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This lecture is based on [1] and [2].

1 Motivation
Consider a bounded domain of general shape Ω ⊂ Rd. The region Ω maybe as
simple as a rectangular domain in R2, or as complicated as a map of an island or
a retinal ganglion cell of a mouse; see Figure 1.

We wish to analyze the spatial frequency inside of the object defined in Ω, at the
same time, we need to avoid the Gibbs phenomenon due to the boundary Γ = ∂Ω.
We also want to represent the object information efficiently for analysis, interpre-
tation, and discrimination; this includes examining fast decaying expansion co-
efficients relative to a meaningful basis. Further, we want to extract geometric
information about the domain Ω. For more details, see [1], [2].
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Figure 1: Complicated Domains.

2 Laplacian Eigenfunctions
Our previous attempt was to extend the object to the outside smoothly and then
bound it nicely with a rectangular box followed by the ordinary Fourier analysis.
Because various domains give rise to different sets of Laplacian eigenfunctions, it
makes sense to analyze (and synthesize) the object using genuine basis functions
tailored to the domain. For instance, sines (and cosines) are eigenfunctions of
the Laplacian on the rectangular domain with Dirichlet (and Neumann) boundary
condition. Also Spherical harmonics, Bessel functions, and Prolate Spheroidal
wave functions, are part of the eigenfunctions of the Laplacian (via separation of
variables) for the spherical, cylindrical, and spheroidal domains, respectively.

2.1 Difficulties
Consider the operator L = −∆ in L2(Ω) with an appropriate boundary condition.
In the case when Ω is simple, e.g., a bounded interval (a, b) ⊂ R, or a rectangu-
lar region in Rd, analysis of L is relatively straightforward. In general, however,
analysis of L is difficult mainly due to its unboundedness. On the other hand, it
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is much better to analyze its inverse, i.e., the Green’s operator because it is com-
pact and self-adjoint. Thus L−1 has discrete spectra (i.e., countable number of
eigenvalues with finite multiplicity) except for the 0 spectrum. We use the fact
that L induces a complete orthonormal basis for L2(Ω) to allow us to perform
eigenfunction expansion in L2(Ω). Another difficulty is computing such eigen-
functions; directly solving the Helmholtz equation (or the Laplacian eigenvalue
problem) on a general domain Ω is tough. In addition, computing the Green’s
function for a general Ω satisfying the usual boundary conditions (e.g., Dirichlet
or Neumann) is very difficult too.

3 Integral Operators Commuting with the Lapla-
cian

Instead of computing the eigenfunctions of L on a general domain, we look at
certain integral operators commuting with L. The key idea is to find an integral
operator commuting with the Laplacian without imposing the strict boundary con-
dition a priori. Then we know that the eigenfunctions of the Laplacian is the same
as those of the integral operator, which is much easier to deal with–thanks to the
following fact:

Theorem 3.1 (G. Frobenius 1878?; B. Friedman 1956). Suppose K and L com-
mute and one of them has an eigenvalue with finite multiplicity. Then K and L
share the same eigenfunction corresponding to that eigenvalue. That is, Lϕ = λϕ
and Kϕ = µϕ.

Now, let’s replace the Green’s function G(x, y) by the fundamental solution of
the Laplacian:

K(x,y) =





−1
2
|x− y| for d = 1

− 1
2π

log |x− y| for d = 2

1
(d−2)ωd

|x− y|2−d for d > 2

where ωd is the surface area of the d-dimensional unit ball. The price we pay is to
have a rather implicit, non-local boundary condition (although we do not need to
deal with this condition directly). Let K be the integral operator whose kernel is
K, i.e., for all f ∈ L2(Ω), define:
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K(f(x)) ,
∫

Ω

K(x,y)f(y) dy.

On the other hand, what we gain are the following:

Theorem 3.2. The integral operator K commutes with the Laplacian L = −∆
with the following non-local boundary condition:

∫

Γ

K(x,y)
∂ϕ

∂νy

(y) ds(y) = −1

2
ϕ(x) + pv

∫

Γ

∂K(x,y)

∂νy

ϕ(y) ds(y)

for all x ∈ Γ = ∂Ω, where ϕ is an eigenfunction common for both operators.

Corollary 3.3. The integral operator K is compact and self-adjoint in L2(Ω).
Thus the kernel K(x,y) had the following eigenfunction expansion (in the sense
of mean convergence):

K(x, y) ∼
∞∑

j=1

µjϕj(x)ϕj(y)

and {ϕj}∞j=1 forms an orthonormal basis of L2(Ω)

3.1 Examples
Example 3.4. Consider the simplest example, when Ω = (0, 1) ⊂ R. Then
our integral operator K with the kernel K(x, y) = −1

2
|x − y| gives rise to the

eigenvalue problem:
{ −ϕ′′ = λϕ , for x ∈ (0, 1) (DE)

ϕ(0) + ϕ(1) = −ϕ′(0) = ϕ′(1) (BC).

Note that the kernel K(x, y) is of Toeplitz form; thus, the eigenvectors must have
even and odd symmetry [6]. In this case, we have the following explicit solution
( the first 5 eigenfunctions are shown in Figure 2):

• λ0 ≈ −5.756915, which is a solution of the equation: tanh(
√−λ0

2
) = 2√−λ0

.
And the corresponding eigenfunction is

ϕ0(x) = A0 cosh(
√
−λ0)

(
x− 1

2

)
;
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Figure 2: First 5 eigenfunctions.

• λ2m−1 = (2m− 1)2π2 for all m ∈ N, and the corresponding eigenfunction
is

ϕ2m−1(x) =
√

2 cos(2m− 1)πx;

• λ2m for all m ∈ N is a solution of the equation: tan
√

λ2m

2
= − 2√

λ2m
, and

the corresponding eigenfunction is

ϕ2m(x) = A2m cos
√

λ2m

(
x− 1

2

)
.

The constants A2m, m = 0, 1, 2, . . . are normalization constants to have
‖ϕ2m‖ = 1.

Example 3.5. Now let Ω = B(0, 1) ⊂ R2 be the unit disc. Our operator K with
the kernel K(x, y) = − 1

2π
log |x− y|, gives rise to the eigenvalue problem:
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{ −∆ϕ = λϕ , in Ω (DE)
∂ϕ
∂ν

∣∣∣
Γ

= ∂ϕ
∂r

∣∣∣
Γ

= −∂Hϕ
∂θ

∣∣∣
Γ
, (BC)

where H is the Hilbert transform for the circle:

Hf(θ) , 1

2π
pv

∫ π

−π

f(η) cot
θ − η

2
dη

for all θ ∈ [−π, π]. Now, let βk,` be the `-th zero of the Bessel function of the first
kind of order k, then

ϕm,n(r, θ) =





Jm(βm−1,nr) cos(mθ) for all m,n ∈ N
Jm(βm−1,nr) sin(mθ) for all m,n ∈ N
J0(β0,nr) if m = 0, n ∈ N

λm,n =

{
β2

m−1,n if m,n ∈ N
β2

0,n if m = 0, n ∈ N

(a) (b)

Figure 3: Left: First 25 eigenfunctions of Our integral operator K; Right: First 25
eigenfunctions of the Dichlet-Laplace via separation of variables.

Example 3.6. Consider the unit ball Ω = B(0, 1) ⊂ R3. Then our integral
operator uses the kernel:

K(x, y) =
1

4π|x− y| .

The first 9 eigenfunctions cut at the equator viewed from the south is depicted in
Figure 4.
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Figure 4: First 9 eigenfunctions cut at the equator viewed from the south.

4 Discretization of the Problem
Assume that the whole data set consists of a collection of data sampled on a rect-
angular grid, and that each sampling cell is a box of size

∏d
i=1 ∆xi. Further,

assume that an object of our interest Ω consists of a subset of these boxes whose
centers are {xi}N

i=1. Under these assumptions, we can approximate the integral
eigenvalue problem Kϕ = µϕ with a simple quadrature rule with node-weight
pairs (xj, wj) as follows:

N∑
j=1

wjK(xi,xj)ϕ(xj) = µϕ(xi)

wj =
d∏

k=1

∆xk

for all 1 ≤ j ≤ N . Let Ki,j , wjK(xi,xj), ϕi , ϕ(xi), and ϕ , (ϕ1, · · · , ϕN)T ∈
RN . The above equation can be written in a matrix-vector form Kϕ = µϕ, where
K = (Ki,j) ∈ RN×N . Under our assumptions, the weight wj does not depend on
j; therefore, K is symmetric.
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5 Applications

5.1 Image Approximation
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(b) χΩ · Barbara

Figure 5: The characteristic function of the Japanese Islands (a) and the Barbara
image overlaid over the islands.

In this section, we provide a brief summary of the approximation capability of the
Laplacian eigenfunction for given image data on an irregularly-shaped domain,
and compare the performance with that of the standard wavelet-based methods.

Let Ω be the digitized image of the islands of Japan. We define the characteristic
function χΩ(x) to indicate the space of the island. As an example, we form a
function (or data) on Ω by multiplying the standard Barbara image with χΩ; see
Figure 5.

For this particular example, the number of samples forming the data on the island
is 1625; therefore, computing the Laplacian eigenfunctions defined on Ω involves
a kernel matrix of size 1625 × 1625.

Figure 6 shows a reconstruction of the data set using the largest 100 coefficients.
Figure 7 shows another reconstruction using the largest 100 coefficients computed
via the standard 2D wavelet basis called Symmlet 8. Notice that the 100 wavelet
coefficients cannot even capture the boundary of the domain, not to mention the
data on the domain.
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(a) 100-term Approx.
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(b) Error

Figure 6: The 100-term approximation and the residual error using the Laplacian
eigenfunctions.
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(a) 100-term Approx.
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(b) Error

Figure 7: The 100-term approximation and the residual error using the
2DWavelets (Symmlet 8).

To be fairer, though, we organize the 1625 data points in a one-dimensional array
in a column scanning order. After applying the 1D wavelet transform to this 1D
array using the Symmlet 8 filter, we recompute the 100-term approximation and
its residual errors, as shown in Figure 8. Observe the stripe-shaped artifacts in
the approximation due to the deconstruction of the 2D spatial coherency of the
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(b) Error

Figure 8: The 100-term approximation and the residual error using the
1DWavelets (Symmlet 8).
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Figure 9: Comparison of the approximation error in `2 using these transforms.

original data by arranging them into a 1D array.
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We conclude this section with the following conjecture, which essentially says
that the approximation performance of our eigenfunctions for a general domain
is the same order as that of the Fourier cosine series (or DCT) for a rectangular
domain:

Conjecture 5.1 (NS 2005). For f ∈ C(Ω) with ∇f ∈ BV (Ω) defined on a
C2-domain Ω, the expansion coefficients 〈f, ϕk〉 with respect to the Laplacian
eigenbasis decay O(k−1). Thus, the N -th approximation error measured in L2-
norm should have a decay rate of O(N−1.5).

5.2 Statistical Image Analysis; Comparison with PCA
See [2, Sec. 5] for the details.

5.3 Solving the Heat Equation on a Complicated Domain
It is well known that the semigroup et∆ can be diagonalized using the Laplacian
eigenbasis. More precisely, for any initial heat distribution u0(x) ∈ L2(Ω), we
have the heat distribution at time t formally as:

u(x, t) = et∆u0 =
∞∑

j=1

e−tλj〈u0, ϕj〉ϕj(x)

which is based on the expansion of the Green’s function for the heat equation
ρt(x, y) via the Laplacian eigenfunctions as follows:

ρt(x,y) =
∞∑

j=1

e−λjtϕj(x)ϕj(y), (t, x, y) ∈ (0,∞)×Ω ×Ω.

In practice, the domain Ω is discretized by a finite number (i.e., N ∈ N) of sample
points (or pixels), thus the Laplacian eigenfunctions become the Laplacian eigen-
vectors of length N . Therefore, we can write et∆ in the matrix-vector notation
as

Φe−tΛΦT = Φ diag(e−λ1t, · · · , e−λN t)ΦT =
N∑

j=1

e−λjtϕjϕ
T
j

where Φ = (ϕ1, · · · ,ϕN) is the Laplacian eigenbasis matrix of size N ×N , and
Λ is the diagonal matrix consisting of eigenvalues of the Laplacian, which are the
inverse of the eigenvalues of the kernel matrix K = (Ki,j), i.e., Λk,k = λk = 1

µk
.
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Given an initial heat distribution over the domain, u0 ∈ RN , we can compute the
heat distribution at time t as:

u(t) = Φe−tΛΦT u0.

Figure 10 shows the result of a simple numerical experiment on the Japanese
islands data sets.

t=0 t=1 t=10

t=100 t=250 t=500

Figure 10: The propagation of the heat distribution over the Japanese Islands. The
initial point heat source was put at the location of Mt. Fuji.

To learn more relationships between heat equation and spectral geometry, see [3].

5.4 Clustering Mouse Retinal Ganglion Cells
In this section, we examine how Laplacian eigenfunctions help us understand how
the structural/geometric properties of mouse retinal ganglion cells (RGCs) re-
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late to the cell types and their functionality. For the background of mouse reti-
nal ganglion cell datasets, see [4] and [5]. Our data consists of 3D images of
dendrites/axons of RGCs. The process (often arduous) involves examining each
images via specialized software to extract geometric/morphological parameters
(totally 14 parameters) followed by a conventional (often arduous) clustering al-
gorithm.

The parameters include: somal size, dendric field size, total dendrite length, branch
order, and mean internal branch length. Typically, it takes half a day to process
each cell with a lot of human interaction.

Figure 11: Mouse Retinal Ganglion Cells (plan and side views).
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5.4.1 Very Preliminary Studies

Our preliminary study on mouse RGCs consists of 1) using 2D plane projection
of the data instead of the full 3D, computing the smallest k Laplacian eigenvalues
using our method (i.e., the largest k eigenvalues of K) for each image; 2) con-
structing a feature vector per image; and 3) performing visualization and cluster-
ing (see Figure 12). The possible feature vectors reflecting geometric information
are:

F1 = (λ1, · · · , λk)
T

F2 = (µ1, · · · , µk)
T

F3 =

(
λ1

λ2

, · · · ,
λ1

λk

)T

F4 =

(
µ1

µ2

, · · · ,
µ1

µk

)T
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Figure 12: Visualization anc clustering using F 1 (a) and F 3 (b).

5.4.2 Challenges of the Mouse Retinal Ganglion Cells Problem

The shapes of the RGCs are very complicated. In addition, interpretation of our
eigenvalues are not yet fully understood compared to the usual Dirichlet-Laplacian
case that have been well studied. Perhaps using the original 3D data may yield
a more meaningful result instead of the projected 2D data. Another way to ap-
proach this problem is to construct actual graphs based on the connectivity and
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analyze them directly via spectral graph theory and diffusion maps (see Lectures
18-20). Lastly, because we are dealing with very complicated domains with many
sample points (see Figure 14), we need to develop a faster algorithm to reduce
computational burden.

6 A Possible Fast Algorithm For Computing ϕj’s
We take advantage of the fact that our kernel function K(x,y) is of special form.
More precisely, it is the fundamental solution of the Laplacian used in Potential
theory. One way to construct a faster algorithm is to accelerate the matrix-vector
product Kϕ using the Fast Multipole Method (FMM) [7]. We convert the ker-
nel matrix to the tree-structured matrix via FMM whose submatrices are nicely
organized in terms of their ranks.
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(b) Separated islands

Figure 13: The kernel matrix where the communications between and within the
islands are kept (a) and the one without in-between communication (b).

Our current implementation cost O(N log N); Another approach is to construct an
O(N) matrix-vector product module fully utilizing rank information. For more
detailed treatment, see the HSS algorithm of Chandrasekaran et al. (2006) [8].
We then embed the matrix-vector product module in the Krylov subspace method,
e.g., Lanczos iteration. As a result, the computational cost for each eigenvalue
and eigenvector is O(N).
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Lastly, if a domain of data support consists of disconnected components, then we
can reduce the original problem into a set of smaller problem. For instance, we
can separate the Japanese island into four major islands, as shown in Figure 13.

7 Conclusions

Figure 14: Real Challenge: The number of sampling points in this map is 387,394
over the Japanese Islands.

We demonstrated that our Laplacian eigenfunctions may be useful for object ori-
ented image analysis and synthesis in which the user can define the image domain
freely and explicitly with the help of interactive device (e.g., pointer/mouse) or
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some automatic segmentation algorithm. We also demonstrated that our method
based on the eigenanalysis of the commuting integral operator leads to uncon-
ventional non-local boundary condition for the Laplacian eigenvalue problem, but
that the numerical implementation is straightforward and is amenable to modern
fast algorithms. Our experiments and analogy with the analytic examples suggest
that we should be able to get fast-decaying expansion coefficients if the images
are in C(Ω) and ∇f ∈ BV(Ω), where the boundary of Ω is smooth. In essence,
our method can be viewed as a replacement of DCT for the general shape domain.
This means that our eigenfunctions have a variety of potential applications e.g.,
interpolation, extrapolation, local feature computation, and perhaps compression.
In addition, it connects several interesting mathematics, including spectral geom-
etry, spectral graph theory, isoperimetric inequalities, Toeplitz operators, PDEs,
potential theory, and almost-periodic functions.

References
[1] N. SAITO, “Geometric Harmonics as a Statistical Image Processing Tool for

Images Defined on Irregularly Shaped Domains,” in Proc. IEEE Workshop
on Statistical Image Processing, Bordeaux, France, Jul. 2005

[2] N. SAITO, “Data Analysis and Representation Using Eigenfunctions of
Laplacians on a General Domain,” Submitted to Applied and Computational
Harmonic Analysis, Mar. 2007

[3] J. DODZIUK, ”Eigenvalues of the Laplacian and the Heat Equation,” Amer.
Math. Monthly, vol. 88, no. 9, pp. 686-695, 1981.

[4] J, COOMBS, D. VAN DER LIST, G.-Y. WANG, AND L.M. CHALUPA, “Mor-
phological Properties of Mouse Retinal Ganglion Cells”, Neuroscience, vol.
140, no. 1, pp. 123-136, 2006.

[5] J.-H. KONG, D.R. FISH, R.L. ROCKHILL, AND R.H. MASLAND, “Di-
versity of Ganglion Cells in the Mouse Retina: Unsupervised Morpholog-
ical Classification and its Limits”, The Journal of Comparative Neurology,
vol. 489, no. 3, pp. 293-310, 2005.

[6] A. CANTONI, P. BUTLER, “Eigenvalues and eigenvectors of symmetric cen-
trosymmetric matrices”, Linear Algebra Appl., vol. 13, pp. 275-288, 1976.

17



[7] L. GREENGARD, V. ROKHLIN, “A fast algorithm for particle simulations”,
J. Comput. Phys., vol. 73, pp. 325-348, 1987.

[8] S. CHANDRASEKARAN, M. GU, AND T. PALS, “A fast ULV decomposition
solver for hierarchically semi-separable representations”, SIAM J. Matrix
Anal. Appl., vol. 28, No. 3, pp. 603C622, 2006.

18


