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The basic references for this lecture are [1, Sec. 11.6], [2, Sec V1.2] and [3, Sec.
11.2].
1 Asymptotics of the Eigenvalues

Our main purpose here is to show A, T oo and v, T oo as n — oo and also to
show how fast the eigenvalues go to infinity.

Theorem 1.1 (Weyl). Consider the following Dirichlet-Laplacian (D-L) problem.
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where Q2 C R%, Q is open, and || < co. Then,
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For general domains in higher dimensions, the following are also true:
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Before discussing a rough proof, let us list a couple of examples.

Example 1.2 (1D interval).
Given €2 = (0, £) for the D-L problem, then
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Notice that for Neumann-Laplacian (N-L) and Robin-Laplacian (R-L) problems,
we have the same results.

Example 1.3 (2D rectangle of sides a and b).
Let Q= {(x,y) € R?|0 < x < a,0 < y < b} for the D-L problem, then
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Because these are naturally indexed by (¢, m), it is difficult to see the relationship
between (1) and (2). So we’ll introduce the so-called enumeration function:

N\ 2 #{neN|\, <A},
e.g,if Ay <A< - <\, <...then N()\,) = n.

In this particular case, N () is the number of (¢, m) € N? satisfying
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Figure 1: Lattice points contained inside the ellipse in the first quadrant. The
2 2\
ellipse equation: (£> + (g> —.
a b 72

see Figure 1.

For each (¢, m) we can associate a square of area 1 which implies

N < area of the ellipse Via Vb1 _Aab
- 4 ~Tr T 4 4

Now for large A, the difference between /N (\) and % is proportional to the length
of the perimeter. So

Aab Aab
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for some ¢ > 0. By setting A = \,,, we get
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where c is independent of n. Now we have
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One can get the same thing for the N-L case. To proceed further, we still need
several other theorems.

Theorem 1.4 (Maximin Principle).
Fix n € Nwithn > 2. Fixn — 1 arbitrary trial functions,

Yiy - Yn_1 € CZ(Q) for the D-L problem,
Yty Yno1 € C*(Q)  for the N-L problem.

Define
V 2
w2 g 15
weC?(Q)  ||wl|
(w,y;)=
j=1....n—1
w#0 )
A IVl
Upx in 3
weC?(Q)  ||w||
(w,y;)=0
j=1,...n—1
w#0
Then,
Ap = max A,
y;€C5(2)
J=1,...,n—1
V, = max Uy
y; €C?(Q)
7=1,...,n—1

Proof. We will prove this theorem for D-L case first. The N-L case can be proved
similarly. Note that vy, ...,¥y,_; are fixed at the moment. Given the eigenfunc-
tions {¢; }7_, of D-L problem, let

w="Y"cjp;(x).
j=1

2] uses f € Cp(f2) and aa—f € PC(2).
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From the assumption, we have (w,y,) = 0 for k = 1,...,n — 1. Assume also

llpjl| = 1for j =1,...,n. Hence, ¢; must satisfy
n n
0= <chgoj,yk> = ch (i yk), k=1,...,n—1.
j=1 Jj=1
Since there are n — 1 equations and n unknowns, we can choose ¢4, . .., ¢, so that
not all of them are zeroes. In particular, Z?zl 0]2- # 0.

Then by the definition of \,,., we have
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where (a) is derived by Green’s first identity. This inequality holds for each choice
of {y1,...,yn_1}. Hence we have

{y1,yn—13CCE ()

To show (3) is in fact equal, we only need to find a special choice of {y1, ..., ¥y, 1}
that attains equality in (3). Solety; = ¢;, j = 1,...,n — 1. By the minimum
principle MP,,, and the definition of \,,., we know that for this choice of y; = ¢;
we have max A\, = \,. ]

Theorem 1.5.
V;j S)\j, ]:1,2,

Note that this is different from the Friedlander Theorem that claims v, < );
forj =1,2, ..., whose proof is much more difficult.

Proof. By the minimum principle, we have
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Now C2(€Q) C C?%(Q), so the search space for the Neumann case is larger. There-
fore, \; > 1. Now let n > 2. For the same reason, we have

>\n* 2 Vpx.

This holds for each set of n — 1 trial functions. So by the Maximin principle,

Ay = Mmax Ay > Max  VUps = Up.
Y, €C3(Q) y;€C%()
j=1,.n—1 j=1,..,n—1

]

Remark 1.6. Any additional constraint will increase the value of the maximin.

Example 1.7 (1D String).
Let Q = (0, ¢). We have
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Theorem 1.8. If 2 C SV, then A\, (2) > A, ().

Proof. For simplicity, let’s write \,, = A\, (£2), A, = A, (€2').

Let w € CZ(f2) be an arbitrary trial function in 2. Define w’ € C2 (') such that

() A [ wx) ifxe,
YT 0 ifee\Q

So every trial function in €2 corresponds to a trial function in €)', but not conversely
(i.e., 3 trial functions for {2’ that do not satisfy the Dirichlet boundary condition
for 2). So compared to the trial function for €2, the trial function for 2 have the
extra constraint of vanishing on 0f2. So by Remark 1.6, we get

An > N

Here, we avoided to show w’ € C3((2), but for the details see [2, Sec. VL.1]. [

For the Neumann case there exists a counterexample (see [4, Sec. 1.3.2]) as fol-
lows.



Figure 2: w'(x)

Example 1.9.
Consider a 2D rectangle of sides a and b with a > b. See Figure 3.
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Figure 3: Neumann Case Counter Example

Let Y = {(z,y) |0 <z < a, 0 <y < b} and {2 be the inscribed thin rectangle as
shown in Figure 3. Clearly 2 C €. We already know the Neumann eigenvalues
and eigenfunctions for a rectangle:

= [ (2]
Yn(2,y) = Yom(x,y) = const - cos (%) coS (@),

where {,m =0,1,2, ...

Clearly, v = 1o =0, ¥ =c = \/% Since a > b, the second smallest

eigenvalue and its corresponding eigenfunction are
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Vg =UV10 = (—) s 1/)2 = 1/)170 = C - COS (—ZE) .
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For v3, we have several possibilities, depending on the relationship between a and
b. Here are just two examples:
1) If% > %, ie., b < a < 2b, we have

™

V3 = W1 = <g>2> Y3 =11 = ¢ cos (%y) )

(i) If 2 < 1, i.e., a > 2b, we have

27\ 2 27
Vg =1Vy0 = <?) ) @/)3 = @/)2,0 = C-COS <?$> .

The point is that the second smallest eigenvalue v, of a 2D rectangle only depends
on the longer side of the rectangle, in this case a.

Now the longer side of €2 is equal to \/(a — )2 + (b — 3)2. By choosing appro-
priate o > 0, 3 > 0 we can have \/(a — a)? + (b — 3)? > a. In other words, we
can have vy < v}, evenif ) < (V.

2 Subdomains

The next step toward the proof of \,, — oo, ’\7" — % as n — oo is to divide €
into a finite number of subdomains €2y, ..., ), by introducing smooth boundary
surfaces (partitions) I'y, I's, . ... See Figure 4.

Let 0 < A\ < Ay < ... be the eigenvalues for €. Let 0 < Xl < XQ < ... be the
collection of all the eigenvalues {A;(€2)}, ;. jen in the ascending order.

By the Maximin principle, each X can be obtained as

3 . IVl
A, = max min —.
{Y1,Un—1}  weCR(Q) ||w||
wl{yi,..yn—1}
But each y;, j = 1,...,n — 1 are supported on only one of the subdomains

Q1,..., Q. So Ay < A, by Remark 1.6.
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As for the Neumann case, again list all the eigenvalues of the subdomains as
O=v1 =0y =+ =VUp < VUpy1 < .... Now in the Maximin principle the trial
functions {y1, ..., yn—1} for 7, do not have to vanish at 0Q and I';, 7 =1,2,...
So, there exist less constraints than in the Dirichlet case for €2, hence we have
Un < A,. Summarizing all the results so far, we have:

Theorem 2.1. »

Now let Q = Q; UQy U -+ - UQ,,, where ©; are all all rectangles, see Figure 5.

Figure 4: Division of € into a finite number of subdomains, {24, (s, ..., (2, with
smooth boundary surfaces, I'1, 'y, .. ..

Let
M(A)é#{neNngX}.
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Then by counting integer lattice points in each rectangle €2; and (2, we have
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Since M (\,) = n, we get
An 4

Figure 5: € represented as a collection of rectangles.

Similarily, we can get

. Up, 4

im — = —

n—soco N, ’Q’
By the sandwich theorem, we have

. An 41

im — = —

n—oo N |Q|



Remark 2.2. For a more general domain, it can be approximated by unions of
rectangles. Using the similar arguments as before it is possible to prove

A 4 ) .
lim 2% = (2D version of Weyl’s asymptotic formula).
n—oo 1 ’Q’
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Figure 6: Example of an approximation of {2 by the union of a uniform squares.

For the details, see [2, Sec. VI. 2] and [3, Sec. 11.2]
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