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The previous lecture introduced basic ideas of graph theory and defined the adja-
cency and transition matrices of a graph. In this lecture, we will further introduce
the Laplacian of a graph, and the eigenvalues associated with these fundamental
matrices of graphs. This lecture is based on [2] and the texts by Van Lint and
Wilson [1, Chap. 31] and Chung [3, Sec. 1.1-1.3].

1 Graph Laplacians and Derivatives
There are two versions of the Laplacian of a graph associated with the adjacency
and transition matrices which will be characterized. Also the derivative of a graph
function and the resulting discrete version of Green’s identity will be introduced.

1.1 The Laplacian of a Graph
Recall that given a set of nodes (or vertices) V and edges E, a graph G is defined
by G = (V,E). The degree of a node is denoted by m(u).
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Definition 1.1. Given a graph G with adjacency matrix A and transition matrix P
as defined in the previous lecture, define the degree matrix of G as

D
∆
= diag(m(u)) ∈ RN×N .

The adjacency Laplacian of G is defined as

∆A
∆
= D − A. (1)

The transition Laplacian of G (or normalized Laplacian of G) is defined as

∆P
∆
= I − P, (2)

where I is the identity matrix. Note the following relationship:

∆A = D1/2∆P D1/2,

where
D1/2 = diag(

√
m(u)).

Notice that this definition in the discrete case corresponds to−∆ in the continuum.

Figure 1: 1-D lattice graph.

Example 1.2. Consider the simple 1D lattice graph in Figure 1 with four nodes.
The adjacency and transition matrices are

A =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


 , P =




0 1 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0


 .
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The degree matrix is diag(1, 2, 2, 1). Thus,

∆A = D − A =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 ,

∆P = I − P =




1 −1 0 0
−1/2 1 −1/2 0

0 −1/2 1 −1/2
0 0 −1 1


 .

It is interesting to note that the eigenvectors of the 1D lattice adjacency matrix are
the basis vectors for the Discrete Cosine Transform Type II (DCT-II). The basis
vectors for the DCT-I, III, . . . can be generated with subtle changes in the discrete
boundary conditions. For more information about the relationships between de-
screte boundary value problems and the DCT and Discrete Sine Transform (DST),
see [4].

Figure 2: 2-D lattice graph.

Now, consider a function f on V (f : V → R). Recall from the previous lecture
that

C(V )
∆
= {all functions defined on V ’s},

and
L2(V )

∆
=

{
f ∈ C(V )

∣∣‖f‖ =
√
〈f, f〉 < ∞

}
,

where
〈f, g〉 ∆

=
∑
u∈V

m(u)f(u)g(u).

3



If f ∈ L2(V ), then the corresponding Laplacians are applied to f as follows:

∆Af(u) = m(u)f(u)−
∑
v∼u

f(v), (3)

∆P f(u) = f(u)− 1

m(u)

∑
v∼u

f(v), (4)

where
∑

v∼u is the sum over all v’s that are adjacent to u. Looking at this last
transition Laplacian, we can see that it is essentially the function value minus
the average of the function values at the nodes connected to u. This can also be
re-written as follows:

∆P f(u) =
1

m(u)

∑
v∼u

(f(u)− f(v)) .

Definition 1.3. A function f ∈ C(V ) is called harmonic if

∆Af = 0 or ∆P f = 0.

f ∈ C(V ) is called superharmonic at x ∈ V if

∆Af(x) ≥ 0 or ∆P f(x) ≥ 0.

Also,

f(x) superharmonic at x ⇔ 1

m(x)

∑
y∼x

f(y) ≤ f(x).

The last equivalence essentially means that when f(x) is superharmonic, it is
larger than or equal to the surrounding function averages. Note that these defini-
tions of ∆A and ∆P correspond to −∆ in Rd.

1.2 Derivatives and Green’s Identity
Many times in the continuum the results have greatly benefited from Green’s iden-
tity, and we will see that there is a useful discrete version. Recall that the set of
directed edges is denoted by E and that for an edge e with direction, ē denotes a
reversal of the direction.
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Definition 1.4. Let

C(E)
∆
= {ϕ defined on E |ϕ(ē) = −ϕ(e), e ∈ E} .

For f ∈ C(V ), define the derivative of f as follows:

df(e)
∆
= df([x, y]) = f(y)− f(x), df ∈ C(E). (5)

where e = [x, y] is the edge connecting nodes x and y.

Recall from the previous lecture that

C0(V )
∆
= {f ∈ C(V ) | supp f is a finite subset of V } ,

which indicates that f has a compact support. In the interest of time the proof of
the following theorem will be left out, but for more information see [6].

Theorem 1.5 (The discrete version of Green’s first identity). For all f1, f2 ∈
C0(V ), we have

〈 df1, df2〉 = 〈∆P f1, f2〉 =
∑
u∈V

(∆Af1)(u)f2(u). (6)

Corollary 1.6. Note that ∆A and ∆P are both positive operators.
∀f ∈ C0(V ), we have

〈∆P f, f〉 =
∑
u∈V

(∆Af)(u)f(u) = 〈 df, df〉 ≥ 0. (7)

Theorem 1.7 (The discrete version of the minimum principle). Let f ∈ C(V ) be
superharmonic at x ∈ V . If

f(x) ≤ min
y∼x

f(y) (?)

Then any z ∼ x, we have f(z) = f(x).

Proof. We have

1

m(x)

∑
y∼x

f(y) ≤ f(x) ≤ min
y∼x

f(y) ≤ 1

m(x)

∑
y∼x

f(y).

So
1

m(x)

∑
y∼x

f(y) = f(x), but because of (?), this can only happen when f(y) =

f(x), ∀y ∼ x.
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2 Eigenvalue Problems of Finite Graphs
The properties of eigenvalues of finite graphs can now be defined. In the interest
of time, infinite graphs will not be considered.

2.1 Eigenvalues and the Chromatic Number
The following theorem of Perron-Frobenius for the adjacency matrix of a con-
nected graph (finite) is well known, see [5, Chap. 8].

Theorem 2.1 (Perron-Frobenius). Let A be an adjacency matrix of a connected
finite graph. The following hold.

1. For any λ(A), an eigenvalue of A,

|λ(A)| ≤ λmax(A). (8)

Note that λmax is always positive, but other eigenvalues could be negative.
Yet the above still holds.

2. λmax(A) has multiplicity one.

3. There exists an eigenvector corresponding to λmax(A) whose entries are all
positive.

Example 2.2. Figure 3 contains examples of graphs and their eigenvalues that
illustrate Theorem 2.1.

Theorem 2.3. Let p = #(V ), q = #(E) for G = (V,E).
Then:

1. λmax(A) ≤ m∞(G) = the largest degree of G.

2. 2q
p
≤ λmax(A) ≤

√
2q(p−1)

p
, with the first equality holds if and only if G is

regular and the second equality holds if and only if G = Kp.

3. If G 6= Kp, p ≥ 3, then

−
√

2 ≤ λmin(A) ≤ λmax(A) ≤
√

2.
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Graph G λ(A)

K5 4,−1,−1,−1,−1

K3,3 3, 0, 0, 0, 0,−3

3-D cube 3, 1, 1, 1,−1,−1,−1, 3

P5 2, −1+
√

5
2

, −1+
√

5
2

, −1−√5
2

, −1−√5
2

Peterson Graph 3, 1, 1, 1, 1, 1,−2,−2,−2,−2

L2(3) (lattice graph) 4, 1, 1, 1, 1,−2,−2,−2,−2

Figure 3: Examples of graphs and their eigenvalues.

This theorem gives some properties of eigenvalues, which reflect information
about the structure of a graph.

Definition 2.4. The chromatic number χ(G) of a graph G is the smallest number
of colors needed to color the vertices of G so that no two adjacent vertices share
the same color.

Some examples of graphs and their corresponding chromatic numbers are given
in Figure 4.

(a) χ(P5) = 3 (b) χ(K5) = 5 (c) χ(S6) = 2

Figure 4: Examples of graphs and their chromatic numbers.

Now let’s order the eigenvalues of ∆A, ∆P as follows:

0 = λ
(A)
1 ≤ λ

(A)
2 ≤ · · · ≤ λ(A)

p (9)

0 = λ
(P )
1 ≤ λ

(P )
2 ≤ · · · ≤ λ(P )

p (10)
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Lemma 2.5. The smallest eigenvalues for ∆A, ∆P are both zero, and the corre-
sponding eigenvectors are of the form α(1, 1, 1, · · · 1)T , α is some constant.

Note the similarity with the Neumann Laplacian problem in the continuum.

The following theorem relates the chromatic number to the eigenvalues.

Theorem 2.6.

1. Wilf (1967) [7],
χ(G) ≤ 1 + λmax(A),

with equality if and only if G = Kp for any p ∈ N or G = Pp for p is odd.
Here Pp is a circuit with p vertices.

2. Tan (2000) [8],
χ(G) ≤ λ(A)

p

with equality if and only if G = Kp. If m∞(G) ≥ 3 and G 6= Kp, then

χ(G) ≤ p− 1

p
λ(A)

p .

2.2 Some other characterizations of λ
(P )
2 and λ

(P )
j , j ≥ 2

Theorem 2.7 (See [3] for more information). Let p = |V |.
1.

p∑
j=1

λ
(P )
j ≤ p,

with equality if and only if G has no isolated vertices.

2. For p ≥ 2,

λ
(P )
2 ≤ p

p− 1
,

with equality if and only if G = Kp. Also, for a graph without isolated
vertices, we have

λ(P )
p ≥ p

p− 1
.
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3. For G 6= Kp, λ
(P )
2 ≤ 1.

4. If G is connected, then λ
(P )
2 > 0. If λ

(P )
j = 0 and λ

(P )
j+1 6= 0, then G has

exactly j connected components.

5. λ
(P )
j ≤ 2, j = 1, 2, · · · , p. Also, λ

(P )
p = 2 if and only if a connected

component of G is bipartite and nontrivial.

6. The spectrum of a graph is the union of the spectra of its connected compo-
nents (the same situation as the continuum we discussed before).

7.
λ

(P )
2 ≥ 1

diam(G) · vol(G)
,

where
vol(G)

∆
=

∑
u∈V

m(u).

8. Let ϕ
(P )
2 be an eigenfunction corresponding to λ

(P )
2 . Then for any x ∈ V we

have
λ

(P )
2 ϕ

(P )
2 (x) =

1

m(x)

∑
y∼x

(
ϕ

(P )
2 (x)− ϕ

(P )
2 (y)

)
.

3 Conclusion
From these characteristics of graphs, we have found that essentially the same ideas
of the continuum case carry over to discrete graphs. Suppose you have a very large
graph. These results can be used to automate the analysis of that graph through
the eigenvalues and eigenfunctions of the Laplacian. Next time we will discuss
isospectral graphs sharing the same eigenvalues. It can be seen that the Laplacian
eigenvalues of a graph contain certain important information about that graph, but
the eigenvalues alone cannot recover or uniquely determine the graph.
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