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We introduce the graph theory for multiple reasons. First, graphs are very general.
They can be adapted to deal with numerous general situationsand can represent
very complicated objects (e.g., high-dimensional dataset{xk}

N
k=1 ⊂ R

d). Graph
theory has been used in many different fields, such as clustering (and image seg-
mentation), classification, data mining, search engines, and statistical learning
theory.

The following section is based on [1, Chap. 1] and [2].

1 Basics of the graph theory

1.1 A Series of Definitions and Notations

• A graph G consists of a set ofverticesV and a set ofedgesE connecting
some pairs of vertices inV . We writeG = (V, E).

• An edge connecting a vertex (or node)x ∈ V to itself is called aloop.

• For x, y ∈ V , if there exist more than one edges connectingx andy, then
they are calledmultiple edges.
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Figure 1: Directed Edge

• A graph containing loops or multiple edges is called amultiple graph , or a
multigraph . Otherwise, it is called asimple graph.

• In this course, we shall only deal with simple graphs. So whenwe say a
graph, we mean a simple graph.

• If two distinct verticesx, y ∈ V are connected by an edgee ∈ E, thenx

andy are called theendpoints (or ends) ofe, andx andy are said to be
adjacent, written asx ∼ y. In this situation, we also say thate is incident
with x andy and thate joins x andy.

• Thedegree, or valency, of a vertexx is the number of edges incident with
x, denoted as deg(x) or m(x).

• For eachx ∈ V , if m(x) is finite, then the graphG is called alocally finite

graph. However,m∞(G)
∆
= supx∈V m(x) could be infinite. Afinite graph

G is one in which#(V ) = |V | < ∞. An infinite graph is one in which
|V | = ∞.

• If each edge inE has a direction associated with it, then we call the graphG

a directed graph, or digraph. As in Figure 1,e is calleddirected edge, x

is called thetail of e and the destination ofe, y, is called theheadof e. We
write e = [x, y], ande = [y, x] for reverse direction. If there is no direction
associated with an edgee joining x, y, then we writee = (x, y) = (y, x).

Also we defineE
∆
= {a set of all directed edges}.

• For a givenx, y ∈ V , a sequencec = {v1, v2, . . . , vn+1} of vertices inV

is called apath connectingx andy if v1 = x, vn+1 = y, andv1 ∼ v2 ∼
. . . ∼ vn ∼ vn+1. We define thelength of a path c is n in this case and
write ℓ(c) = n.
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• For any two vertices inV , if there exists a path connecting them, such a
graphG is called aconnected graph.

• Thegraph distancebetweenx andy is given by

d(x, y)
∆
= inf{ℓ(c) | c is a path connectingx andy}.

• Thediameter of a graphG is given by

diam(G)
∆
= sup{d(x, y) | x, y ∈ V }.

• G is finite ⇐⇒ diam(G) < ∞.

• We say two graphs areisomorphic if there exists a one-to-one correspon-
dence between the vertex sets such that if two vertices are joined by an edge
in one graph, the corresponding vertices are joined by an edge in the other
graph. In Figure 2,G1, G2 are isomorphic.

G1 G2

Figure 2: Two graphs areisomorphic.

• A complete graphonn vertices,Kn, is a simple graph that has all possible
(

n

2

)

edges (i.e., every vertex is connected to every other vertex). See Figure 3
for some examples.

• If all of the vertices of a graph G have the same degree, then G is called a
regular graph. Note thatKn is regular for alln = 2, 3, . . ..

• A polygon on n vertices,Pn, is a finite connected graph that is regular of
degree 2. See Figure 4 for some simple examples.
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Figure 3: Some examples ofcomplete graph.

P3=K3 P4 P5

Figure 4: Some examples ofpolygon.

• A complete bipartite graph, Kn,m, is a simple graph onn + m vertices
{a1, . . . , an, b1, . . . , bm} such thatai ∼ bj for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Note that a complete bipartite graph is regular if and only ifn = m. A
simple example is shown in Figure 5.

Figure 5: Acomplete bipartite graph with verticesa1, a2, b1, b2, b3.
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Figure 6: An example graph with 6 vertices

1.2 Matrices Associated with a GraphG = (V, E)

Definition 1.1. Theadjacency matrix A of G consists of the following entries:

auv
∆
=

{

1 if u ∼ v

0 otherwise.

SoA = (auv) ∈ R
N×N , whereN = |V |. Notice that for a multiple graph, we set

auv = #(u, v) if u ∼ v.

Definition 1.2. Thetransition matrix P of G consists of the following entries:

puv
∆
=

{ 1
m(u)

if u ∼ v

0 otherwise.

ThenP = (puv) ∈ R
N×N , whereN = |V |. Notice that for a multiple graph,

puv = auv

m(u)
if u ∼ v. It is not difficult to observe thatpuv represents the probability

of a random walk fromu to v in on step if we view the random walk to take each
edge of a vertex with equal probability. And we have

∑N

v∈V puv = 1 for all u ∈ V .
We call such a matrixP astochastic matrix.

Example 1.3. Given a graphG as shown in Figure 6. We can construct both the
adjacency matrixA and the transition matrixP as:
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Note that whileAT = A, P T 6= P . The graphG is completely determined byA.

Now consider a functionf onV , i.e.,f : V → R. Let B = A or P , then

Bf(u) =
∑

v∈V

buvf(v), u ∈ V.

Let
C(V )

∆
= {all functions defined onV }

and
C0(V )

∆
= {f ∈ C(V ) | supp f is a finite subset ofV },

wheresupp f
∆
= {u ∈ V | f(u) 6= 0}. Also define

L2(V )
∆
= {f ∈ C(V ) | ‖f‖ =

√

〈f, f〉 < ∞},

where〈f, g〉
∆
=

∑

u∈V

m(u)f(u)g(u).

Lemma 1.4. For all f, g ∈ L2(V ), 〈Pf, g〉 = 〈f, Pg〉 and ‖Pf‖ ≤ ‖f‖.

Proof.
〈Pf, g〉 =

∑

u∈V

m(u)Pf(u)g(u)

=
∑

u∈V

(Af(u))g(u)

=
∑

u∈V

f(u)(Ag(u))

=
∑

u∈V

m(u)f(u)Pg(u)

= 〈f, Pg〉 .
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The proof that‖Pf‖ ≤ ‖f‖ will be left as an exercise. (Hint: use the fact thatP

is a stochastic matrix, where
∑

j pij = 1 andpij ≥ 0.)
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