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0 Review: Vibrations of A One Dimensional String
In Lecture 1, for the problem of vibration of 1D string, depending on the type of
boundary condition (BC), we consider the following:

utt = c2uxx for x ∈ (0, `) and t > 0;
u(0, t) = u(`, t) = 0 Dirichlet BC
or ux(0, t) = ux(`, t) = 0 Neumann BC

}
for t ≥ 0;

u(x, 0) = f(x), ut(x, 0) = g(x) for x ∈ [0, `]

(1)

To solve for u(x, t), we assume that the solution is independent in time and space.
That is, we can write our solution as u(x, t) = X(x)T (t), where X(x) and T (t)
do not depend on each other. After separating T part, we had:

−X ′′ = λX for x ∈ (0, `) and λ ≥ 0;
X(0) = X(`) = 0 Dirichlet BC
or X ′(0) = X ′(`) = 0 Neumann BC

(2)
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This is a 1-D version of the Laplacian eigenvalue problem: given a general shape
Ω ⊂ Rd 

−∆u = λu in Ω ⊂ Rd

u = f on ∂Ω, Dirichlet BC

or
∂u

∂ν
= g on ∂Ω, Neumann BC

(3)

REMARK: In 1D problem (2), we get
λn = ν2

n =
(nπ

`

)2

n = 1, 2, . . . Dirichlet BC
n = 0, 1, 2, . . . Neumann BC

Notice that Ω = (0, `), with |Ω| = `. Therefore, the eigenvalues reflect the
geometric information of Ω, in this 1D case, the volume of Ω = the length of
Ω = `.

In 1D, this line of work culminated in the work of Sturm and Liouville (1836-37),
which also accounts non-uniform strings.

1 Sturm and Liouville’s work
Given Ω = (a, b). Define

L2
w[a, b] ,

{
f supported on [a, b]

∣∣∣ ∫ b

a

|f(x)|2w(x) dx < ∞,

with w(x) > 0 and w ∈ C[a, b]
}

.

(4)

equipped with the weighted inner product for all f, g ∈ L2
w[a, b] as

〈f, g〉w
∆
=

∫ b

a

f(x)g(x)w(x) dx.

Define L : L2
w[a, b] → L2

w[a, b] such that for f ∈ L2
w[a, b],

Lf
∆
= (rf ′)′ + pf (5)

where r ∈ C1[a, b], r > 0 on [a, b], and p ∈ C[a, b] is real-valued.
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We consider the Regular Sturm-Liouville Problem (RSLP):{
Lf + λwf = 0
B1f = B2f = 0

(6)

where Bjf , αjf(a) + α′jf
′(a) + βjf(b) + β′jf

′(b), for j = 1, 2, with constants
αj , α′j , βj , and β′j .

We say that the boundary conditions in (6) are self-adjoint (relative to L) if[
r(f ′g − fg′)

]b

a
= 0 for all f, g satisfying Bjf = Bjg = 0, j = 1, 2.

For any f, g belonging to a certain subspace of L2
w[a, b] and satisfying the self-

adjoint boundary conditions, we can easily show that the differential operator
defined in (5) satisfies 〈Lf, g〉w = 〈f,Lg〉w. Such an L is called a self-adjoint
operator.

Note that for the vibration of the one-dimensional string with homogeneous Dirich-
let boundary conditions, r ≡ 1, p ≡ 0, α1 = 1, α′1 = 0, β1 = 0, β′1 = 0, α2 = 0,
α′2 = 0, β2 = 1, and β′2 = 0.

1.1 The Sturm-Liouville Theorem
For every RSLP (6), the following hold:

1. All eigenvalues are real.

2. Eigenfunctions corresponding to distinct eigenvalues are orthogonal with
respect to 〈·, ·〉w.

3. The eigenspace for any eigenvalue λ is at most 2-dimensional, and these
two eigenfunctions can be chosen to be orthogonal.

4. φn, the nth eigenfunction corresponding to the nth distinct eigenvalue, has
n− 1 zeros in (a, b).

5. For any f ∈ C2[a, b] satisfying B1f = B2f = 0 (but not necessarily Lf +
λwf = 0), the series

∑∞
n=1 〈f, φn〉w φn converges uniformly to f .
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6. For any f ∈ L2
w[a, b], ‖f‖2

L2
w([a,b]) =

∑∞
n=1 | 〈f, φn〉w |2 (Parseval’s equal-

ity).

In higher dimensions, we shall not delve into generalities of spatially varying coef-
ficients, such as r(x), p(x) in RSLP (6). We shall stick with the simple Laplacian
eigenvalue problem in Rd, d > 1.

2 (Pre)History of the Laplacian Eigenvalue Prob-
lem in Rd

2.1 The Lorentz Conjecture (from [2])
In late October of 1910, a Dutch physicist H. A. Lorentz delivered a series of five
“Wolfskehl” lectures (via a donation of Mr. Wolfskehl, who intended to pay the
prize for a person who solved “The Fermat Conjecture”) titled Old and New Prob-
lems of Physics at Göttingen University in Germany. Referring to a Cambridge
physicist J. H. Jeans’s work in radiation theory, Lorentz said:

“In an enclosure with a perfectly reflecting surface, there can form
standing electromagnetic waves analogous to tones over an organ
pipe: we shall confine our attention to very high overtones. Jeans
asks for the energy in the frequency interval dν. To this end, he cal-
culates the number of overtones which lie between frequencies ν and
ν + dν, and multiplies this number by the energy which belongs to
the frequency ν, and which according to a theorem of statistical me-
chanics, is the same for all frequencies.”

“It is here that there arises the mathematical problem to prove that the
number of sufficiently high overtones which lie between ν and ν + dν
is independent of the shape of the enclosure, and is simply propor-
tional to its volume. For many shapes for which calculations can be
carried out, this theorem has been verified in a Leiden dissertation.
There is no doubt that it holds in general even for multiply connected
regions. Similar theorems for other vibrating structures, like mem-
branes, air masses, etc., should also hold.”

If we express the Lorentz conjecture in a vibrating membrane, it becomes of the
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following form:

N(λ) =
∑

λn<λ 1

= #{λn : Dirichlet-Laplacian eigenvalues (3) |λn < λ}

∼ |Ω|
2π

λ.

(7)

A mathematician D. Hilbert was attending these lectures and predicted as follows:
“This theorem would not be proved in my life time.” But, in fact, Hermann Weyl,
a graduate student at that time, was also attending these lectures. Weyl proved this
conjecture four months later in February of 1911.

2.2 Weyl’s work
Let Ω ⊂ Rd with |Ω| = volume of Ω =

∫
Ω

dx < ∞. Consider the vibration
problem 

utt = ∆u in Ω
u(x, t) = 0 on ∂Ω
u(x, 0) = f(x) in Ω
ut(x, 0) = g(x) in Ω

(8)

Using the separation of variables u(x, t) = X(x)T (t), we reach to

XT ′′ = (∆X)T,
T ′′

T
=

∆X

X
= −λ

replacing X by u, we get the Dirichlet-Laplacian eigenvalue problem:{
−∆u = λu in Ω
u = 0 on ∂Ω

(9)

Let L = −∆, where ∆ =
∂2

∂ x1
2

+
∂2

∂ x2
2

+ · · ·+ ∂2

∂ xd
2

= ∇ · ∇

If u 6≡ 0 satisfies (9), then it is called a eigenfunction and the corresponding λ

is called the eigenvalue. Define Eλ
∆
= {u ∈ D(L) |Lu = λu} the eigenspace

corresponding to λ, with dim Eλ = multiplicity of λ.

In this problem, {λ} consists of countably finite number of eigenvalues with finite
multiplicity, i.e., we can order them as

λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · −→ ∞
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Let Lϕk = λkϕk, k = 1, 2, . . .. And let f ∈ C0(Ω), i.e., f ∈ C(Ω) and f = 0 on
∂Ω, where Ω = Ω ∪ ∂Ω. In fact it is ok to assume f ∈ L2(Ω).
Then f =

∑∞
k=1〈f, ϕk〉ϕk. This is called an eigenfunction expansion of f , be-

cause 〈ϕk, ϕ`〉 = δk` and {ϕk}k∈N is an orthonormal basis (ONB for short) of
L2(Ω), here 〈f, g〉 ∆

=
∫

Ω
f(x)g(x) dx.

Expanding the initial conditions into the eigenbasis, we get

f(x) =
∞∑

k=1

〈f, ϕk〉ϕk, g(x) =
∞∑

k=1

〈g, ϕk〉ϕk

Then, we get the solution to the vibration problem

u(x, t) =
∞∑

k=1

{
〈f, ϕk〉 cos

√
λkt +

〈g, ϕk〉√
λk

sin
√

λkt
}

ϕk(x)

So, the key was the Laplacian eigenvalue problem (9).

Weyl’s Theorem

λk ∼
(

k

Cd|Ω|

) 2
d

as k →∞ (10)

where Cd
∆
= (2

√
π)−dΓ

(
d
2

)
.

Equivalently,
N(λ) ∼ Cd|Ω|λd/2 (11)

where N(λ) = #{k ∈ N |λk ≤ λ}. This equivalence is clear since N(λk) = k,
so k ∼ Cd|Ω|λd/2

k .

Weyl’s Conjecture

N(λ) = Cd|Ω|dλ
d
2 − Cd−1

4
|∂Ω|d−1λ

d−1
2 + o(λ

d−1
2 ). (12)

where |Ω|d : volume in Rd and |∂Ω|d−1 : volume in Rd−1 or the area in Rd.
This conjecture has not been completely solved yet and started the field known as
“spectral geometry”.
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2.3 Can we hear the shape of a drum?
In 1966, Mark Kac (Rockefeller Univ.) asked “Can we hear the shape of a drum?”
[2]. In other words, “how much can we know about the shape (geometric infor-
mation) of Ω from the Laplacian eigenvalues {λn}∞n=1?”

Kac proceeded to show that for all bounded Ω ⊂ R2,

∞∑
n=1

e−λnt =
|Ω|
4πt

− |∂Ω|
8
√

πt
+ o(t−

1
2 ) as t ↓ 0 (13)

also
∞∑

n=1

e−λnt =
|Ω|
4πt

− |∂Ω|
8
√

πt
+

1− r

3
+ o(1) as t ↓ 0,

if Ω has r holes and Ω and holes are polygons.

(14)

In 1967, McKean and Singer generalized Kac’s result to Ω ⊂ Rd. For more about
this work and the related work up to 1987, see [3].
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