{\pi^{2}},
$$

Figure 1: Lattice points contained inside the ellipse in the first quadrant. The ellipse equation: $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\frac{\lambda}{\pi^{2}}$.
see Figure 1.
For each (ℓ, m) we can associate a square of area 1 which implies

$$
N(\lambda) \leq \frac{\text { area of the ellipse }}{4}=\pi \frac{\sqrt{\lambda} a}{\pi} \frac{\sqrt{\lambda} b}{\pi} \frac{1}{4}=\frac{\lambda a b}{4 \pi} .
$$

Now for large λ, the difference between $N(\lambda)$ and $\frac{\lambda a b}{4 \pi}$ is proportional to the length of the perimeter. So

$$
\frac{\lambda a b}{4 \pi}-c \sqrt{\lambda} \leq N(\lambda) \leq \frac{\lambda a b}{4 \pi}
$$

for some $c>0$. By setting $\lambda=\lambda_{n}$, we get

$$
\frac{\lambda_{n} a b}{4 \pi}-c \sqrt{\lambda_{n}} \leq n \leq \frac{\lambda_{n} a b}{4 \pi}
$$

where c is independent of n. Now we have

$$
\frac{4 \pi}{a b} \leq \frac{\lambda_{n}}{n} \leq \frac{4 \pi}{a b}+\frac{4 \pi}{a b} c \frac{\sqrt{\lambda_{n}}}{n}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=\frac{4 \pi}{a b}=\frac{4 \pi}{|\Omega|}
$$

One can get the same thing for the N-L case. To proceed further, we still need several other theorems.

Theorem 1.4 (Maximin Principle).
Fix $n \in \mathbb{N}$ with $n \geq 2$. Fix $n-1$ arbitrary trial functions,

$$
\begin{array}{ll}
y_{1}, \ldots, y_{n-1} \in C_{0}^{2}(\Omega)^{1} \quad \text { for the } D \text {-L problem } \\
y_{1}, \ldots, y_{n-1} \in C^{2}(\Omega) & \text { for the } N \text {-L problem. }
\end{array}
$$

Define

$$
\begin{aligned}
& \lambda_{n *} \triangleq \min _{\substack{w \in C_{0}^{2}(\Omega) \\
\left\langle w, y_{j}\right\rangle=0 \\
j=1, \ldots, n-1 \\
w \neq 0}} \frac{\|\nabla w\|^{2}}{\|w\|^{2}}, \\
& \nu_{n *} \triangleq \triangleq \min _{\substack{w \in C^{2}(\Omega) \\
\left\langle w, y_{j}=0 \\
j=1, \ldots, n-1 \\
w \neq 0\right.}} \frac{\|\nabla w\|^{2}}{\|w\|^{2}} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \lambda_{n}=\max _{\substack{y_{j} \in C_{0}^{2}(\Omega) \\
j=1, \ldots, n-1}} \lambda_{n *}, \\
& \nu_{n}=\max _{\substack{y_{j} \in C^{2}(\Omega) \\
j=1, \ldots, n-1}} \nu_{n *} .
\end{aligned}
$$

Proof. We will prove this theorem for D-L case first. The N-L case can be proved similarly. Note that y_{1}, \ldots, y_{n-1} are fixed at the moment. Given the eigenfunctions $\left\{\varphi_{j}\right\}_{j=1}^{n}$ of D-L problem, let

$$
w=\sum_{j=1}^{n} c_{j} \varphi_{j}(x)
$$

[^0]From the assumption, we have $\left\langle w, y_{k}\right\rangle=0$ for $k=1, \ldots, n-1$. Assume also $\left\|\varphi_{j}\right\|=1$ for $j=1, \ldots, n$. Hence, c_{j} must satisfy

$$
0=\left\langle\sum_{j=1}^{n} c_{j} \varphi_{j}, y_{k}\right\rangle=\sum_{j=1}^{n} c_{j}\left\langle\varphi_{j}, y_{k}\right\rangle, k=1, \ldots, n-1
$$

Since there are $n-1$ equations and n unknowns, we can choose c_{1}, \ldots, c_{n} so that not all of them are zeroes. In particular, $\sum_{j=1}^{n} c_{j}^{2} \neq 0$.

Then by the definition of $\lambda_{n *}$, we have

$$
\begin{aligned}
& \lambda_{n *} \leq \frac{\|\nabla w\|^{2}}{\|w\|^{2}} \stackrel{(a)}{=} \frac{\sum_{j} \sum_{k} c_{j} c_{k}\left\langle-\Delta \varphi_{j}, \varphi_{k}\right\rangle}{\sum_{j} \sum_{k} c_{j} c_{k}\left\langle\varphi_{j}, \varphi_{k}\right\rangle}=\frac{\sum_{j} \sum_{k} c_{j} c_{k} \lambda_{j} \delta_{j, k}}{\sum_{j} \sum_{k} c_{j} c_{k} \delta_{j, k}} \\
&=\frac{\sum_{j=1}^{n} \lambda_{j} c_{j}^{2}}{\sum_{j=1}^{n} c_{j}^{2}} \leq \lambda_{n} .
\end{aligned}
$$

where (a) is derived by Green's first identity. This inequality holds for each choice of $\left\{y_{1}, \ldots, y_{n-1}\right\}$. Hence we have

$$
\begin{equation*}
\max _{\left\{y_{1}, \ldots, y_{n-1}\right\} \subset C_{0}^{2}(\Omega)} \lambda_{n *} \leq \lambda_{n} . \tag{3}
\end{equation*}
$$

To show (3) is in fact equal, we only need to find a special choice of $\left\{y_{1}, \ldots, y_{n-1}\right\}$ that attains equality in (3). So let $y_{j}=\varphi_{j}, j=1, \ldots, n-1$. By the minimum principle MP_{n}, and the definition of $\lambda_{n *}$, we know that for this choice of $y_{j}=\varphi_{j}$ we have $\max \lambda_{n *}=\lambda_{n}$.

Theorem 1.5.

$$
\nu_{j} \leq \lambda_{j}, j=1,2, \ldots
$$

Note that this is different from the Friedlander Theorem that claims $\nu_{j+1} \leq \lambda_{j}$ for $j=1,2, \ldots$, whose proof is much more difficult.

Proof. By the minimum principle, we have

$$
\lambda_{1}=\min _{\substack{w \in C_{0}^{2}(\Omega) \\ w \neq 0}} \frac{\|\nabla w\|^{2}}{\|w\|^{2}}, \quad \nu_{1}=\min _{\substack{w \in C^{2}(\Omega) \\ w \neq 0}} \frac{\|\nabla w\|^{2}}{\|w\|^{2}} .
$$

Now $C_{0}^{2}(\Omega) \subset C^{2}(\Omega)$, so the search space for the Neumann case is larger. Therefore, $\lambda_{1} \geq \nu_{1}$. Now let $n \geq 2$. For the same reason, we have

$$
\lambda_{n *} \geq \nu_{n *} .
$$

This holds for each set of $n-1$ trial functions. So by the Maximin principle,

$$
\lambda_{n}=\max _{\substack{y_{j} \in C_{0}^{2}(\Omega) \\ j=1, \ldots, n-1}} \lambda_{n *} \geq \max _{\substack{y_{j} \in C^{2}(\Omega) \\ j=1, \ldots, n-1}} \nu_{n *}=\nu_{n}
$$

Remark 1.6. Any additional constraint will increase the value of the maximin.

Example 1.7 (1D String).
Let $\Omega=(0, \ell)$. We have

$$
\lambda_{n}=\left(\frac{n \pi}{\ell}\right)^{2} \geq \nu_{n}=\left(\frac{(n-1) \pi}{\ell}\right)^{2}, \quad n=1,2, \ldots
$$

Theorem 1.8. If $\Omega \subset \Omega^{\prime}$, then $\lambda_{n}(\Omega) \geq \lambda_{n}\left(\Omega^{\prime}\right)$.
Proof. For simplicity, let's write $\lambda_{n}=\lambda_{n}(\Omega), \lambda_{n}^{\prime}=\lambda_{n}\left(\Omega^{\prime}\right)$.
Let $w \in C_{0}^{2}(\Omega)$ be an arbitrary trial function in Ω. Define $w^{\prime} \in C_{0}^{2}\left(\Omega^{\prime}\right)$ such that

$$
w^{\prime}(\boldsymbol{x}) \triangleq \begin{cases}w(\boldsymbol{x}) & \text { if } \boldsymbol{x} \in \Omega \\ 0 & \text { if } \boldsymbol{x} \in \Omega^{\prime} \backslash \Omega\end{cases}
$$

So every trial function in Ω corresponds to a trial function in Ω^{\prime}, but not conversely (i.e., \exists trial functions for Ω^{\prime} that do not satisfy the Dirichlet boundary condition for Ω). So compared to the trial function for Ω^{\prime}, the trial function for Ω have the extra constraint of vanishing on $\partial \Omega$. So by Remark 1.6, we get

$$
\lambda_{n} \geq \lambda_{n}^{\prime}
$$

Here, we avoided to show $w^{\prime} \in C_{0}^{2}(\Omega)$, but for the details see [2, Sec. VI.1].

For the Neumann case there exists a counterexample (see [4, Sec. 1.3.2]) as follows.

Figure 2: $w^{\prime}(\boldsymbol{x})$

Example 1.9.

Consider a $2 D$ rectangle of sides a and b with $a>b$. See Figure 3.

Figure 3: Neumann Case Counter Example
Let $\Omega^{\prime}=\{(x, y) \mid 0<x<a, 0<y<b\}$ and Ω be the inscribed thin rectangle as shown in Figure 3. Clearly $\Omega \subset \Omega^{\prime}$. We already know the Neumann eigenvalues and eigenfunctions for a rectangle:

$$
\begin{aligned}
& \nu_{n}=\nu_{\ell, m}=\pi^{2}\left[\left(\frac{\ell}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}\right] \\
& \psi_{n}(x, y)=\psi_{\ell, m}(x, y)=\mathrm{const} \cdot \cos \left(\frac{\pi \ell x}{a}\right) \cos \left(\frac{m \pi y}{b}\right)
\end{aligned}
$$

where $\ell, m=0,1,2, \ldots$
Clearly, $\nu_{1}=\nu_{0,0}=0, \quad \psi_{1} \equiv c=\frac{2}{\sqrt{a b}}$. Since $a>b$, the second smallest eigenvalue and its corresponding eigenfunction are

$$
\nu_{2}=\nu_{1,0}=\left(\frac{\pi}{a}\right)^{2}, \quad \psi_{2}=\psi_{1,0}=c \cdot \cos \left(\frac{\pi}{a} x\right)
$$

For ν_{3}, we have several possibilities, depending on the relationship between a and b. Here are just two examples:
(i) If $\frac{2}{a}>\frac{1}{b}$, i.e., $b<a<2 b$, we have

$$
\nu_{3}=\nu_{0,1}=\left(\frac{\pi}{b}\right)^{2}, \quad \psi_{3}=\psi_{0,1}=c \cdot \cos \left(\frac{\pi}{b} y\right)
$$

(ii) If $\frac{2}{a}<\frac{1}{b}$, i.e., $a>2 b$, we have

$$
\nu_{3}=\nu_{2,0}=\left(\frac{2 \pi}{a}\right)^{2}, \quad \psi_{3}=\psi_{2,0}=c \cdot \cos \left(\frac{2 \pi}{a} x\right)
$$

The point is that the second smallest eigenvalue ν_{2} of a $2 D$ rectangle only depends on the longer side of the rectangle, in this case a.

Now the longer side of Ω is equal to $\sqrt{(a-\alpha)^{2}+(b-\beta)^{2}}$. By choosing appropriate $\alpha>0, \beta>0$ we can have $\sqrt{(a-\alpha)^{2}+(b-\beta)^{2}}>a$. In other words, we can have $\nu_{2}<\nu_{2}^{\prime}$, even if $\Omega<\Omega^{\prime}$.

2 Subdomains

The next step toward the proof of $\lambda_{n} \rightarrow \infty, \frac{\lambda_{n}}{n} \rightarrow \frac{4 \pi}{|\Omega|}$ as $n \rightarrow \infty$ is to divide Ω into a finite number of subdomains $\Omega_{1}, \ldots, \Omega_{m}$ by introducing smooth boundary surfaces (partitions) $\Gamma_{1}, \Gamma_{2}, \ldots$. See Figure 4.

Let $0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ be the eigenvalues for Ω. Let $0<\widetilde{\lambda}_{1} \leq \widetilde{\lambda}_{2} \leq \ldots$ be the collection of all the eigenvalues $\left\{\lambda_{j}\left(\Omega_{k}\right)\right\}_{1 \leq k \leq m, j \in \mathbb{N}}$ in the ascending order.

By the Maximin principle, each $\widetilde{\lambda}_{n}$ can be obtained as

$$
\tilde{\lambda}_{n}=\max _{\left\{y_{1}, \ldots, y_{n-1}\right\}} \min _{\substack{w \in C_{0}^{2}(\Omega) \\ w \perp\left\{y_{1}, \ldots, y_{n-1}\right\}}} \frac{\|\nabla w\|^{2}}{\|w\|^{2}} .
$$

But each $y_{j}, j=1, \ldots, n-1$ are supported on only one of the subdomains $\Omega_{1}, \ldots, \Omega_{m}$. So $\lambda_{n} \leq \widetilde{\lambda}_{n}$ by Remark 1.6.

As for the Neumann case, again list all the eigenvalues of the subdomains as $0=\widetilde{\nu}_{1}=\widetilde{\nu}_{2}=\cdots=\widetilde{\nu}_{m}<\widetilde{\nu}_{m+1} \leq \ldots$. Now in the Maximin principle the trial functions $\left\{y_{1}, \ldots, y_{n-1}\right\}$ for $\widetilde{\nu}_{n}$ do not have to vanish at $\partial \Omega$ and $\Gamma_{j}, j=1,2, \ldots$ So, there exist less constraints than in the Dirichlet case for Ω, hence we have $\widetilde{\nu}_{n} \leq \lambda_{n}$. Summarizing all the results so far, we have:

Theorem 2.1.

$$
\begin{aligned}
& \nu_{n} \leq \lambda_{n} \leq \widetilde{\lambda}_{n} \\
& \widetilde{\nu}_{n} \leq \lambda_{n} \leq \widetilde{\lambda}_{n}
\end{aligned}
$$

Now let $\bar{\Omega}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}} \cup \cdots \cup \overline{\Omega_{m}}$, where Ω_{j} are all all rectangles, see Figure 5 .

Figure 4: Division of Ω into a finite number of subdomains, $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{m}$ with smooth boundary surfaces, $\Gamma_{1}, \Gamma_{2}, \ldots$.

Let

$$
M(\widetilde{\lambda}) \triangleq \#\left\{n \in \mathbb{N} \mid \widetilde{\lambda}_{n} \leq \widetilde{\lambda}\right\}
$$

Then by counting integer lattice points in each rectangle Ω_{j} and Ω, we have

$$
\lim _{\widetilde{\lambda} \rightarrow \infty} \frac{M(\widetilde{\lambda})}{\widetilde{\lambda}}=\sum_{j} \frac{\left|\Omega_{j}\right|}{4 \pi}=\frac{|\Omega|}{4 \pi}
$$

Since $M\left(\widetilde{\lambda}_{n}\right)=n$, we get

$$
\lim _{n \rightarrow \infty} \frac{\tilde{\lambda}_{n}}{n}=\frac{4 \pi}{|\Omega|}
$$

Figure 5: Ω represented as a collection of rectangles.

Similarily, we can get

$$
\lim _{n \rightarrow \infty} \frac{\widetilde{\nu}_{n}}{n}=\frac{4 \pi}{|\Omega|} .
$$

By the sandwich theorem, we have

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=\frac{4 \pi}{|\Omega|}
$$

Remark 2.2. For a more general domain, it can be approximated by unions of rectangles. Using the similar arguments as before it is possible to prove

Figure 6: Example of an approximation of Ω by the union of a uniform squares.

For the details, see [2, Sec. VI. 2] and [3, Sec. 11.2]

References

[1] W. A. Strauss, Partial Differential Equations: An Introduction, John Wiley \& Sons, 1992.
[2] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Wiley-Interscience, 1953.
[3] P. R. Garabedian, Partial Differential Equations, AMS Chelsea Publishing, 1964.
[4] A. Henrot: Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser, 2006.

[^0]: ${ }^{1}[2]$ uses $f \in C_{0}(\Omega)$ and $\frac{\partial f}{\partial x_{j}} \in \operatorname{PC}(\Omega)$.

