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0 Review: Vibrations of A One Dimensional String

In Lecture 1, for the problem of vibration of 1D string, depending on the type of
boundary condition (BC), we consider the following:

U = Uy forz € (0,¢) and ¢ > 0;
uw(0,t) =u(l,t) =0 Dirichlet BC

> .
or u,(0,t) = u,(¢,t) =0 Neumann BC fort 2 0; M
u(z,0) = f(z), w(x,0)=g(x) for z € [0, /]

To solve for u(x,t), we assume that the solution is independent in time and space.
That is, we can write our solution as u(z,t) = X (z)T(t), where X () and T'(¢)
do not depend on each other. After separating 7" part, we had:

X(0) = X(¢) = Dirichlet BC )

- X" =X for z € (0,¢) and A > 0;
0
or X'(0) = X'(/) =0 Neumann BC



This is a 1-D version of the Laplacian eigenvalue problem: given a general shape

Q CR?
—Au=Xu inQ CR?

u=f on 0f), Dirichlet BC 3)
or ? =g on0f), Neumann BC
v

REMARK: In 1D problem (2), we get
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Notice that Q@ = (0,¢), with |Q2] = ¢. Therefore, the eigenvalues reflect the
geometric information of 2, in this 1D case, the volume of () = the length of
Q="

In 1D, this line of work culminated in the work of Sturm and Liouville (1836-37),

which also accounts non-uniform strings.

1 Sturm and Liouville’s work

Given ) = (a, b). Define

b
L%[a,b] = {f supported on [a, b] ‘ / |f(z)Pw(x) dz < oo,

“4)
with w(z) > 0 and w € CJa, b]}
equipped with the weighted inner product for all f, g € L2 [a, ] as
N —
(), 2 [ f@igiule) do
Define £ : L2 [a,b] — L2 [a, b] such that for f € L2 [a,b),
£f = (rf)) +pf 5)

where r € C'[a,b], 7 > 0 on [a,b], and p € Cla, ] is real-valued.



We consider the Regular Sturm-Liouville Problem (RSLP):

Lf+ wf=0
{ Bif = Baf =0 ©)

where B, f £ a;f(a) + o f'(a) + B;f(b) + Bif'(b), for j = 1,2, with constants
aj, Oé;, ﬁj, and 5;

We say that the boundary conditions in (6) are self-adjoint (relative to L) if
[r(f'g— f?)}z =0 forall f,g satisfying B,f = B;jg=0,j=1,2.

For any f, g belonging to a certain subspace of L2 [a,b] and satisfying the self-
adjoint boundary conditions, we can easily show that the differential operator
defined in (5) satisfies (Lf,¢), = (f,Lg),. Such an L is called a self-adjoint
operator.

Note that for the vibration of the one-dimensional string with homogeneous Dirich-
let boundary conditions, r = 1, p =0, = 1,0, =0, 5, =0, ] =0, ay = 0,
ap =0, fy = 1,and ) = 0.

1.1 The Sturm-Liouville Theorem

For every RSLP (6), the following hold:
1. All eigenvalues are real.

2. Eigenfunctions corresponding to distinct eigenvalues are orthogonal with
respect to (-, )

w*

3. The eigenspace for any eigenvalue A is at most 2-dimensional, and these
two eigenfunctions can be chosen to be orthogonal.

4. ¢,, the n'" eigenfunction corresponding to the n'" distinct eigenvalue, has
n — 1 zeros in (a, b).

5. For any f € C?[a,b] satisfying B, f = By f = 0 (but not necessarily Lf +
Awf = 0), the series Y~ , (f, ¢n).,, ®n converges uniformly to f.



6. Forany f € L3[a, 0], [[fl1Z2 sy = 2omei | (fs @n),, |? (Parseval’s equal-
ity).

In higher dimensions, we shall not delve into generalities of spatially varying coef-
ficients, such as r(x), p(x) in RSLP (6). We shall stick with the simple Laplacian
eigenvalue problem in R¢, d > 1.

2 (Pre)History of the Laplacian Eigenvalue Prob-
lem in R?

2.1 The Lorentz Conjecture (from [2])

In late October of 1910, a Dutch physicist H. A. Lorentz delivered a series of five
“Wolfskehl” lectures (via a donation of Mr. Wolfskehl, who intended to pay the
prize for a person who solved “The Fermat Conjecture”) titled Old and New Prob-
lems of Physics at Gottingen University in Germany. Referring to a Cambridge
physicist J. H. Jeans’s work in radiation theory, Lorentz said:

“In an enclosure with a perfectly reflecting surface, there can form
standing electromagnetic waves analogous to tones over an organ
pipe: we shall confine our attention to very high overtones. Jeans
asks for the energy in the frequency interval dv. To this end, he cal-
culates the number of overtones which lie between frequencies v and
v + dv, and multiplies this number by the energy which belongs to
the frequency v, and which according to a theorem of statistical me-
chanics, is the same for all frequencies.”

“It is here that there arises the mathematical problem to prove that the
number of sufficiently high overtones which lie between v and v + dv
is independent of the shape of the enclosure, and is simply propor-
tional to its volume. For many shapes for which calculations can be
carried out, this theorem has been verified in a Leiden dissertation.
There is no doubt that it holds in general even for multiply connected
regions. Similar theorems for other vibrating structures, like mem-
branes, air masses, etc., should also hold.”

If we express the Lorentz conjecture in a vibrating membrane, it becomes of the
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following form:

N ()‘) = ZAn<>\ 1
= #{\, : Dirichlet-Laplacian eigenvalues (3) | A, < A} (7
ol
2
A mathematician D. Hilbert was attending these lectures and predicted as follows:
“This theorem would not be proved in my life time.” But, in fact, Hermann Wey],

a graduate student at that time, was also attending these lectures. Weyl proved this
conjecture four months later in February of 1911.

2.2 Weyl’s work

Let Q C R? with || = volume of @ = [, de < oo. Consider the vibration
problem

uy = Au in
u(x,t) =0 on 0} g
u(x,0) = f(x) inQ ®)

ur(x,0) = g(x) in
Using the separation of variables u(x,t) = X (x)7T(t), we reach to
T AX
T X

replacing X by u, we get the Dirichlet-Laplacian eigenvalue problem:

XT" = (AX)T, —\

—Au = A u in ()
{ u=20 on 02 ©)
92 92 92
LetL——A,whereA—8x12—|—8x22—|-~~—|-8xd2 =V-V

If uw # 0 satisfies (9), then it is called a eigenfunction and the corresponding A

is called the eigenvalue. Define F), 2 {u € D(L)|Lu = Au} the eigenspace
corresponding to A\, with dim £, = multiplicity of .

In this problem, { A} consists of countably finite number of eigenvalues with finite
multiplicity, i.e., we can order them as

M A< S A< — 00
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Let Ly, = Mo, k= 1,2,.... And let f € Cy(Q),ie., f € C(Q)and f = 0 on
082, where Q = QU 9. In fact it is ok to assume f € Lz(Q).

Then f = > .7 (f, vx)pr. This is called an eigenfunction expansion of f, be-
cause (@, pr) = 5kg and {gpk}keN is an orthonormal basis (ONB for short) of

L?(Q), here (f, g) fQ x) dx.

Expanding the initial conditions into the eigenbasis, we get

Z fron)er, g(x) = Z<9 Prk) Pk

k=1

Then, we get the solution to the vibration problem

=S {(.n) cos Vit + %’%” sin /2wt } o (@)

k=1

So, the key was the Laplacian eigenvalue problem (9).

Weyl’s Theorem

Lo\
A ~ <—) as k — oo (10)

where Cy 2 (2y/m)7T (%).
Equivalently,

N(X) ~ CalQX? (11)
where N(\) = #{k € N| )\ < A}. This equivalence is clear since N(\;) = k,
so k ~ Cd\Q\)\Z/Q.
Weyl’s Conjecture
Cd 1

N\ = CalQars — 21900007 +o(A 7). (12)
where |4 : volume in R? and |0€2|4_; : volume in R?~! or the area in R,

This conjecture has not been completely solved yet and started the field known as
“spectral geometry”.



2.3 Can we hear the shape of a drum?

In 1966, Mark Kac (Rockefeller Univ.) asked “Can we hear the shape of a drum?”
[2]. In other words, “how much can we know about the shape (geometric infor-
mation) of {2 from the Laplacian eigenvalues {\,, }>° ,?”

Kac proceeded to show that for all bounded §2 C R?,

© Q] |09 1
e,\nt:|____|_0t2 ast | 0 13
nz:; At 8+/mt ( ) ! -
also
> Q109 1-r
Ze )\nt:|____|_——|—0<1) ast | 0,
ra Art 87t 3 (14)

if {2 has r holes and €2 and holes are polygons.

In 1967, McKean and Singer generalized Kac’s result to £ C R?. For more about
this work and the related work up to 1987, see [3].
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