MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 4: Diffusions and Vibrations in 2D and 3D - I. Basics

Lecturer: Naoki Saito
Scribe: Brendan Farrell/Allen Xue
April 10, 2007

The basic reference for this lecture is [1, Sec.10.1].

1 Wave Equation and Heat Equation

Consider a bounded domain $\Omega \subset \mathbb{R}^{d}, \quad d=2,3, \cdots$.

wave equation	$\underline{\text { heat equation }}$
$u_{t t}=c^{2} \Delta u$ in Ω	$u_{t}=k \Delta u$ in Ω

with one of the three boundary conditions (BC) on $\partial \Omega$:

$$
\begin{array}{cccc}
u=0 & \text { (D) } & u=0 & \text { (D) } \\
\frac{\partial u}{\partial \nu}=0 & \text { (N) } & \frac{\partial u}{\partial \nu}=0 & \text { (N) } \\
\frac{\partial u}{\partial \nu}+a u=0 & \text { (R) } & \frac{\partial u}{\partial \nu}+a u=0 & \text { (R) }
\end{array}
$$

with initial conditions (IC):

$$
\begin{array}{ll}
u(\boldsymbol{x}, 0)=f(\boldsymbol{x}) & u(\boldsymbol{x}, 0)=f(\boldsymbol{x}) \\
u_{t}(\boldsymbol{x}, 0)=g(\boldsymbol{x}) & u_{t}(\boldsymbol{x}, 0)=g(\boldsymbol{x}) \tag{3}
\end{array}
$$

The abbreviations for the boundary conditions used here are: Dirichlet (D), Neumann (N), Robin (R). For the Robin BC, a is a constant.

We use the method of separation of variables and set $u(\boldsymbol{x}, t)=T(t) v(\boldsymbol{x})$, which leads to the following equations

$$
\begin{array}{ll}
\text { From wave equation: } & \frac{T^{\prime \prime}}{c^{2} T}=\frac{\Delta v}{v}=-\lambda \tag{4}\\
\text { From heat equation: } & \frac{T^{\prime}}{k T}=\frac{\Delta v}{v}=-\lambda
\end{array}
$$

Later in this lecture we will show that $\lambda \geq 0$, for at least either (D), (N), or (R) in (2) is satisfied.

Regardless of whether we consider the heat or the wave equation, we reach

$$
\begin{gather*}
-\Delta v=\lambda v \quad \text { in } \Omega \tag{5}\\
\text { where } v \text { satisfies either (D), (N), or (R). }
\end{gather*}
$$

Lots of mathematics are involved to prove that the set of λ satisfying (5) is discrete, i.e., $\lambda_{1}, \lambda_{2}, \cdots$, and there exist the corresponding eigenfunctions $\varphi_{1}, \varphi_{2}, \cdots$ that are mutually orthogonal. We'll cover those math later, but at this point, we assume the existence of $\lambda_{1}, \lambda_{2}, \cdots$ and $\varphi_{1}, \varphi_{2}, \cdots$. Once we have the eigenpairs $\left\{\left(\lambda_{n}, \varphi_{n}\right)\right\}_{n=1}^{\infty}$, we can write the solutions for (1) as
wave equation: $u(\boldsymbol{x}, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\sqrt{\lambda_{n}} c t\right)+B_{n} \sin \left(\sqrt{\lambda_{n}} c t\right)\right] \varphi_{n}(\boldsymbol{x})$
heat equation: $\quad u(\boldsymbol{x}, t)=\sum_{n=1}^{\infty} A_{n} \mathrm{e}^{-\lambda_{n} k t} \varphi_{n}(\boldsymbol{x})$
where A_{n} and B_{n} are appropriate constants.
Preliminary: some important formulas used in the following sections:

- Divergence Theorem

$$
\int_{\Omega} \nabla \cdot f \mathrm{~d} \boldsymbol{x}=\int_{\partial \Omega} \boldsymbol{\nu} \cdot f \mathrm{~d} S,
$$

ν is normal vector and $\mathrm{d} S$ is a surface measure on $\partial \Omega$.

- Green's first identity (G1): For $u, v \in C^{2}(\bar{\Omega})$,

$$
\int_{\Omega} u \Delta v \mathrm{~d} \boldsymbol{x}+\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} \boldsymbol{x}=\int_{\partial \Omega} u \frac{\partial v}{\partial \nu} \mathrm{~d} S
$$

- Green's second identity (G2): For $u, v \in C^{2}(\bar{\Omega})$,

$$
\int_{\Omega}(u \Delta v-v \Delta u) \mathrm{d} \boldsymbol{x}=\int_{\partial \Omega}\left(u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu}\right) \mathrm{d} S .
$$

- The definition of the directional derivative along ν :

$$
\begin{equation*}
\frac{\partial}{\partial \nu} \triangleq \nu \cdot \nabla \tag{7}
\end{equation*}
$$

2 Orthogonality of the Eigenfunctions

Define the inner-product

$$
\langle f, g\rangle \triangleq \int_{\Omega} f(\boldsymbol{x}) \overline{g(\boldsymbol{x})} \mathrm{d} \boldsymbol{x}, \quad \text { where } \Omega \in \mathbb{R}^{d}, \quad \mathrm{~d} \boldsymbol{x}=\mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{d}
$$

Consider two functions $u, v \in C^{2}(\bar{\Omega})$, with $\bar{\Omega}=\Omega \bigcup \partial \Omega$, (C^{2} condition can be weakened), we have

$$
u \Delta v-(\Delta u) v=\nabla \cdot[u \nabla v-(\nabla u) v] .
$$

Then integrate both sides in Ω :

$$
\begin{align*}
\int_{\Omega}(u \Delta v-(\Delta u) v) \mathrm{d} \boldsymbol{x} & =\int_{\Omega} \nabla \cdot[u \nabla v-(\nabla u) v] \mathrm{d} \boldsymbol{x} \\
& \stackrel{(a)}{=} \int_{\partial \Omega} \nu \cdot[u \nabla v-(\nabla u) v] \mathrm{d} S \tag{8}\\
& \stackrel{(b)}{=} \int_{\partial \Omega}\left(u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu}\right) \mathrm{d} S
\end{align*}
$$

where (a) is derived by divergence theorem, and (b) is from the definition (7).
Now we can show that any $u, v \in C^{2}(\bar{\Omega})$ satisfying either (D), (N), or (R) also satisfy

$$
\langle u, \Delta v\rangle=\langle\Delta u, v\rangle .
$$

Proof. Equation (8) is equivalent to

$$
\langle u, \Delta v\rangle-\langle\Delta u, v\rangle=\int_{\partial \Omega}\left(u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu}\right) \mathrm{d} S .
$$

If u and v satisfy (D) or (N), it is obvious that the above is equal to 0 .
If u and v satisfy (R), we get

$$
u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu}=u(-a v)-v(-a u)=0 .
$$

Therefore each of these three classical BC's is symmetric. Suppose both u, v are real eigenfunctions satisfying

$$
-\Delta u=\lambda_{1} u, \quad-\Delta v=\lambda_{2} v
$$

and satisfying either (D), (N), or (R). Then λ_{1}, λ_{2} are reals, and if $\lambda_{1} \neq \lambda_{2}$, then $\langle u, v\rangle=0$.

Proof.

$$
\begin{aligned}
\lambda_{1}\langle u, u\rangle & =\left\langle\lambda_{1} u, u\right\rangle \\
& =\langle-\Delta u, u\rangle \\
& =\langle u,-\Delta u\rangle \\
& =\left\langle u, \lambda_{1} u\right\rangle \\
& =\overline{\lambda_{1}}\langle u, u\rangle,
\end{aligned}
$$

which implies $\left(\lambda_{1}-\overline{\lambda_{1}}\right)\|u\|_{2}^{2}=0$. Since $\|u\|_{2} \neq 0, \lambda_{1}=\overline{\lambda_{1}} \Leftrightarrow \lambda_{1} \in \mathbb{R}$. Similarly,

$$
\begin{aligned}
\lambda_{1}\langle u, v\rangle-\lambda_{2}\langle u, v\rangle & =\left\langle\lambda_{1} u, v\right\rangle-\left\langle u, \lambda_{2} v\right\rangle \\
& =\langle-\Delta u, v\rangle-\langle u,-\Delta v\rangle \\
& =\langle u,-\Delta v\rangle-\langle u,-\Delta v\rangle \\
& =0
\end{aligned}
$$

which implies $\left(\lambda_{1}-\lambda_{2}\right)\langle u, v\rangle=0$. Since $\lambda_{1} \neq \lambda_{2},\langle u, v\rangle=0$.

We summarize the information above with the following theorem.
Theorem 2.1. In the eigenvalue problem (5), we have the following facts:

- all the eigenvalues are real
- the eigenfunctions can be chosen to be real-valued
- the eigenfunctions corresponding to distinct eigenvalues are necessarily orthogonal
- all the eigenfunctions can be chosen to be orthogonal, i.e., orthonormal.

3 Multiplicity of the Eigenvalues

Definition 3.1. An eigenvalue λ has multiplicity m if it has m linearly independent eigenfunctions. The eigenspace E_{λ} is a linear space spanned by the set of eigenfunctions corresponding to λ. So, in this case $\operatorname{dim}\left(E_{\lambda}\right)=m$.

Notice: if $\operatorname{dim}\left(E_{\lambda}\right)=m$, and $E_{\lambda}=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}$, but $\left\langle w_{i}, w_{j}\right\rangle \neq \delta_{i j}$, then we can use the Gram-Schmidt orthogonalization method to get

$$
E_{\lambda}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}, \quad \text { with }\left\langle\varphi_{i}, \varphi_{j}\right\rangle=\delta_{i j} .
$$

4 Generalized Fourier Series

Because of the Theorem 2.1, we have for $f \in L^{2}(\Omega)$

$$
f(\boldsymbol{x})=\sum_{n=1}^{\infty} f_{n} \varphi_{n}(\boldsymbol{x}), \quad f_{n}=\left\langle f, \varphi_{n}\right\rangle .
$$

This is a generalization of the Fourier series, and we can discuss the decay of $\left\{f_{n}\right\}$, etc.

Theorem 4.1. As in (5), let λ_{k} be the Dirichlet-Laplacian eigenvalues, let ν_{k} be the Neumann-Laplacian eigenvalues, and let ρ_{k} be the Robin-Laplacian eigenvalues, where $k \in \mathbb{N}$. Then

$$
\lambda_{k}>0, \quad \nu_{k} \geq 0, \quad \text { and } \rho_{k} \geq 0, \text { if } a \geq 0
$$

Proof. Let u and v are corresponding eigenfunctions. Use Green's first identity (G1):

$$
\int_{\Omega} u \Delta v \mathrm{~d} \boldsymbol{x}+\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} \boldsymbol{x}=\int_{\partial \Omega} u \frac{\partial v}{\partial \nu} \mathrm{~d} S
$$

Set $v=u$,

$$
\int_{\Omega} u \Delta u \mathrm{~d} \boldsymbol{x}+\int_{\Omega}|\nabla u|^{2} \mathrm{~d} \boldsymbol{x}=\int_{\partial \Omega} u \frac{\partial u}{\partial \nu} \mathrm{~d} S,
$$

For the boundary condition (D),

$$
\int_{\Omega} u(-\lambda u) \mathrm{d} \boldsymbol{x}+\int_{\Omega}|\nabla u|^{2} \mathrm{~d} \boldsymbol{x}=0 \Rightarrow \lambda=\frac{\int_{\Omega}|\nabla u|^{2} \mathrm{~d} \boldsymbol{x}}{\int_{\Omega} u^{2} \mathrm{~d} \boldsymbol{x}} \geq 0 .
$$

But $|\nabla u|^{2} \neq 0$. Since if so, $u=$ const, then $u \equiv 0$, which conflicts with the fact that u is eigenfunction. Therefore, $\lambda>0$.

For the boundary condition (N),

$$
\nu=\frac{\int_{\Omega}|\nabla u|^{2} \mathrm{~d} \boldsymbol{x}}{\int_{\Omega} u^{2} \mathrm{~d} \boldsymbol{x}} \geq 0
$$

Here $|\nabla u|^{2}=0$ is acceptable, i.e., $u \equiv$ const $\neq 0$. Then $\nu \geq 0$, where $\nu=0$ corresponds to the eigenfunction $\varphi_{0}(x) \equiv$ const $\neq 0$.

For the boundary condition (R), we have

$$
\begin{aligned}
& -\rho \int_{\Omega}|u|^{2} \mathrm{~d} \boldsymbol{x}+\int_{\Omega}|\nabla u|^{2} \mathrm{~d} \boldsymbol{x}=\int_{\partial \Omega} u(-a u) \mathrm{d} S \\
\Rightarrow & \rho=\frac{a \int_{\partial \Omega}|u|^{2} \mathrm{~d} S+\int_{\Omega}|\nabla u|^{2} \mathrm{~d} \boldsymbol{x}}{\int_{\Omega}|u|^{2} \mathrm{~d} \boldsymbol{x}} \geq 0, \quad \text { if } a \geq 0 .
\end{aligned}
$$

5 Completeness of $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ in the L^{2}-sense

See [2, Sec.3.3-3.4] and [3, Chapter 4] for the elementary discussion on the completeness of a set of basis in $L^{2}(\Omega)$.

For all $f \in L^{2}(\Omega)$, we have

$$
\left\|f-\sum_{n=1}^{N} f_{n} \varphi_{n}\right\|_{L^{2}} \rightarrow 0, \quad \text { as } N \rightarrow \infty
$$

Equivalently,

$$
f=\sum_{n=1}^{\infty} f_{n} \varphi_{n} \quad \text { in the } L^{2} \text { sense. }
$$

This is important because if it were not the case, we could not represent arbitrary $L^{2}(\Omega)$ function in terms of $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$. We will discuss more about the completeness later.

Example: Diffusion in a 3D cube.
Let $\Omega=Q=\{(x, y, z) \mid 0<x<\pi, 0<y<\pi, 0<z<\pi\}$.

$$
\left\{\begin{array}{lll}
\mathrm{DE}: & u_{t}=k \Delta u & \text { in } \Omega \\
\mathrm{BC}: & u=0 & \text { on } \partial \Omega \\
\mathrm{IC}: & u=f(\boldsymbol{x}) & \boldsymbol{x} \in \Omega, t=0
\end{array}\right.
$$

Then by the separation of variables, let $u(\boldsymbol{x}, t)=T(t) \cdot v(\boldsymbol{x})$ as before, we have

$$
-\Delta v=\lambda v \quad \text { in } Q, \quad \text { with } v=0 \quad \text { on } \partial Q
$$

Because the sides of Q are parallel to the axes, one can do the separation of variables again.

$$
\begin{aligned}
& v(x, y, z)=X(x) Y(y) Z(z) \\
& \Rightarrow \quad \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\frac{Y^{\prime \prime}}{Y}=-\lambda
\end{aligned}
$$

BC's are also separated as

$$
X(0)=X(\pi)=Y(0)=Y(\pi)=Z(0)=Z(\pi)=0
$$

Therefore, we can solve $v(x, y, z)$ for $(l, m, n) \in \mathbb{N}^{3}$,

$$
\begin{aligned}
v(x, y, z) & =\sin (l x) \sin (m y) \sin (n z) \\
& =v_{l, m, n}(\boldsymbol{x})
\end{aligned}
$$

whose orthonormal version is $\left(\frac{2}{\pi}\right)^{3 / 2} \sin (l x) \sin (m y) \sin (n z)$.
Then

$$
\lambda=\lambda_{l, m, n}=l^{2}+m^{2}+n^{2}
$$

Finally we get the solution

$$
u(\boldsymbol{x}, t)=\sum_{l, m, n} A_{l m n} \mathrm{e}^{-\left(l^{2}+m^{2}+n^{2}\right) k t} \sin (l x) \sin (m y) \sin (n z)
$$

where $A_{l, m, n}=\left(\frac{2}{\pi}\right)^{3}\left\langle f, v_{l, m, n}\right\rangle$.
Here, different values for l, m, n can result in the same eigenvalue. For example, $\lambda=27$. The valid values for (l, m, n) are $(5,1,1),(1,5,1),(1,1,5)$, and $(3,3,3)$. In other words, the multiplicity of $\lambda=27$ is four.

References

[1] W. A. Strauss, Partial Differential Equations: An Introduction, John Wiley \& Sons, 1992.
[2] G. B. Folland, Fourier Analysis and Its Applications, Brooks/Cole, 1992.
[3] N. Young, An Introduction to Hilbert Space, Cambridge Univ. Press, 1988.

