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1 Shape recognition using Laplacian eigenvalues

In this section, we will introduce the work of Kbabou, Heriaaid Rhonma (2007)[2].
Their main idea is to use the eigenvalues and their ratidssdDirichlet-Laplacian
for various planar shapes as their features for classifyiag.

1.1 Recall some special geometric inequalities (2D)

Let the sequence < A\; < Ay < A3 < --- < )\, < --- — oo be the sequence
of eigenvalues of Dirichlet-Laplacian problem:Au = Au in a given bounded
planar domairi2 with Dirichlet boundary conditiom = 0 on its boundary)2.



1.1.1 Universal Inequalities

e Payne-Blya-Weinberger inequalities [7].
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o Hile-Protter inequality [8].

1.1.2 Isoperimetric inequalities

e Faber-Krahn inequality [10].
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e Ashbaugh-Benguria inequality [11].
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wherej,; ~ 2.4048 andj; ; ~ 3.83171 are the first positive zeros of the Bessel
functions.Jy(z) andJ;(x), respectively. And<?| is the area of2. The equalities
are attained in the above two formulas if and only if the donfais a2D disk.



1.1.3 Other Properties

(a) Domain monotonicity property As we have shown in the previous lecture,
if Q; C Q,, then

)\k(Ql) > )\k(Qg), k € N.

(b) Scaling Property: (see [1], [3])
Ak(€2)

a2

() = Va>0, keN.

whereaf is a scaling by factow of 2. This implies

)\m<aQ)_)\m<Q> V k, meN.

From this, we see that the ratios of Laplacian eigenvaluescale invariant.

(c) Laplacian eigenvalues are translation and rotation inariant.

1.2 Features used by Khabou, Hermi, and Rhouma

Let 2 be a domain represented by a binary image. Using the Dititlaplacian
eigenvalues fof?, define three sets of features as follows.
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where0 < d; < dy = d3 < dy = ds < --- < d,, are the Dirichlet-Laplacian
(D-L) eigenvalues for the unit disk iaD.
First of all, we can get

0 < FJ<Q)Z S 17 j = 1727 |F3<Q)Z| S 17

whereF;(Q2), is the/th component of each vector #}((2).
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It is interesting to consider thdf; measures the deviation 06ffrom the 2D disk
(not necessarily unit disk). The optimal depends on the problem being ad-
dressed. Khabou, Hermi, and Rhouma have shown that thedbteef features
were tolerant of boundary noise and deformation and have gder-class dis-
crimination capabilities. The three sets of features wesslisuccessfully to clas
sify natural and man-made images with a high degree of acgwad using a
relatively small number of features. Reuter, Wolter, andh&eke [3] introduces a
method to extract “Shape-DNA’, a numerical fingerprint @rsture, of any 2D
or 3D manifold (surface or solid) by taking the eigenvalues (the spectrum) of
its Laplace-Beltrami operator. Since the spectrum is amétoy invariant, it is
independent of the object’s representation including rpatazation and spatial
position. Additionally, the eigenvalues can be normaligedhat uniform scaling
factor for the geometric objects can be obtained easily.

2 Computational Method of Laplacian Eigenvalues

In this section, we will discuss three methods to computddaan eigenvalues
and eigenvectors..

2.1 Finite Difference Scheme [2].
Its main idea is to discretize the equatied\u = Au by the finite difference
approximation

2 [ i1y + wigen + i1y + i1 — dug | = Aug;.

Here the domaif is cut into squares of side u,; is the value of the eigenfunc-
tion corresponding ta at the lattice poin{ih, jh). The convergence rate of this
method isO(h?). Moreover, it is slow and inaccurate f@rof a complicated shape
with a large number of grid points.

2.2 Finite Element Method [3].

Many people use this in practice. It is better for genétalBut it is still very
cumbersome. Here we just briefly describe the idea of fingmeht method.

From Equation- Au = \u, it follows that for any trial functionp with ¢ = 0 on
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the boundary of?,

—//<pAudm:>\//<pudw.
Q Q

By Green’s first identity- [, pAudx = [, V¢ - Vudz. This implies that

//g}Vw-Vudw:)\//nguda:. (1)

We choose: linearly independent functionfs, ..., F,, which are the linear, quadratic
or cubic polynomials on every tetrahedral elemerf2@nd satisfyf;, = 0 on the
boundary of). Take their linear combination as approximation of the sofu,

i.e.,

ur Y Ui F, U €eR. (2)
i=1
Again, lety = Fj. So

n

// Vo -Vudz=> aul;, k=1,.n,
Q

1=1

o= || z OF; da.
0xj 8x]
On the other hand,
//QOUdm:ZbMUZ‘, k=1,..n,
Q i=1

bki:// FkF,d:v
Q

From this and (1), one obtains that

i&]ﬂUZ:)\ibkle, ]{3:1,...,7’L.
=1 =1

Define the matrix4 = (ax;) andB = (by;). Then (1) can be written as
AU = A\BU, where U = (Uy,...,U,)".

So ) andU can be calculated. Furthermore, the eigenfunctios obtained by

(2).

where

where



2.3 Method of Particular Solutions (MPS) [4], [5].
2.3.1 History of MPS

In 1967, Fox, Henrici, and Moler (FHM) [5] described the MPe famous
example was the Dirichlet-Laplacian eigenfunctions afeshaped region, which
turns be the logo of MATLAB. Note that the actual MATLAB logails to satisfy
the Dirichlet boundary condition, which was intentionaltyne for visual purpose.

Since the MPS runs into difficulties when dealing with mormpticated regions,
after the early 1970s, the MPS got less attention. Later @sc@ux and Tolley
presented other method based on local expansions near edek |6]. Betcke
and Trefethen proposed a modification of MPS [4]. The crud@nges are to
work not only with boundary points, but also interior poiofsthe domain. The
modified MPS can deal with quite complicated domains.
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Figure 1: An unbounded domaihwith interior angle of the wedge.

2.3.2 The Dirichlet-Laplacian problem in an unbounded wedg

As shown in Figure 1, if the interior angle of the wedgeZisthen we have the
D-L eigenfunctions

o(r,0) = Jo (VA r)sinakl, ke N\ {0}

forany A > 0, whereJ,; is a Bessel function of the first kind with ordek. The
spectrum is continuous.

In general, the Dirichlet-Laplacian eigenfunctions ar€'m(Q) | J C(Q). If there
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exists a corner i with angle?, k& € N, then we can do odd (even for the
Neumann-Laplacian problem) reflectién- 1 times followed by one reflection to
get a continuous extension of the eigenfunctioim the whole neighborhood of
the corner. Such a corner is calledular corner; otherwise, i.ef;, « € R_\N, is
calledsingular. For a singular corner, it is not possible to extend the digestion
analytically to a whole neighborhood of that corner.

2.3.3 The Original Method of Particular Solutions (MPS)

Its main idea is as follows.

(1) Consider various solutions efAu = Au in €2 for a given value of\. They
are calledparticular solutions.

(2) Try to vary A until we can find a linear combination of such solutions that
satisfies the Dirichlet boundary conditian= 0 on 0f2, at a number of sample
points ofof2.

Example 2.1. A convenient set of particular solutions near a corner ofafig
are
{ ") (r, 0) = Jor (VX 1) sin(ak) } ,
keN

We call these th&ourier-Bessel functions. These functions happen to satisfy the
Dirichlet boundary condition along the line segments.
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Figure 2. A bounded domain with interior angle of the wedge.



Consider an approximate eigenfunction

N

P (r, 0) = > cMe®(r, ),

k=1

with c,gN) to be determined so as to satisfy the Dirichlet boundary itimmdon the
remainder of the boundary (e.g., the dotted line part in Fe@).

One approach is to set the collocation points, i.e., samggoints, on the bound-
ary (r;, 0;), i = 1,..., N such that

90*(7% 92):0, \v/'l:].,,N
This leads to a nonlinear system of equations

where

e (M AT RN

AN = (a(2)) € R,

ap(N) 2 Jon(VX 1) sin(ak0;), jk=1,...,N.

The FHM approach [5] is to look for a zero of dét)), and then solve for
(modulo constant multiplications).

An alternative approach proposed by Moler (1969) is to chadds(M > N)
samples on the boundary. Theii)) € RM>*¥, Again, look for a zero or near
zero ofthe smallest singular value of A(\). This was superior to the original
FHM method.

Unfortunately, the FHM method fails to obtain more than foligits of accu-
racy, the method breaks down aft®€r= 14 per remaining edge of the boundary
of the L-shaped region.



2.3.4 Failure of the MPS

The aim of the MPS is to find a valuesuch that there exists a nontrivial linear
combination of the Fourier-Bessel functions that is 0 atdbiéocation points on
0. If Xis not close to an actual eigenvalue, then we expect

AN)e=0

to have no nontrivial solution. The problem is that FouBessel functions be-
have similarly to a power basig’ and the condition number of()\) grows ex-
ponentially asV increases. This also happens for any valug,of’hether or not
it is an eigenvalue. Consequently, wh&nis large, it is always possible to find a
linear combination of columns of(\) that are close to zero. X is not close to
an eigenvalue, this results in approximating the zero fanathich is not a D-L
eigenfunction. Since the MPS method examines only bounglaints, it cannot
distinguish zero functions and the D-L eigenfunction.

2.3.5 A modified method

The idea of Betcke and Trefethen is to impose constraintsgusome interior
points from(2 (see Figure 3). Let

mpg 2 # of boundary collocation points
my 2 # of interior collocation points
m 2 mp -+ mry.

Let ¢ € R™ be a vector containing the values of eigenfunctign, ¢) at these
m points. We order the entries gf such that the firsinz entries correspond to
the boundary collocation points and the remaining entries correspond to the
interior collocation points. Now the matri(\) has more rows:

Ap(N)
AN = c R™V
Ar(N)

with B and! corresponding to boundary and interior. L&t\) be the space of
trial functions sampled at boundary and interior points, i.

A()\) & range(A(N)) € R™.
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Figure 3: In the modified method, the Fourier-Bessel fumgiare sampled at
interior as well as boundary points. The interior pointsaresen randomly.

Construct an orthonormal basis4f \) via QR factorization ofA(\). Set

Qs(A)
Q) = € R™N,
Qr(X)
Now, forp € A()), || ¢ ||= 1, there exists a vectap € R such that
= QN
[ = 1.

Because&)(\) is orthonormal,
QTN QW) = Iy, ifm>N.

Consider the minimization problem

%R]rvl}ilﬁp”:l | QM) |, (1)
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which is exactly to minimize the boundary part f The minimizer of (1) is
the right singular vector of)(\) corresponding to the smallest singular value of

Q5()). Let this singular value be denoted by () and the minimizer byp.
Then

os(N) = _min Qs 1= Qs |

Let = Q(\)%p. Then
i~ || [ 98N ] 5
-ie | [ |

Hereo(\) ~ 0 and| Q;(\)e ||~ 1.

2

= BN+ | Qi |1

So, at the interior pointgp are not zeros automatically. Using this method, Betcke
and Trefether could compute the D-L eigenvalues with 14tsl@gcuracy.
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