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1 Shape recognition using Laplacian eigenvalues

In this section, we will introduce the work of Kbabou, Hermi,and Rhonma (2007)[2].
Their main idea is to use the eigenvalues and their ratios of the Dirichlet-Laplacian
for various planar shapes as their features for classifyingthem.

1.1 Recall some special geometric inequalities (2D)

Let the sequence0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → ∞ be the sequence
of eigenvalues of Dirichlet-Laplacian problem:−∆u = λu in a given bounded
planar domainΩ with Dirichlet boundary conditionu = 0 on its boundary∂Ω.
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1.1.1 Universal Inequalities

• Payne-Ṕolya-Weinberger inequalities [7].





λm+1 − λm ≤ 2 · 1

m

m∑
j=1

λj ,

λm+1

λm

≤ 3.

• Hile-Protter inequality [8].

m∑

j=1

λj

λm+1 − λj

≥ m

2
.

• Yang inequalities [9].




m∑
j=1

(λm+1 − λj)
2 ≤ 2

m∑
j=1

λj(λm+1 − λj),

λm+1 ≤ 3 · 1

m

m∑
j=1

λj .

1.1.2 Isoperimetric inequalities

• Faber-Krahn inequality [10].

λ1 ≥
π2j2

0,1

|Ω|2 ,

• Ashbaugh-Benguria inequality [11].

λ2

λ1
≤

j2
1,1

j2
0,1

≈ 2.5387,

wherej0,1 ≈ 2.4048 andj1,1 ≈ 3.83171 are the first positive zeros of the Bessel
functionsJ0(x) andJ1(x), respectively. And|Ω| is the area ofΩ. The equalities
are attained in the above two formulas if and only if the domain Ω is a2D disk.
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1.1.3 Other Properties

(a) Domain monotonicity property As we have shown in the previous lecture,
if Ω1 ⊂ Ω2, then

λk(Ω1) ≥ λk(Ω2), k ∈ N.

(b) Scaling Property: (see [1], [3])

λk(α Ω) =
λk(Ω)

α2
∀ α > 0, k ∈ N.

whereαΩ is a scaling by factorα of Ω. This implies

λk(α Ω)

λm(α Ω)
=

λk(Ω)

λm(Ω)
∀ k, m ∈ N.

From this, we see that the ratios of Laplacian eigenvalues are scale invariant.

(c) Laplacian eigenvalues are translation and rotation invariant.

1.2 Features used by Khabou, Hermi, and Rhouma

Let Ω be a domain represented by a binary image. Using the Dirichlet-Laplacian
eigenvalues forΩ, define three sets of features as follows.

F1(Ω)
∆
=

{ (
λ1

λ2
,

λ1

λ3
, ...,

λ1

λn

) }
,

F2(Ω)
∆
=

{ (
λ1

λ2
,

λ2

λ3
, ...,

λn−1

λn

) }
,

F3(Ω)
∆
=

{ (
λ1

λ2

− d1

d2

,
λ1

λ3

− d1

d3

, ...,
λ1

λn

− d1

dn

) }
,

where0 < d1 < d2 = d3 < d4 = d5 < · · · ≤ dn are the Dirichlet-Laplacian
(D-L) eigenvalues for the unit disk in2D.
First of all, we can get

0 < Fj(Ω)ℓ ≤ 1, j = 1, 2, |F3(Ω)ℓ| ≤ 1,

whereFj(Ω)ℓ is theℓth component of each vector inFj(Ω).
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It is interesting to consider thatF3 measures the deviation ofΩ from the 2D disk
(not necessarily unit disk). The optimaln depends on the problem being ad-
dressed. Khabou, Hermi, and Rhouma have shown that the threesets of features
were tolerant of boundary noise and deformation and have good inter-class dis-
crimination capabilities. The three sets of features were used successfully to clas-
sify natural and man-made images with a high degree of accuracy and using a
relatively small number of features. Reuter, Wolter, and Peinecke [3] introduces a
method to extract “Shape-DNA”, a numerical fingerprint or signature, of any 2D
or 3D manifold (surface or solid) by taking the eigenvalues (i.e., the spectrum) of
its Laplace-Beltrami operator. Since the spectrum is an isometry invariant, it is
independent of the object’s representation including parametrization and spatial
position. Additionally, the eigenvalues can be normalizedso that uniform scaling
factor for the geometric objects can be obtained easily.

2 Computational Method of Laplacian Eigenvalues

In this section, we will discuss three methods to compute Laplacian eigenvalues
and eigenvectors..

2.1 Finite Difference Scheme [2].

Its main idea is to discretize the equation−∆u = λu by the finite difference
approximation

− 1

h2
[ ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij ] = λuij.

Here the domainΩ is cut into squares of sideh, uij is the value of the eigenfunc-
tion corresponding toλ at the lattice point(ih, jh). The convergence rate of this
method isO(h2). Moreover, it is slow and inaccurate forΩ of a complicated shape
with a large number of grid points.

2.2 Finite Element Method [3].

Many people use this in practice. It is better for generalΩ. But it is still very
cumbersome. Here we just briefly describe the idea of finite element method.

From Equation−∆u = λu, it follows that for any trial functionϕ with ϕ = 0 on
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the boundary ofΩ,

−
∫∫

Ω

ϕ ∆u dx = λ

∫∫

Ω

ϕ u dx.

By Green’s first identity,−
∫∫

Ω
ϕ∆u dx =

∫∫
Ω
∇ϕ · ∇u dx. This implies that

∫∫

Ω

∇ϕ · ∇u dx = λ

∫∫

Ω

ϕ u dx. (1)

We choosen linearly independent functionsF1, ..., Fn which are the linear, quadratic
or cubic polynomials on every tetrahedral element ofΩ and satisfyFk = 0 on the
boundary ofΩ. Take their linear combination as approximation of the solution u,
i.e.,

u ≈
n∑

i=1

Ui Fi, Ui ∈ R. (2)

Again, letϕ = Fk. So
∫∫

Ω

∇ϕ · ∇u dx =
n∑

i=1

aki Ui, k = 1, ..., n,

where

aki =

∫∫

Ω

n∑

j=1

(
∂Fk

∂xj

) (
∂Fi

∂xj

)
dx.

On the other hand,
∫∫

Ω

ϕ u dx =

n∑

i=1

bki Ui, k = 1, ..., n,

where

bki =

∫∫

Ω

Fk Fi dx.

From this and (1), one obtains that
n∑

i=1

aki Ui = λ

n∑

i=1

bki Ui, k = 1, ..., n.

Define the matrixA = (aki) andB = (bki). Then (1) can be written as

AU = λBU , where U = (U1, ..., Un)T .

Soλ andU can be calculated. Furthermore, the eigenfunctionu is obtained by
(2).
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2.3 Method of Particular Solutions (MPS) [4], [5].

2.3.1 History of MPS

In 1967, Fox, Henrici, and Moler (FHM) [5] described the MPS.The famous
example was the Dirichlet-Laplacian eigenfunctions of aL−shaped region, which
turns be the logo of MATLAB. Note that the actual MATLAB logo fails to satisfy
the Dirichlet boundary condition, which was intentionallydone for visual purpose.

Since the MPS runs into difficulties when dealing with more complicated regions,
after the early 1970s, the MPS got less attention. Later on, Descloux and Tolley
presented other method based on local expansions near each vertex [6]. Betcke
and Trefethen proposed a modification of MPS [4]. The crucialchanges are to
work not only with boundary points, but also interior pointsof the domain. The
modified MPS can deal with quite complicated domains.

y

x∂Ω

∂Ω

π/α

Ω

Figure 1: An unbounded domainΩ with interior angle of the wedge.

2.3.2 The Dirichlet-Laplacian problem in an unbounded wedge

As shown in Figure 1, if the interior angle of the wedge isπ
α
, then we have the

D-L eigenfunctions

ϕ(r, θ) = Jαk(
√

λ r) sinαkθ, k ∈ N \ {0}

for anyλ > 0, whereJαk is a Bessel function of the first kind with orderαk. The
spectrum is continuous.

In general, the Dirichlet-Laplacian eigenfunctions are inC∞(Ω)
⋃

C(Ω). If there
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exists a corner in∂Ω with angle π
k
, k ∈ N, then we can do odd (even for the

Neumann-Laplacian problem) reflectionk−1 times followed by one reflection to
get a continuous extension of the eigenfunctionϕ in the whole neighborhood of
the corner. Such a corner is calledregular corner; otherwise, i.e.,π

α
, α ∈ R+\N, is

calledsingular. For a singular corner, it is not possible to extend the eigenfunction
analytically to a whole neighborhood of that corner.

2.3.3 The Original Method of Particular Solutions (MPS)

Its main idea is as follows.

(1) Consider various solutions of−∆u = λu in Ω for a given value ofλ. They
are calledparticular solutions.

(2) Try to varyλ until we can find a linear combination of such solutions that
satisfies the Dirichlet boundary conditionu = 0 on ∂Ω, at a number of sample
points of∂Ω.

Example 2.1. A convenient set of particular solutions near a corner of angle π
α

are {
ϕ(k)(r, θ) = Jαk(

√
λ r) sin(αkθ)

}
k∈N

.

We call these theFourier-Bessel functions. These functions happen to satisfy the
Dirichlet boundary condition along the line segments.

y

x∂Ω

∂Ω

π/α

Ω

Figure 2: A bounded domainΩ with interior angle of the wedge.
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Consider an approximate eigenfunction

ϕ∗(r, θ) =
N∑

k=1

c
(N)
k ϕ(k)(r, θ),

with c
(N)
k to be determined so as to satisfy the Dirichlet boundary condition on the

remainder of the boundary (e.g., the dotted line part in Figure 2).

One approach is to set the collocation points, i.e., sampling points, on the bound-
ary (ri, θi), i = 1, ..., N such that

ϕ∗(ri, θi) = 0, ∀i = 1, . . . , N.

This leads to a nonlinear system of equations

A(λ)c = 0,

where
c = (c

(N)
1 , ..., c

(N)
N )T ∈ R

N ,

A(λ) = ( ajk(λ) ) ∈ R
N×N ,

ajk(λ)
∆
= Jαk(

√
λ rj) sin(αk θj), j, k = 1, . . . , N.

The FHM approach [5] is to look for a zero of detA(λ), and then solve forc
(modulo constant multiplications).

An alternative approach proposed by Moler (1969) is to choose M (M > N)
samples on the boundary. ThenA(λ) ∈ R

M×N . Again, look for a zero or near
zero of the smallest singular value of A(λ). This was superior to the original
FHM method.

Unfortunately, the FHM method fails to obtain more than fourdigits of accu-
racy, the method breaks down afterN = 14 per remaining edge of the boundary
of the L-shaped region.
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2.3.4 Failure of the MPS

The aim of the MPS is to find a valueλ such that there exists a nontrivial linear
combination of the Fourier-Bessel functions that is 0 at thecollocation points on
∂Ω. If λ is not close to an actual eigenvalue, then we expect

A(λ)c = 0

to have no nontrivial solution. The problem is that Fourier-Bessel functions be-
have similarly to a power basiszk and the condition number ofA(λ) grows ex-
ponentially asN increases. This also happens for any value ofλ, whether or not
it is an eigenvalue. Consequently, whenN is large, it is always possible to find a
linear combination of columns ofA(λ) that are close to zero. Ifλ is not close to
an eigenvalue, this results in approximating the zero function which is not a D-L
eigenfunction. Since the MPS method examines only boundarypoints, it cannot
distinguish zero functions and the D-L eigenfunction.

2.3.5 A modified method

The idea of Betcke and Trefethen is to impose constraints using some interior
points fromΩ (see Figure 3). Let

mB
∆
= # of boundary collocation points,

mI
∆
= # of interior collocation points,

m
∆
= mB + mI .

Let ϕ ∈ R
m be a vector containing the values of eigenfunctionϕ(r, θ) at these

m points. We order the entries ofϕ such that the firstmB entries correspond to
the boundary collocation points and the remainingmI entries correspond to the
interior collocation points. Now the matrixA(λ) has more rows:

A(λ) =




AB(λ)

AI(λ)


 ∈ R

m×N

with B andI corresponding to boundary and interior. LetA(λ) be the space of
trial functions sampled at boundary and interior points, i.e.,

A(λ)
∆
= range(A(λ)) ⊂ R

m.
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Figure 3: In the modified method, the Fourier-Bessel functions are sampled at
interior as well as boundary points. The interior points arechosen randomly.

Construct an orthonormal basis ofA(λ) via QR factorization ofA(λ). Set

Q(λ) =




QB(λ)

QI(λ)


 ∈ R

m×N .

Now, forϕ ∈ A(λ), ‖ ϕ ‖= 1, there exists a vectorψ ∈ R
N such that

ϕ = Q(λ)ψ,

‖ ψ ‖= 1.

BecauseQ(λ) is orthonormal,

QT (λ) Q(λ) = IN , if m > N.

Consider the minimization problem

min
ψ∈RN , ‖ψ‖=1

‖ QB(λ)ψ ‖, (1)
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which is exactly to minimize the boundary part ofϕ. The minimizer of (1) is
the right singular vector ofQ(λ) corresponding to the smallest singular value of
QB(λ). Let this singular value be denoted byσB(λ) and the minimizer bỹψ.
Then

σB(λ) = min
ψ∈RN , ‖ψ‖=1

‖ QB(λ)ψ ‖=‖ QB(λ)ψ̃ ‖ .

Let ϕ̃ = Q(λ)ψ̃. Then

1 =‖ ϕ̃ ‖2=

∥∥∥∥
[

QB(λ)

QI(λ)

]
ψ̃

∥∥∥∥
2

= σ2
B(λ)+ ‖ QI(λ)ψ̃ ‖2 .

HereσB(λ) ≈ 0 and‖ QI(λ)ψ̃ ‖≈ 1.

So, at the interior points,̃ϕ are not zeros automatically. Using this method, Betcke
and Trefether could compute the D-L eigenvalues with 14 digits accuracy.
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