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1 The Cheeger Ratio and the Cheeger Constants of
a Graph

This lecture is based primarily on material in [17] and [3, Sec. 2.1-2.3].

Definition 1.1. Given a graphG = (V,E). Let S ⊂ V be a subset of vertices.

Then∂S
∆
= {e = (x, y) ∈ E |x ∈ S, y /∈ S},

Example 1.2. In Figure 1,S is the set of dark nodes, and the dotted lines form

∂S. S
∆
= V \S. Also, vol(S) = m(S)

∆
=
∑

x∈S m(x).

Definition 1.3. TheCheeger ratio for S ⊂ V is defined as

h(S)
∆
=

#(∂S)

min(vol(S), vol(S))
=

|∂S|

min(vol(S), vol(S))
,
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Figure 1:S consists of the dark nodes. The dotted lines form∂S.

Example 1.4. In Figure 1, vol(S) = 4 + 5 + 4 + 5 = 18 and vol(S) = 3 + 2 +
3 + 2 + 2 = 12. #(∂S) = 8. So the Cheeger ratio ish(S) = 8/12 = 2/3.

The Cheeger ratio tells about the quality of thecut of V into S ∪ S = V . In
Figure 2, a graph that nearly separates into two separate graphs is shown. Note that
this graph is well balanced, i.e., vol(S) ≈ vol(S); and there exist few connections
betweenS andS, i.e.,|∂S| is small. In such case, this cut will give us smallh(S).

S S

Figure 2: The cut intoS andS generates a small Cheeger ratio.

Definition 1.5. TheCheeger constantshP (G) andhA(G) are defined as

hP (G)
∆
= inf

S⊂V, S 6=∅
h(S),

hA(G)
∆
= inf

S⊂V, S 6=∅

#(∂S)

min{#(S),#(S)}
= inf

S⊂V, S 6=∅

|∂S|

min(|S|, |S|)
.
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The following theorem provides the upper bounds forhP (G) andhA(G).

Theorem 1.6.

1. Dodzink and Kendall (1986) [5]: hP (G) ≤

√

2λ
(P )
2 , i.e., λ

(P )
2 ≥

h2
P (G)

2
;

2. Mohar (1987) [12]: hA(G) �
√

λ
(A)
2 (2m∞(G) − λ

(A)
2 ) for p = #(V ) ≥

4;

3. Tan (2003) [15]: hP (G) ≤

√

λ
(P )
2 (2 − λ

(P )
2 ) , for p ≥ 4. Equality holds

if and only if G = K1,p−1.

These inequalities are used to evaluate the lower bounds ofλ
(P )
2 , λ

(A)
2 .

For the upper bounds of the eigenvalues, we have

Theorem 1.7(Urakawa 1999 [16]).

For 2 ≤ j ≤ ⌊diam(G)
2

⌋,

λ
(A)
j ≤ m∞(G) − 2

√

m∞(G) − 1 cos

(

π
diam(G)

2j
+ 1

)

;

λ
(P )
j ≤ 1 −

2
√

m∞(G) − 1

m∞(G)
cos

(

π
diam(G)

2j
+ 1

)

.

Note that there also exists the simpler upper bound:

λ
(P )
2 ≤ 2hP (G).

Let us prove this inequality.
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Proof. Using the minimum principle (MP2), we have

λ
(P )
2 = inf

f∈C0(V ), 〈f,1〉=0, f 6≡0

〈 df, df〉0
‖f‖2

= inf
f∈C0(V ), 〈f,1〉=0, f 6≡0

〈∆Af, df〉0
‖f‖2

= inf
f∈C0(V ), 〈f,1〉=0, f 6≡0

∑

x∼y

(f(x) − f(y))2

∑

x∈V

m(x)f2(x)
,

where we have used the following definitions:

〈f, g〉0
∆
=

∑

u∈V

f(u)g(u), and

‖f‖2 ∆
=

∑

u∈V

m(u)f2(u).

Now supposeS achieves the Cheeger constanthP (G). Set

f(x)
∆
=

{
1

vol(S)
if x ∈ S,

− 1
vol(S)

if x /∈ S.

Then

〈f, 1〉 =
∑

x∈V

f(x) · 1 · m(x)

=
∑

x∈S

1

vol(S)
m(x) +

∑

x∈S

(

−
1

vol(S)

)

m(x)

=
vol(S)

vol(S)
−

vol(S)

vol(S)
= 0.
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We also have

‖f‖2 =
∑

x∈V

f2(x)m(x)

=
∑

x∈S

m(x)

vol(S)2
+
∑

x∈S

m(x)

vol(S)2

=
1

vol(S)
+

1

vol(S)
.

Moreover,

〈df, df〉0 = 〈∆Af, f〉0

=
∑

x∼y

(f(x) − f(y))2

=
∑

x∼y
x,y∈S

(f(x) − f(y))2 +
∑

x∼y

x∈S,y∈S

(f(x) − f(y))2 +
∑

x∼y

x,y∈S

(f(x) − f(y))2

= 0 + |∂S|

(
1

vol(S)
+

1

vol(S)

)2

+ 0.

Now, using the inequalitya+b
ab

≤ 2
min (a,b)

for a, b > 0, we find

λ
(P )
2 ≤

|∂S| ·

(
1

vol(S)
+

1

vol(S)

)2

1

vol(S)
+

1

vol(S)

= |∂S|

(
1

vol(S)
+

1

vol(S)

)

≤
2|∂S|

min(vol(S), vol(S))

= 2hP (G).

The last equality is derived by the assumption thatS achieveshP (G).
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2 Isospectrality

Definition 2.1. LetG = (V,E). Define Spec(G,A), Spec(G,∆A) and Spec(G,∆P )
as the sets of spectra (eigenvalues) ofA, ∆A and∆P of G, respectively. For given
G1 andG2, if Spec(G1, A) = Spec(G2, A), thenG1 andG2 are said to becospec-
tral . If Spec(G1, ∆A) = Spec(G2, ∆A) or Spec(G1, ∆P ) = Spec(G2, ∆P ), then
G1 andG2 are said to beisospectral.

For cospectrality and isospectrality of graphs, see [6], [1], [14] and [7]. For more
on the isospectral inequalities, see [9], [10] and chapter 2. of [3, Chap. 2].

Example 2.2. (Fisher 1966 [6], Baker 1966 [1]). Figure 3 shows two cospectral
graphs, however they are not isomorphic.

Figure 3: Cospectral but not isomorphic graphs

Example 2.3. (Fuji-Katsuda 1999 [7], Tan 1998 [14]). Figure 4 is an example of
two ∆A-isospectral graphs.

Figure 4:∆A-isospectral graphs.

Example 2.4.(Fuji-Katsuda 1999 [7], Tan 1998 [14]). Figure 5 shows an example
of two ∆P -isospectral graphs.
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Figure 5:∆P -isospectral graphs.

3 Discrete Laplacian Eigenvalue Problems

Definition 3.1. G = (V,E) is said to haveboundary ∂G = (∂V, ∂E) if the
following two conditions are met:

1. {

V =
o

V
⋃

∂V
o

V
⋂

∂V = ∅;

E =
o

E
⋃

∂E
o

E
⋂

∂E = ∅.

2. For eache = (x, y) ∈ E, x, y ∈ V ,

e ∈
o

E ⇐⇒ x, y ∈ V ;

e ∈ ∂E ⇐⇒ x ∈
o

V , y ∈ ∂V or x ∈ ∂V, y ∈
o

V .

Example 3.2. Note that there exists some arbitrariness of∂G. In Figure 6, the

open nodes are in
o

V , the closed nodes in∂V , the solid lines inE, and the dashed
lines in∂E.

(a) (b)

Figure 6: The arbitrariness of∂G.

7



Consider the discrete Laplacian eigenvalue problem, defined as
{

∆Pu = µ(P )u in
o

V ,
u = 0 on∂V.

Dirichlet-Laplacian
(
D-L(P )

)
;

{

∆Pu = ν(P )u in
o

V ,
du = 0 on∂E.

Neumann-Laplacian
(
N-L(P )

)
.

Of course, we can define the discrete Laplacian eigenvalue problem with∆A. We
can order these eigenvalues as

D − L(A) : µ
(A)
1 ≤ µ

(A)
2 ≤ . . . ≤ µ

(A)
k , k = #(

o

V ).

D − L(P ) : µ
(P )
1 ≤ µ

(P )
2 ≤ . . . ≤ µ

(P )
k , k = #(

o

V ).

We have the following theorem.

Theorem 3.3.µ(P )
1 > 0, and µ

(A)
1 > 0, both with multiplicity 1. And there exist

ϕ
(P )
1 (x) > 0 and ϕ

(A)
1 (x) > 0 for all x ∈

o

V .

Proof. The proof is essentially the same as the continuum case, i.e., use the dis-
crete Green’s identity with the boundary condition. For example, letϕ(P )

1 be an
eigenfunction forµ(P )

1 with ‖ϕ
(P )
1 ‖ = 1, then using the discrete Green’s identity,

µ
(P )
1 =

〈

∆ϕ
(P )
1 , ϕ

(P )
1

〉

=
〈

dϕ
(P )
1 , dϕ

(P )
1

〉

= ‖ dϕ
(P )
1 ‖2 ≥ 0.

If dϕ
(P )
1 ≡ 0, thenϕ

(P )
1 ≡ const onV . But ϕ

(P )
1 = 0 on ∂V forces us to have

ϕ
(P )
1 ≡ 0. Soµ

(P )
1 6= 0. Therefore,µ(P )

1 > 0.

Theorem 3.4(The discrete Faber-Krahn inequality). see [9], [10].

If #(
o

E ∪∂E) = n, then

µ
(P )
1 (Ln) ≤ µ

(P )
1 (G)

where equality holds if and only if G = Ln. Ln a graph is shown in Figure 7.

There are n nodes. Only the last to the right belongs to ∂V , the rest belong to
o

V ,
and the same is true for the edges.
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x1 x2 xn xn+1

∂V

∂E

︸ ︷︷ ︸
o

V

o

E

Figure 7: GraphLn.
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