MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations
 Lecture 5: Diffusions on and Vibrations of a Membrane in 2D/3D-II 2D Disk

Lecturer: Naoki Saito
Scribe: Matthew Herman

April 12 \& 17, 2007

1 Vibrations of a 2D Drumhead

The basic references for this lecture are the texts by Strauss [1, Sec. 10.2], and Courant and Hilbert [2, Sec. V.5.5].

1.1 Dirichlet Boundary Conditions

Given a disk domain $\Omega=\left\{(x, y) \mid x^{2}+y^{2}<a^{2}\right\} \subset \mathbb{R}^{2}$, consider the following Dirichlet boundary condition (BC) problem

$$
\begin{aligned}
& \text { (DE): } u_{t t}=c^{2} \Delta u=c^{2}\left(u_{x x}+u_{y y}\right) \quad \text { in } \Omega \\
& \text { (BC): } u=0 \quad \text { on } \partial \Omega \\
& \text { (IC): } \quad u(\boldsymbol{x}, 0)=f(\boldsymbol{x}), u_{t}(\boldsymbol{x}, 0)=g(\boldsymbol{x}) \text {. }
\end{aligned}
$$

Recall in polar coordinates that $(x, y)=(r \cos \theta, r \sin \theta)$ for $0 \leq r<a$ and $-\pi \leq \theta<\pi$. In 2D the Laplace operator can be expressed as

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} .
$$

As before, assume our solution admits a separation of variables

$$
u(r, \theta, t)=R(r) \Theta(\theta) T(t)
$$

This results in

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{R^{\prime \prime}}{R}+\frac{R^{\prime}}{r R}+\frac{\Theta^{\prime \prime}}{r^{2} \Theta}=-\lambda .
$$

Let $\frac{\Theta^{\prime \prime}}{\theta}=-\gamma$, where γ is a constant. We obtain the following three ODEs:
(i) $T^{\prime \prime}+c^{2} \lambda T=0$;
(ii) $\Theta^{\prime \prime}+\gamma \Theta=0$;
(iii) $R^{\prime \prime}+\frac{1}{r} R^{\prime}+\left(\lambda-\frac{\gamma}{r^{2}}\right) R=0$.

We begin by solving (ii) first (we will save (i) for last because it involves the IC). Note that we have the periodic $\mathrm{BC} \Theta(\theta+\pi)=\Theta(\theta), \forall \theta$. The characteristic equation for (ii) is $p^{2}+\gamma=0$ or $p= \pm \sqrt{-\gamma}$. This will generate a feasible solution only when $\gamma>0$. Thus,

$$
\Theta(\theta)=A \cos \sqrt{\gamma} \theta+B \sin \sqrt{\gamma} \theta
$$

which implies that $\sqrt{\gamma}=n \in \mathbb{N}$ due to the 2π-periodicity. Finally, we arrive at

$$
\Theta(\theta)= \begin{cases}\frac{1}{2} A_{0}, & n=0 \\ A_{n} \cos n \theta+B_{n} \sin n \theta, & n \in \mathbb{N}\end{cases}
$$

where A_{0}, A_{n} and B_{n} are appropriate constants.
Next, we solve (iii) for $0 \leq r<a$. We realistically impose that at the origin $R(0)$ be finite. Also, the Dirichlet BC requires $R(a)=0$. From the last lecture we know that the Dirichlet-Laplacian eigenvalues are positive, i.e., $\lambda>0$.

Now let us use the change of variable: $\rho=\sqrt{\lambda} r$, which results in

$$
R_{r}=R_{\rho} \frac{\mathrm{d} \rho}{\mathrm{~d} r}=\sqrt{\lambda} R_{\rho}, \quad R_{r r}=\lambda R_{\rho \rho}
$$

Now, (iii) can be rewritten as

$$
\begin{equation*}
R_{\rho \rho}+\frac{1}{\rho} R_{\rho}+\left(1-\frac{n^{2}}{\rho^{2}}\right) R=0 \tag{2}
\end{equation*}
$$

This is Bessel's differential equation of order \boldsymbol{n}. For more about Bessel functions see [4], [5], [6, Ch. 5], [7, Ch. 8], [8, Ch. 5,6].

1.2 Solutions of Bessel's Differential Equation

At $\rho=0$ the coefficients of the R_{ρ} and R terms in (2) blow up. So instead, multiply first by ρ^{2} :

$$
\rho^{2} R_{\rho \rho}+\rho R_{\rho}+\left(\rho-n^{2}\right) R=0
$$

Now at $\rho=0$ the coefficients of the R_{ρ} and R do not blow up.
This $\rho=0$ is called a singular point. However, it is not really a "bad" singular point since the denominators of the coefficients of R_{ρ} and R in (2) approach zero polynomially as $\rho \rightarrow 0$. In other words, the pole does not have exponential growth.

More precisely, if

$$
\lim _{\rho \rightarrow 0} \rho \cdot \frac{\operatorname{coef}\left(R_{\rho}\right)}{\operatorname{coef}\left(R_{\rho \rho}\right)}<\infty
$$

and

$$
\lim _{\rho \rightarrow 0} \rho^{2} \cdot \frac{\operatorname{coef}(R)}{\operatorname{coef}\left(R_{\rho \rho}\right)}<\infty
$$

then such a singular point is called a regular singular point. In this case we seek a solution in the form of the following series (see [9, Part I, Sec. 5.2], [3, Ch. VII] for more about the method of series solution for ODEs, as well as regular singular points)

$$
R(\rho)=\rho^{\alpha} \sum_{k=0}^{\infty} a_{k} \rho^{k}, \quad a_{0} \neq 0
$$

for some α and $\left\{a_{k}\right\}_{k=0}^{\infty}$ to be determined. By plugging this into (2) we get

$$
\rho^{\alpha} \sum_{k=0}^{\infty}\left[(\alpha+k)(\alpha+k-1) a_{k} \rho^{k-2}+(\alpha+k) a_{k} \rho^{k-2}+a_{k} \rho^{k}-n^{2} a_{k} \rho^{k-2}\right]=0 .
$$

Now rewriting $\sum_{k=0}^{\infty} a_{k} \rho^{k}=\sum_{k=2}^{\infty} a_{k-2} \rho^{k-2}$ we have

$$
\begin{array}{ll}
{\left[\alpha(\alpha-1)+\alpha-n^{2}\right] a_{0}=0,} & \text { when } k=0 ; \\
{\left[(\alpha+1) \alpha+\alpha+1-n^{2}\right] a_{1}=0,} & \text { when } k=1 ; \\
{\left[(\alpha+k)(\alpha+k-1)+\alpha+k-n^{2}\right] a_{k}+a_{k-2}=0,} & \text { when } k \geq 2 .
\end{array}
$$

So for $a_{0} \neq 0$, from the Case $k=0$, we have that $\alpha^{2}-n^{2}=0$, i.e., $\alpha= \pm n$.
Consider $\alpha=n$. Substituting in the Case $k=1$ above, we get

$$
\left[n^{2}+n+n+1-n^{2}\right] a_{1}=0 \Rightarrow[2 n+1] a_{1}=0 .
$$

Thus, $a_{1}=0$. Note that when $k \geq 2$ above we see that the square bracket factor simplifies to $\left[(\alpha+k)^{2}-n^{2}\right]$. Therefore,

$$
a_{k}=\frac{-a_{k-2}}{(n+k)^{2}-n^{2}}, \quad k=2,3, \ldots
$$

Since $a_{1}=0$, we know that $a_{k}=0$ whenever k is odd. Now choose $a_{0}=$ $1 /\left(2^{n} n!\right)$. Then we get

$$
\begin{aligned}
R(\rho) & =\frac{\rho^{n}}{2^{n} n!}\left[1-\frac{\rho^{2}}{2^{2}(n+1)}+\frac{\rho^{4}}{2!2^{4}(n+1)(n+2)}-\cdots\right] \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(n+k)!}\left(\frac{\rho}{2}\right)^{n+2 k} \\
& \equiv J_{n}(\rho)
\end{aligned}
$$

where $J_{n}(\cdot)$ is defined as the Bessel function of the first kind of order $n, n=$ $0,1,2, \cdots$.

Asymptotically, $J_{n}(\rho) \sim \sqrt{\frac{2}{\pi \rho}} \cos \left(\rho-\frac{\pi}{4}-\frac{n \pi}{2}\right)+O\left(\rho^{-3 / 2}\right)$ as $\rho \rightarrow \infty$. Here, the $\sqrt{\frac{2}{\pi \rho}}$ factor represents a decay.

1.3 The Eigenfunction Expansion

Now we know $R(\rho)=\kappa J_{n}(\rho)$, where κ is an arbitrary constant. With $\rho=\sqrt{\lambda} r$, we have the solution of the form (here we just consider the stationary part of the solution)

$$
\underbrace{J_{n}(\sqrt{\lambda} r)}_{\text {radial }} \underbrace{\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)}_{\text {angular }}
$$

which separates the radial and angular components.

The Dirichlet BC dictates at $r=a$ that the radial component $J_{n}(\sqrt{\lambda} a)=0$. Thus $\sqrt{\lambda} a$ is a zero of $J_{n}(x)$.

Note that each $J_{n}(x)$ has an infinite number of positive zeros, and that they are not regularly or periodically spaced. This can be seen more clearly in Figure 1. For a table of the zeros of Bessel functions, see [4] and [10, Ch. 9].

In general, let $j_{n, m}$ be the m th positive zero of $J_{n}(x)$ for $n=0,1,2, \ldots$ and $m=1,2,3, \ldots$ Then the zeros obey the following orders:

$$
0<j_{n, 1}<j_{n, 2}<\cdots \quad \text { and } \quad j_{n, m}<j_{n+1, m}<j_{n, m+1}
$$

where in our scenario $j_{n, m}=\sqrt{\lambda_{n, m}} a$, i.e., $\lambda_{n, m}=\left(\frac{j_{n, m}}{a}\right)^{2}$.
Finally, we have the solution modulo IC as

$$
\begin{array}{r}
u(r, \theta, t)=\sum_{m=1}^{\infty} J_{0}\left(\sqrt{\lambda_{0, m}} r\right)\left(C_{0, m} \cos \left(\sqrt{\lambda_{0, m}} c t\right)+D_{0, m} \sin \left(\sqrt{\lambda_{0, m}} c t\right)\right) \\
+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} J_{n}\left(\sqrt{\lambda_{n, m}} r\right)\left(A_{n, m} \cos (n \theta)+B_{n, m} \sin (n \theta)\right) \\
\cdot\left(C_{n, m} \cos \left(\sqrt{\lambda_{n, m}} c t\right)+D_{n, m} \sin \left(\sqrt{\lambda_{n, m}} c t\right)\right)
\end{array}
$$

Note that the factors $J_{0}\left(\sqrt{\lambda_{0, m}} r\right)$ and $J_{n}\left(\sqrt{\lambda_{n, m}} r\right)\left(A_{n, m} \cos (n \theta)+B_{n, m} \sin (n \theta)\right)$ represent eigenfunctions of the Laplacian operator.

In order to determine the coefficients $A_{n, m}, B_{n, m}$ for $n, m=1,2, \ldots$, and $C_{n, m}, D_{n, m}$ for $n=0,1, \ldots, m=1,2, \ldots$ we use the ICs: $u(\boldsymbol{x}, 0)=f(\boldsymbol{x}), u_{t}(\boldsymbol{x}, 0)=g(\boldsymbol{x})$.

Figure 1: Plots of the Bessel functions $J_{n}(x)$ of the first kind of order $n=$ $0, \cdots, 4$.

Write $\sqrt{\lambda_{n, m}}=\beta_{n, m}=j_{n, m} / a$ for simplicity. Then at $t=0$, (3) reduces to

$$
\begin{aligned}
u(r, \theta, 0)= & f(r, \theta) \\
= & \sum_{m=1}^{\infty} C_{0, m} J_{0}\left(\beta_{0, m} r\right)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n, m} J_{n}\left(\beta_{n, m} r\right) \\
& \cdot\left(A_{n, m} \cos (n \theta)+B_{n, m} \sin (n \theta)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
u_{t}(r, \theta, 0)= & g(r, \theta) \\
= & \sum_{m=1}^{\infty} c \beta_{0, m} D_{0, m} J_{0}\left(\beta_{0, m} r\right)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c \beta_{n, m} D_{n, m} J_{n}\left(\beta_{n, m} r\right) \\
& \cdot\left(A_{n, m} \cos (n \theta)+B_{n, m} \sin (n \theta)\right) .
\end{aligned}
$$

Let us exploit the orthogonality of $\varphi_{n, m, l}(r, \theta)=J_{n}\left(\beta_{n, m} r\right)\binom{\cos }{\sin }(m \theta), l=0$ for $\cos (m, \theta)$ and $l=1$ for $\sin (m, \theta)$.

Define the inner product for any $p, q \in L^{2}(\Omega)$ as

$$
\begin{aligned}
\langle p, q\rangle & :=\int_{\Omega} p(\boldsymbol{x}) \overline{q(\boldsymbol{x})} \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{y} \\
& =\int_{-\pi}^{\pi} \int_{0}^{a} p(r, \theta) \overline{q(r, \theta)} r \mathrm{~d} r \mathrm{~d} \theta
\end{aligned}
$$

where the functional forms of p and q are adjusted with respect to the respective coordinate system (i.e., Cartesian, polar, etc.).

For fixed m it is easy to see that

$$
\int_{0}^{a} J_{n}\left(\beta_{n, m} r\right) J_{n^{\prime}}\left(\beta_{n^{\prime}, m} r\right) r \mathrm{~d} r=\kappa \delta_{n, n^{\prime}}
$$

for some normalization constant κ. Here, δ is the Kronecker delta, and different n 's correspond to different "frequencies." Also, for fixed n (i.e., for a fixed "frequency") we have that

$$
\int_{0}^{a} J_{n}\left(\beta_{n, m} r\right) J_{n}\left(\beta_{n, m^{\prime}} r\right) r \mathrm{~d} r=\tilde{\kappa} \delta_{m, m^{\prime}}
$$

for some normalization constant $\tilde{\kappa}$. Furthermore, $\cos n \theta$ and $\sin n \theta$ are mutually perpendicular for $-\pi \leq \theta<\pi$. In summary, we have

$$
\left\langle\varphi_{n, m, l}, \varphi_{n, m, l^{\prime}}\right\rangle=\text { const } \cdot \delta_{n, n^{\prime}} \delta_{m, m^{\prime}} \delta_{l, l^{\prime}} .
$$

So, we can do the Fourier series expansion of $f(r, \theta)$ and $g(r, \theta)$, and find the
matching coefficients $\left\{C_{o, m}, C_{n, m} A_{n, m}, C_{n, m} B_{n, m}, D_{0, m}, D_{n, m} A_{n, m}, D_{n, m} B_{n, m}\right\}$ as

$$
\begin{aligned}
C_{0, m} & =\frac{1}{2 \pi a_{0, m}} \int_{-\pi}^{\pi} \int_{0}^{a} f(r, \theta) J_{0}\left(\beta_{0, m} r\right) r \mathrm{~d} r \mathrm{~d} \theta \\
C_{n, m} A_{n, m} & =\frac{1}{\pi a_{n, m}} \int_{-\pi}^{\pi} \int_{0}^{a} f(r, \theta) J_{n}\left(\beta_{n, m} r\right) \cos n \theta r \mathrm{~d} r \mathrm{~d} \theta \\
C_{n, m} B_{n, m} & =\frac{1}{\pi a_{n, m}} \int_{-\pi}^{\pi} \int_{0}^{a} f(r, \theta) J_{n}\left(\beta_{n, m} r\right) \sin n \theta r \mathrm{~d} r \mathrm{~d} \theta
\end{aligned}
$$

and

$$
\begin{aligned}
c \beta_{0, m} D_{0, m} & =\frac{1}{2 \pi a_{0, m}} \int_{-\pi}^{\pi} \int_{0}^{a} g(r, \theta) J_{0}\left(\beta_{0, m} r\right) r \mathrm{~d} r \mathrm{~d} \theta \\
c \beta_{n, m} D_{n, m} A_{n, m} & =\frac{1}{\pi a_{n, m}} \int_{-\pi}^{\pi} \int_{0}^{a} g(r, \theta) J_{n}\left(\beta_{n, m} r\right) \cos n \theta r \mathrm{~d} r \mathrm{~d} \theta \\
c \beta_{n, m} D_{n, m} B_{n, m} & =\frac{1}{\pi a_{n, m}} \int_{-\pi}^{\pi} \int_{0}^{a} g(r, \theta) J_{n}\left(\beta_{n, m} r\right) \sin n \theta r \mathrm{~d} r \mathrm{~d} \theta,
\end{aligned}
$$

where the normalization constant $a_{n, m}$ is defined as

$$
\begin{aligned}
a_{n, m} & \triangleq \int_{0}^{a}\left[J_{n}\left(\beta_{n, m} r\right)\right]^{2} r \mathrm{~d} r \mathrm{~d} \theta \\
& =\frac{1}{2} a^{2}\left[J_{n}^{\prime}\left(\beta_{n, m} a\right)\right]^{2} \\
& =\frac{1}{2} a^{2}\left[J_{n \pm 1}\left(\beta_{n, m} a\right)\right]^{2} .
\end{aligned}
$$

Example: Beat this drum with a stick in the middle (i.e., at $r=0$) at $t=0$, with ICs $u(r, \theta, 0)=f(r, \theta)=0$, and $u_{t}(r, \theta, 0)=g(r, \theta)=g(r)$. Since $f(r, \theta)=0$, it must be that $C_{n, m}=0, \forall n, m$. Moreover, in examining $g(r)$ we see that $n=0$ is the only remaining term, i.e., $D_{n, m} A_{n, m}=D_{n, m} B_{n, m}=0$, for $n \geq 1$. So we have

$$
u(r, \theta, t)=u(r, t)=\sum_{m=1}^{\infty} D_{0, m} J_{0}\left(\beta_{0, m} r\right) \sin \left(\beta_{0, m} c t\right)
$$

where

$$
\begin{aligned}
D_{0, m} & =\frac{1}{c \beta_{0, m} a_{0, m}} \int_{0}^{a} g(r) J_{0}\left(\beta_{0, m} r\right) r \mathrm{~d} r \\
& =\frac{\int_{0}^{a} g(r) J_{0}\left(\beta_{0, m} r\right) r \mathrm{~d} r}{\frac{1}{2} a^{2} c \beta_{0, m}\left[J_{1}\left(\beta_{0, m} a\right)\right]^{2}} .
\end{aligned}
$$

Therefore, the lowest "note" (or "frequency") we hear is the fundamental frequency corresponding to $\beta_{0,1} c=\frac{1}{a} j_{0,1} c \approx \frac{2.40483 c}{a}$. Compare this with a 1-D string of length a (with density ρ and under tension \mathcal{T}). There, the lowest note would be $\frac{\pi c}{a} \approx \frac{3.141592 c}{a}$, where $c=\sqrt{\frac{\mathcal{T}}{\rho}}$. Thus, if the c parameter is the same in both of the 1-D and 2-D cases, we see that the 2-D drum can support a lower note. In the next lecture we will see, curiously, under the same conditions that the lowest note of a 3-D ball is actually equal to that of the 1-D string! For the science of real drums and percussion, see [11].

2 Neumann BC

Denote $\lambda^{(N)}$ as Neumann-Laplacian eigenvalues, and $\lambda^{(D)}$ as Dirichlet-Laplacian eigenvalues. Let

$$
\psi(r, \theta)=\psi_{n}(r, \theta)=J_{n}\left({\left.\sqrt{\lambda^{(N)}} r\right)\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) . ~ . ~ . ~}_{\text {. }}\right.
$$

The Neumann BC specifies

$$
\left.\frac{\partial \psi_{n}}{\partial r}\right|_{\partial \Omega}=\frac{\partial \psi_{n}}{\partial r}(a, 0)=0
$$

which implies

$$
\sqrt{\lambda^{(N)}} J_{n}^{\prime}\left(\sqrt{\lambda^{(N)}} a\right)\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right)=0 .
$$

Therefore, either $J_{n}^{\prime}\left(\sqrt{\lambda^{(N)}} a\right)=0, n=0,1,2, \ldots$, or $\lambda^{(N)}=0$.

2.1 Recurrence relations of Bessel Functions

The Bessel functions obey the following relationships (see e.g. [4, Sec. 3.2], [10, Sec. 9.1]):

$$
\begin{aligned}
J_{\nu-1}(x)+J_{\nu+1}(x) & =\frac{2 \nu}{x} J_{\nu}(x) \\
J_{\nu-1}(x)-J_{\nu+1}(x) & =2 J_{\nu}^{\prime}(x) \\
J_{\nu}^{\prime}(x) & =J_{\nu-1}(x)-\frac{\nu}{x} J_{\nu}(x) \\
J_{\nu}^{\prime}(x) & =-J_{\nu+1}(x)+\frac{\nu}{x} J_{\nu}(x) .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
J_{0}^{\prime}(x) & =-J_{1}(x) \\
J_{1}^{\prime}(x) & =J_{0}(x)-\frac{J_{1}(x)}{x} \\
& =\frac{1}{2}\left(J_{0}(x)-J_{2}(x)\right) \\
J_{2}^{\prime}(x) & =\frac{1}{2}\left(J_{1}(x)-J_{3}(x)\right) .
\end{aligned}
$$

Therefore, $\lambda_{0, m}^{(N)}=\lambda_{1, m}^{(D)}, m=1,2, \ldots$, and from Figure 1, we have

$$
0=\lambda_{0,1}^{(N)}<\lambda_{1,1}^{(N)}<\lambda_{2,1}^{(N)}<\lambda_{0,2}^{(N)}<\lambda_{3,1}^{(N)}<\cdots
$$

Also, the Dirichlet BC Laplacian eigenvalue $\lambda_{0,1}^{(D)}$ lies in the interval

$$
\lambda_{0,1}^{(D)} \in\left(\lambda_{1,1}^{(N)}, \lambda_{2,1}^{(N)}\right)
$$

and

$$
\lambda_{1,2}^{(D)}=\lambda_{0,2}^{(N)} .
$$

Thus, Neumann BCs have the potential in general to give lower fundamental frequencies.

In general, we can show that

$$
\lambda_{n+1}^{(N)} \leq \lambda_{n}^{(D)}, \quad n=1,2, \ldots
$$

which is a special case of the Friedlander Theorem discussed in Lecture 3.

References

[1] W. A. Strauss, Partial Differential Equations: An Introduction, Brooks/Cole Publishing Company, 1992.
[2] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Wiley-Interscience, 1953.
[3] E. L. Ince, Ordinary Differential Equations, Dover, 1956.
[4] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Mathematical Library, Cambridge Univ. Press, 1995 (Originally published in 1948).
[5] F. Bowman, Introduction to Bessel Functions, Dover, 1958.
[6] G. B. Folland, Fourier Analysis and Its Applications, Brooks/Cole Publishing Company, 1992.
[7] H. Hochstadt, The Functions of Mathematical Physics, Dover, 1986 (Originally published by Wiley-Interscience in 1971).
[8] N. N. Lebedev, Special Functions and Their Applications, Dover, 1972 (Originally published by Prentice-Hall in 1965).
[9] P. M. Morse, H. Feshbach, Methods of Theoretical Physics, McGrawHill, 1953 (Republished by Feshbach Publishing in 2005).
[10] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972, http://www.math.sfu.ca/ cbm/aands/.
[11] T. D. Rossing, Science of Percussion Instruments, Series in Popular Science, Vol.3, World Scientific, 2000.

