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In this lecture, we will review the famous problems of spectral geometry some of
which are still open. The early history of spectral geometry can be found in [1]
and [2].

1 On the First Few Eigenvalues
To get more details about the problems in this section, please read [3], [4] and
references therein.

Let {λn} denote the Dirichlet-Laplacian eigenvalues that satisfy the following
equations: { −∆ϕn = λnϕn in Ω

ϕn = 0 on ∂Ω.
(1)

Furthermore, let {νn} denote the Neumann-Laplacian eigenvalues that satisfy the
following equations: { −∆ψn = νnψn in Ω

∂ψn

∂ν
= 0 on ∂Ω.

(2)
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As we show in the next lecture, all the eigenvalues above are nonnegative and can
be ordered in the increasing order. More precisely, we have: 0 < λ1 ≤ λ2 ≤ · · · ,
and 0 = ν1 < ν1 ≤ ν2 ≤ · · · .

1.1 The Rayleigh Conjecture (1877)
The Rayleigh Conjecture was proven independently by Faber & Krahn in 1923
and claims the following:

Let Bd
1 be the unit ball in Rd, and consider a domain Ω ⊂ Rd with |Ω| < ∞.

Furthermore, assume that |Ω| = |Bd
1|. Then

λ1(Ω) ≥ λ1(Bd
1), with equality if and only if Ω is congruent to Bd

1 .

NOTE: See Appendix for more about the unit ball and sphere in Rd.

1.2 The Payne-Póyla-Weinberger conjecture (1956)
This conjecture was proven by Ashbaugh-Benguria in 1991. Under the same as-
sumption of the Rayleigh conjecture, it states the following:

λ2(Ω)

λ1(Ω)
≤ λ2(Bd

1)

λ1(Bd
1)

, with equality if and only if Ω is congruent to Bd
1 .

A more general statement is the following:

λm+1(Ω)

λm(Ω)
<

λ2(Bd
1)

λ1(Bd
1)

for m ∈ N.

The cases with m = 1, 2, 3 were proven by Ashbaugh-Benguria in 1991-93. For
m ≥ 4 the problem is still open.

1.3 The Payne conjecture (1955)
The Payne conjecture was proven by L. Friedlander in 1991 and states as follows:
Assume that ∂Ω has C1 smoothness (i.e., no corners), then

νk+1 ≤ λk, k = 1, 2, · · ·
where νk and λk are the kth Neumann (2) and Dirichlet (1) Laplacian eigenvalues,
respectively.
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1.4 Another Payne-Póyla-Weinberger conjecture
This conjecture is still open. Assume Ω ⊂ R2 and |Ω| = |B2

1|, then

λ2(Ω) + λ3(Ω)

λ1(Ω)
≤ λ2(B2

1) + λ3(B2
1)

λ1(B2
1)

.

This can be generalized to Ω ⊂ Rd as follows:

λ2(Ω) + · · ·+ λd+1(Ω)

λ1(Ω)
≤ λ2(Bd

1) + · · ·+ λd+1(Bd
1)

λ1(Bd
1)

.

1.5 Yet another open problem
Find the optimal upper bound for

λ3(Ω)

λ1(Ω)
, with Ω ⊂ Rd, |Ω| < ∞,

i.e., find

arg sup
Ω⊂Rd

|Ω|<∞

λ3(Ω)

λ1(Ω)

So far, for d = 2, the largest λ3/λ1 found equals 35/11 ≈ 3.2 where Ω is a rect-
angle with sides

√
8 and

√
3. The best upper bound found so far is approximately

3.831.

2 Isospectral Problems
For the review on isospectral problems, see e.g., [5].

Definition 2.1. Two domains Ω, Ω′ ⊂ Rd, with |Ω| < ∞, |Ω′| < ∞, are said to
be isospectral if λk(Ω) = λk(Ω

′) holds for any k ∈ N or νk(Ω) = νk(Ω
′) holds

for any k ∈ N.

Question: Given Ω ⊂ Rd and |Ω| < ∞,

Is {Ω′ ⊂ Rd : |Ω′| < ∞ and isospectral to Ω} a compact set?

For d = 2, this is true. But for d ≥ 3, this is an open problem.
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Examples of isospectral domains:
In Rd, these were given for d ≥ 4 by Urakawa (1982), and for d = 2, 3, examples
were given by Gordon-Webb-Wolpert (1991-92). In both cases Ω, Ω′ have corners
(or polygons). The problem is open for a smooth domain.

3 Appendix
Some useful materials are given below.

• Let Bd
1 be the unit ball in Rd. Then the volume of the unit ball is given by

|Bd
1| =

2πd/2

dΓ(d/2)
. And the surface area of the unit ball is given by |Sd−1| =

2πd/2

Γ(d/2)
. For the derivations, see [6, Sec. 0B].

• The Gamma Function Γ(x) is defined as:

Γ(x)
∆
=

∫ ∞

0

sx−1e−s ds, 0 < x < ∞.

• Some properties of the Gamma Function:

1. Γ(1) = 1

2. Γ(x + 1) = xΓ(x)

3. Γ(n + 1) = n!, n = 0, 1, 2, · · ·
4. Γ(1/2) =

√
π

For the review of Gamma Function, see e.g., [7, Appendix 3]
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