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Motivations

Why to Use Fast Multipole Method?
• The integral kernel which commute with the Laplacian operator is

k(x, y) = − 1
2π

log ‖x − y‖2, x, y ∈ R2.

• The eigenvalue problem∫
Ω

k(x, y)φ(y) dy = µφ(x), x ∈ Ω ⊂ R2.

• In terms of matrix,
Kφ = µφ,

where Ki,j = − 1
2π

log ‖xi − xj‖2, and φ can be considered as a
vector of charge strengths at points xi, i = 1, 2, . . . .
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Motivations . . .

Why to Use Fast Multipole Method? . . .
• Eigenvalue problem Kφ = µφ needs a fast routine to compute

matrix vector product.

• FMM supplies a fast approximation algorithm. Its accuracy is
guaranteed by analytic consideration.

• FMM is insensitive to the distribution of the sampling data.
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log ‖x − y‖2 and Potential

Definition (Potential)
Suppose that a point charge of unit strength is located at point
(x0, y0) = x0 ∈ R2. Then, for any x = (x, y) ∈ R2 with x 6= x0, the
potential due to this charge is described by

φx0(x, y) = − log(‖x − x0‖2). (1)

Fact 1
Let z = x + iy, z0 = x0 + iy0 ∈ C. We have φx0(x) = Re(− log(z − z0)).

Fact 2

log(1 − w) = −
∞∑

k=1

wk

k
,

which is valid for any w ∈ C with |w| < 1.

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 7 / 47



log ‖x − y‖2 and Potential

Definition (Potential)
Suppose that a point charge of unit strength is located at point
(x0, y0) = x0 ∈ R2. Then, for any x = (x, y) ∈ R2 with x 6= x0, the
potential due to this charge is described by

φx0(x, y) = − log(‖x − x0‖2). (1)

Fact 1
Let z = x + iy, z0 = x0 + iy0 ∈ C. We have φx0(x) = Re(− log(z − z0)).

Fact 2

log(1 − w) = −
∞∑

k=1

wk

k
,

which is valid for any w ∈ C with |w| < 1.

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 7 / 47



log ‖x − y‖2 and Potential

Definition (Potential)
Suppose that a point charge of unit strength is located at point
(x0, y0) = x0 ∈ R2. Then, for any x = (x, y) ∈ R2 with x 6= x0, the
potential due to this charge is described by

φx0(x, y) = − log(‖x − x0‖2). (1)

Fact 1
Let z = x + iy, z0 = x0 + iy0 ∈ C. We have φx0(x) = Re(− log(z − z0)).

Fact 2

log(1 − w) = −
∞∑

k=1

wk

k
,

which is valid for any w ∈ C with |w| < 1.

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 7 / 47



log ‖x − y‖2 and Potential . . .

Lemma
Let a point charge of strength q be located at z0. Then for any z such
that |z| > |z0|,

φz0(z) = q log(z − z0) = q

(
log z −

∞∑
k=1

1
k

(
z0

z

)k
)

. (2)

Notice:
Given a set of particles S = {z1, z2, . . . , zm} and their strengths
{q1, q2, · · · , qm}, then the potential at z due to the set S will be

φ(z) =
m∑

i=1

φzi(z) =
m∑

i=1

qi log(z − zi).
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Multipole Expansion

Theorem (Multipole Expansion)

Suppose that m charges of strengths
{qi, i = 1, . . . , m} are located at points
{zi, i = 1, . . . , m}, with |zi| < r. Then for
any z with |z| > r, the potential φ(z)
induced by the charges is given by

φ(z) = Q log(z) +
∞∑

k=1

ak

zk , (3)

where

Q =
∑m

i=1 qi and ak =
∑m

i=1
−qizk

i
k

.

0

r

z

D

zi
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Multipole Expansion . . .

Error Bound of Multipole Expansion
For any p ≥ 1, ∣∣∣∣∣φ(z)− Q log(z)−

p∑
k=1

ak

zk

∣∣∣∣∣ ≤ const ·
∣∣∣∣rz
∣∣∣∣p , (4)

Distant Parameter c

Let c ∆=
∣∣∣ z
r

∣∣∣ = 2, then the error bound will be∣∣∣∣∣φ(z)− Q log(z)−
p∑

k=1

ak

zk

∣∣∣∣∣ ≤ const ·
(

1
2

)p

, (5)

and if we want to obtain the a relative precision ε, p must be of the order
− log2(ε).
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A 2D domain and Quadtree

level 0

level 2

level 1

level 3

Quadtree structure induced by a uniform subdivision of a square
domain.
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A 2D Domain and Quadtree . . .

Definition (Near Neighbors)
Two boxes are said to be near neighbors if they are at the same
refinement level and share a boundary point. A box is a near neighbor
of itself.

i
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A 2D Domain and Quadtree . . .

Definition (Well Separated)
Two boxes are said to be well separated if they are at the same
refinement level and are not near neighbors.

i
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A 2D Domain and Quadtree . . .

Definition (Interaction List)
Each box i has its own interaction list, consisting of the children of
the near neighbors of i’s parent which are well separated from box i.

i
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A 2D Domain and Quadtree . . .

Hierarchical Structure
Notice that the blue boxes in are the interaction list of i’s parent.

i
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Interaction List and Multipole Expansion

J

K

Application of the Theorem of Multipole Expansion
For two boxes J and K, they are well separated and the distance pa-
rameter c > 2, which allows us to use truncated multipole expansion.
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Hierarchical Algorithm

Ji

i i

Computation Cost: O(N log N)∣∣∣∣∣φ(z)− Q log(z)−
p∑

k=1

ak

zk

∣∣∣∣∣ ≤ const ·
(

1
2

)p

,

To prepare the coefficients {ak}p
k=1, each particle will be used p times.

Therefore, for each level, the computation cost is about O(Np). And the
total number of levels will be approximately log N.
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Translation of Multipole Expansion

Theorem (Translation of a multipole expansion)

Suppose that

φ(z) = a0 log(z − z0) +
∞∑

k=1

ak

(z − z0)k (6)

is a multipole expansion of the potential due to a set of m charges of
strength q1, q2, . . . , qm, all of which are located inside the circle D of
radius R with center at z0. Then for z outside the circle D1 of radius
(R + |z0|) and center at the origin,

φ(z) = a0 log(z) +
∞∑

l=1

bl

zl , (7)
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Translation of Multipole Expansion . . .

(a) (b)

i

a

c

b

d

0

D1

D
Z0

Z

R

Translation from the Children to the Parent
Fig.(a) shows that the multipole expansion about child disk D can be
translated to the multipole expansion about the parent disk D1. Fig.(b)
shows the similar behavior of the quadtree structure.
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Translation of Multipole Expansion . . .

Error Bound for Translation of Multipole Expansion
The translation of the multipole expansion

φ(z) = a0 log(z − z0) +
∞∑

k=1

ak

(z − z0)k ⇒ φ(z) = a0 log(z) +
∞∑

l=1

bl

zl ,

where bl = −
a0zl

0
l

+
l∑

k=1

akzl−k
0

(
l − 1
k − 1

)
. Furthermore, for any p ≥ 1,

∣∣∣∣∣φ(z)− a0 log(z)−
p∑

l=1

bl

zl

∣∣∣∣∣ ≤
 A

1 −
∣∣∣∣ |z0|+ R

z

∣∣∣∣
∣∣∣∣ |z0|+ R

z

∣∣∣∣p+1

(8)
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Conversion of a Multipole Expansion (MP) into a Local
Expansion (LP)

Theorem (Multipole expansion ⇒
local expansion)

Suppose that m charges are located
inside the circle D1 with radius R and
center at z0, and that |z0| > (w + 1)R with
w > 1. Then the corresponding multipole
expansion (6) converges inside the circle
D2 of radius R center at origin. Inside D2,

φ(z) =
∞∑

l=0

bl · zl, (9)

z0

R

0
R

wR

D1

D2

z
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Conversion of a MP into a LP . . .

Theorem Continued . . .
The conversion of the MP into a LP:

φ(z) = a0 log(z − z0) +
∞∑

k=1

ak

(z − z0)k ⇒ φ(z) =
∞∑

l=0

bl · zl,

Furthermore, an error bound for the truncated series is given by∣∣∣∣∣φ(z)−
p∑

l=0

bl · zl

∣∣∣∣∣ ≤ const ·
(

1
w

)p+1

, (10)
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Conversion of a MP into a LP . . .

z0

R

0
R

wR

D1

D2

i

(a) (b)

z

Conversion of Several MPs to a LP
Fig.(a) shows that the multipole expansion about disk D1 can be con-
verted to a local expansion about the disk D2. Fig.(b) shows the similar
behavior of the quadtree structure.
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Translation of Local Expansion

i

i

(a) (b)

Theorem (Translation of a local expansion)

For any complex z0, z, and {ak}, k = 0, 1, 2, . . . , n,

n∑
k=0

ak(z − z0)k =
n∑

l=0

(
n∑

k=l

ak

(
k
l

)
(−z0)k−l

)
zl. (11)
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FMM V.S. N log N Algorithm

N log N Algorithm

Ji i i
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FMM V.S. N log N Algorithm

FMM Can Improve N log N Algorithm
• Conversion of the multipole expansions to a local expansion.
• Translation of a local expansion from parent box to children boxes.

Ji

J
i
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FMM V.S. N log N Algorithm
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Ji

J
i

AND FMM CAN SAVE MORE!!!
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FMM V.S. N log N Algorithm

Save More by Using Translation of Multipole Expansion
• Start with finest level, translate the multipole expansion centered

at a child box into a multipole expansion centered at its parent box
in the coarser level.

• Add the four translated expansions together to get the multipole
expansion for the parent box.

a

c

b

d

a

c

b

d
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Decomposition of the Domain

Notice: P`
x,S is the potential (Local Expansion) centered around x, due

to the particles set S.

i

• P`
i, nnb: the potential due to the

particles inside of i’s near neighbors.

• P`
i, list: the potential due to the

particles inside of i’s interaction list.

• P`
i, out: the potential due to the

particles outside of i’s parent’s near
neighbors, which can be computed
recursively.

• P`−1
j, list: j is the parent box of box i.

• P`−2
k, list: k is the grandparent box of box

i.
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• P`
i, list: the potential due to the

particles inside of i’s interaction list.

• P`
i, out: the potential due to the

particles outside of i’s parent’s near
neighbors, which can be computed
recursively.

• P`−1
j, list: j is the parent box of box i.

• P`−2
k, list: k is the grandparent box of box

i.
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FMM Algorithm

Initialization
• Given N particles distributed in a square domain.

• Construct a quadtree with L + 1 levels.
• The indices of levels will be 0, 1, 2, . . . , L − 1, L.
• Assume that, on average, s particles per box in the finest level.
• 4L · s = N, or equivalently, L = log4(N/s).
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FMM algorithm . . .

Upward Pass
• Start with the finest level, construct multipole expansions for each

box.

• Translate the multipole expansion to coarser levels.
• The multipole expansion about every box in the coarser levels will

be constructed by the merging procedure.

a

c

b

d

a

c

b

d
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FMM Algorithm . . .

Downward Pass
• Start with the coarsest level, in fact, level 2, where each box k has

its interaction list. Construct the local expansion P2
k,list.

• Repeat this for every finer level. For simplicity, assume finest level
L = 4.

• Let box i at level 4 be the target. We already have P4
i,list, P3

j,list,
P2

k,list, where j is the parent of i, and k is the parent of j.

• Start with the coarsest level again, translate the local expansion
from the parent to its children.

•
P2

k,list ⇒ P3
j,out

P3
j,out + P3

j,list ⇒ P4
i,out

• Finally, P4
i,out + P4

i,list + P4
i,nnb will be the total potential centered at i

due to all the other particles.
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FMM Algorithm : Downward Pass . . .

jk
• P2

k,list ⇒ P3
j,out.

• P3
j,out + P3

j,list ⇒ P4
i,out.

• P4
i,out + P4

i,list + P4
i,nnb.
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Computation Cost of FMM

Cost of Upward Pass
• In the finest level, to form the multipole expansion centered at

each box, we need about Np operations, where p is the number of
terms in the multipole expansion.

• Then for the translations for the higher levels, we need about
(N

s )p2 operations, where s is the average number of particles in
each box of the finest level.

• Totally, cost of upward pass is Np + (N
s )p2.
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Computation Cost of FMM

Cost of Downward Pass
• To convert the multipole expansions about all boxes in the

interaction list of each box in an arbitrary level, we need about
27(N

s )p2 operations.

• Then for the translations from the parent to its children, we need
about (N

s )p2 operations.

• For the evaluation of a local expansion in the finest level and
computing potential directly from the near neighbor, we need
about Np and 9Ns respectively.

• Totally, cost of downward pass is 27(N
s )p2 + (N

s )p2 + Np + 9Ns.

Cost of FMM

Cost = 2Np + 29
(N

s

)
p2 + 9Ns, where if s = p, the cost will be 40Np.
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Outline

1 Motivations
2 Potential
3 Multipole Expansion
4 A 2D domain and Quadtree
5 The O(N log N) Algorithm

Interaction List and Multipole Expansion
Hierarchical Algorithm

6 FMM: The O(N) Method
Translation of Multipole Expansion
Conversion of a Multipole Expansion into a Local Expansion
Translation of Local Expansion
FMM

7 Matrix Version of FMM
Matrix Vector Product
Quad Tree and Indexing
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Matrix Vector Product

Given a set of N particles located at N distinct points, i.e.,
X = {x1, x2, . . . , xN} ⊂ R2. and a set of reals {q1, q2, . . . , qN}, where qi

is the charge strength of the particle located at xi.

We want to compute the potential for each particle at xi due to the rest
of particles located at {xj}N

j=1,j 6=i.

φ(xi) =
N∑

j=1,j6=i

qj log ||xj − xi||.


φ(x1)
φ(x2)

...
φ(xN)

 =


0 log ||x1 − x2|| · · · log ||x1 − xN ||

log ||x1 − x2|| 0 · · · log ||x2 − xN ||
...

...
...

...
log ||x1 − xN || log ||x2 − xN || · · · 0


︸ ︷︷ ︸

P

·


q1
q2
...

qN
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Structure of matrix P
• The sequence of {x1, x2, . . . , xN} determine the structure of P.

• The well separated groups of points are the key to the FMM.
• An indexing scheme for the hierarchical refinement structure is

needed.

level 2 level 3

: interaction list of box i

: near neighbors of box i

Figure: Quadtree structure induced by a uniform subdivision of a square
domain.
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Quadtree and Indexing

level 0

level 2

level 1

level 3

Figure: Quadtree structure induced by a uniform subdivision of a square
domain.

0 1

2 3

0 1

2 3

0 0

0 0

1

1 1

1

22

2 23

3 3

3

level 1 level 2

Indexing

• I = (I1, I2, . . . , I`), where Ij = 0, 1, 2, 3, with j = 1, 2, . . . , `.

• Introduce a new index: D =
∑̀
j=1

4`−j · Ij.
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Low Rank Sub Matrices of P

0

3

1

2

0

632

1 4 5

7

1410 11

8 9 12

15

13

1

15
14
13
12
11
10
9
8
7
6
5
4
3
2

0
1 151413121110987654320

The blank blocks are low rank matrices!
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Matrix Vector Product

1 15141312111098765432

1

15
14
13
12
11
10
9
8
7
6
5
4
3
2

0
0

Computation Cost
• Given A: m × n. The

cost of A · v is mn.
• If A = U · S · V, where S

is of size p× p, then the
computation cost of
U · S · V · v is
p(m + n + p).
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Column Bases and Row Bases

1

15
14
13
12
11
10
9
8
7
6
5
4
3
2

0
1 151413121110987654320

• B2,7 is the block matrix in red.

• We want B2,7 = U2 · S2,7 · VT
7 .

• U2 will capture the column
bases of the blue blocks.

• V7 will capture the row bases
of the green blocks.

• B7,2 = U7 · S7,2 · VT
2 .

•
B2,7 = U2 · S2,7 · UT

7

B7,2 = U7 · ST
2,7 · UT

2
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Low Rank Sub Matrices of P ......one more level
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• A0,4 = Ũ0 · Q̃0,4 · ŨT
4 .

• Ũ0 =


U0 · R0,0
U1 · R0,1
U2 · R0,2
U3 · R0,3

.

• A3,7 = Ũ3 · Q̃3,7 · ŨT
7 .

• Ũ3 =


U12 · R3,0
U13 · R3,1
U14 · R3,2
U15 · R3,3

.
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A0,4 = Ũ0 · Q̃0,4 · ŨT
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What is U0, U1, U2, U3?
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What is U0, U1, U2, U3?
Column Bases: U2.
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What is U0, U1, U2, U3?
Column Bases: U3.
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