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1 Vibrations of a 2D Drumhead
The basic references for this lecture are the texts by Strauss [1, Sec. 10.2], and
Courant and Hilbert [2, Sec. V.5.5].

1.1 Dirichlet Boundary Conditions
Given a disk domain Ω = {(x, y) |x2 + y2 < a2} ⊂ R2, consider the following
Dirichlet boundary condition (BC) problem

(DE): utt = c2∆u = c2(uxx + uyy) in Ω
(BC): u = 0 on ∂Ω
(IC): u(x, 0) = f(x), ut(x, 0) = g(x).

(1)

Recall in polar coordinates that (x, y) = (r cos θ, r sin θ) for 0 ≤ r < a and
−π ≤ θ < π. In 2D the Laplace operator can be expressed as

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.
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As before, assume our solution admits a separation of variables

u(r, θ, t) = R(r)Θ(θ)T (t).

This results in
T ′′

c2T
=

R′′

R
+

R′

rR
+

Θ′′

r2Θ
= −λ.

Let Θ′′
Θ

= −γ, where γ is a constant. We obtain the following three ODEs:

(i) T ′′ + c2λT = 0;

(ii) Θ′′ + γΘ = 0;

(iii) R′′ + 1
r
R′ + (λ− γ

r2 )R = 0.

We begin by solving (ii) first (we will save (i) for last because it involves the IC).
Note that we have the periodic BC Θ(θ + π) = Θ(θ), ∀θ. The characteristic
equation for (ii) is p2 + γ = 0 or p = ±√−γ. This will generate a feasible
solution only when γ > 0. Thus,

Θ(θ) = A cos
√

γθ + B sin
√

γθ

which implies that
√

γ = n ∈ N due to the 2π-periodicity. Finally, we arrive at

Θ(θ) =

{
1
2
A0, n = 0;

An cos nθ + Bn sin nθ, n ∈ N.

where A0, An and Bn are appropriate constants.

Next, we solve (iii) for 0 ≤ r < a. We realistically impose that at the origin R(0)
be finite. Also, the Dirichlet BC requires R(a) = 0. From the last lecture we
know that the Dirichlet-Laplacian eigenvalues are positive, i.e., λ > 0.

Now let us use the change of variable: ρ =
√

λ r, which results in

Rr = Rρ
dρ

dr
=
√

λRρ, Rrr = λRρρ.

2



Now, (iii) can be rewritten as

Rρρ +
1

ρ
Rρ + (1− n2

ρ2
)R = 0 (2)

This is Bessel’s differential equation of order n. For more about Bessel func-
tions see [4], [5], [6, Ch. 5], [7, Ch. 8], [8, Ch. 5,6].

1.2 Solutions of Bessel’s Differential Equation
At ρ = 0 the coefficients of the Rρ and R terms in (2) blow up. So instead,
multiply first by ρ2:

ρ2Rρρ + ρRρ + (ρ− n2)R = 0.

Now at ρ = 0 the coefficients of the Rρ and R do not blow up.

This ρ = 0 is called a singular point. However, it is not really a “bad” singular
point since the denominators of the coefficients of Rρ and R in (2) approach zero
polynomially as ρ → 0. In other words, the pole does not have exponential growth.

More precisely, if

lim
ρ→0

ρ · coef(Rρ)

coef(Rρρ)
< ∞

and

lim
ρ→0

ρ2 · coef(R)

coef(Rρρ)
< ∞,

then such a singular point is called a regular singular point. In this case we seek
a solution in the form of the following series (see [9, Part I, Sec. 5.2], [3, Ch. VII]
for more about the method of series solution for ODEs, as well as regular singular
points)

R(ρ) = ρα

∞∑

k=0

akρ
k, a0 6= 0

for some α and {ak}∞k=0 to be determined. By plugging this into (2) we get

ρα

∞∑

k=0

[
(α + k)(α + k − 1)akρ

k−2 + (α + k)akρ
k−2 + akρ

k − n2akρ
k−2

]
= 0.
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Now rewriting
∑∞

k=0 akρ
k =

∑∞
k=2 ak−2ρ

k−2 we have

[α(α− 1) + α− n2]a0 = 0, when k = 0;
[(α + 1)α + α + 1− n2]a1 = 0, when k = 1;
[(α + k)(α + k − 1) + α + k − n2]ak + ak−2 = 0, when k ≥ 2.

So for a0 6= 0, from the Case k = 0, we have that α2 − n2 = 0, i.e., α = ±n.

Consider α = n. Substituting in the Case k = 1 above, we get

[n2 + n + n + 1− n2]a1 = 0 ⇒ [2n + 1]a1 = 0.

Thus, a1 = 0. Note that when k ≥ 2 above we see that the square bracket factor
simplifies to [(α + k)2 − n2]. Therefore,

ak =
−ak−2

(n + k)2 − n2
, k = 2, 3, . . . .

Since a1 = 0, we know that ak = 0 whenever k is odd. Now choose a0 =
1/(2nn!). Then we get

R(ρ) =
ρn

2nn!

[
1− ρ2

22(n + 1)
+

ρ4

2!24(n + 1)(n + 2)
− · · ·

]

=
∞∑

k=0

(−1)k

k!(n + k)!

(ρ

2

)n+2k

≡ Jn(ρ)

where Jn(·) is defined as the Bessel function of the first kind of order n, n =
0, 1, 2, · · · .

Asymptotically, Jn(ρ) ∼
√

2
πρ

cos(ρ− π
4
− nπ

2
) + O(ρ−3/2) as ρ →∞. Here, the√

2
πρ

factor represents a decay.

1.3 The Eigenfunction Expansion
Now we know R(ρ) = κJn(ρ), where κ is an arbitrary constant. With ρ =

√
λr,

we have the solution of the form (here we just consider the stationary part of the
solution)
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Jn(
√

λr)︸ ︷︷ ︸
radial

(An cos nθ + Bn sin nθ)︸ ︷︷ ︸
angular

which separates the radial and angular components.

The Dirichlet BC dictates at r = a that the radial component Jn(
√

λa) = 0. Thus√
λa is a zero of Jn(x).

Note that each Jn(x) has an infinite number of positive zeros, and that they are
not regularly or periodically spaced. This can be seen more clearly in Figure 1.
For a table of the zeros of Bessel functions, see [4] and [10, Ch. 9].

In general, let jn,m be the mth positive zero of Jn(x) for n = 0, 1, 2, . . . and
m = 1, 2, 3, . . .. Then the zeros obey the following orders:

0 < jn,1 < jn,2 < · · · and jn,m < jn+1,m < jn,m+1,

where in our scenario jn,m =
√

λn,m a, i.e., λn,m =

(
jn,m

a

)2

.

Finally, we have the solution modulo IC as

u(r, θ, t) =
∞∑

m=1

J0(
√

λ0,m r)
(
C0,m cos(

√
λ0,mct) + D0,m sin(

√
λ0,mct)

)

+
∞∑

n=1

∞∑
m=1

Jn(
√

λn,m r)
(
An,m cos(nθ) + Bn,m sin(nθ)

)

·
(
Cn,m cos(

√
λn,mct) + Dn,m sin(

√
λn,mct)

)
.(3)

Note that the factors J0(
√

λ0,m r) and Jn(
√

λn,m r)
(
An,m cos(nθ)+Bn,m sin(nθ)

)

represent eigenfunctions of the Laplacian operator.

In order to determine the coefficients An,m, Bn,m for n,m = 1, 2, . . . , and Cn,m, Dn,m

for n = 0, 1, . . . , m = 1, 2, . . . we use the ICs: u(x, 0) = f(x), ut(x, 0) = g(x).
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The Bessel functions J
n
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Figure 1: Plots of the Bessel functions Jn(x) of the first kind of order n =
0, · · · , 4.

Write
√

λn,m = βn,m = jn,m/a for simplicity. Then at t = 0, (3) reduces to

u(r, θ, 0) = f(r, θ)

=
∞∑

m=1

C0,mJ0(β0,m r) +
∞∑

n=1

∞∑
m=1

Cn,mJn(βn,m r)

·
(
An,m cos(nθ) + Bn,m sin(nθ)

)
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and

ut(r, θ, 0) = g(r, θ)

=
∞∑

m=1

cβ0,mD0,mJ0(β0,m r) +
∞∑

n=1

∞∑
m=1

cβn,mDn,mJn(βn,m r)

·
(
An,m cos(nθ) + Bn,m sin(nθ)

)
.

Let us exploit the orthogonality of ϕn,m,l(r, θ) = Jn(βn,mr)
(
cos
sin

)
(mθ), l = 0 for

cos(m, θ) and l = 1 for sin(m, θ).

Define the inner product for any p, q ∈ L2(Ω) as

〈p, q〉 :=

∫

Ω

p(x) q(x) dx dy

=

∫ π

−π

∫ a

0

p(r, θ) q(r, θ) r dr dθ

where the functional forms of p and q are adjusted with respect to the respective
coordinate system (i.e., Cartesian, polar, etc.).

For fixed m it is easy to see that
∫ a

0

Jn(βn,m r)Jn′(βn′,m r) rdr = κδn,n′

for some normalization constant κ. Here, δ is the Kronecker delta, and differ-
ent n’s correspond to different “frequencies.” Also, for fixed n (i.e., for a fixed
“frequency”) we have that

∫ a

0

Jn(βn,m r)Jn(βn,m′ r) rdr = κ̃δm,m′

for some normalization constant κ̃. Furthermore, cos nθ and sin nθ are mutually
perpendicular for −π ≤ θ < π. In summary, we have

〈ϕn,m,l, ϕn,m,l′〉 = const · δn,n′ δm,m′ δl,l′ .

So, we can do the Fourier series expansion of f(r, θ) and g(r, θ), and find the
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matching coefficients {Co,m, Cn,mAn,m, Cn,mBn,m, D0,m, Dn,mAn,m, Dn,mBn,m}
as

C0,m =
1

2πa0,m

∫ π

−π

∫ a

0

f(r, θ)J0(β0,mr) r dr dθ

Cn,mAn,m =
1

πan,m

∫ π

−π

∫ a

0

f(r, θ)Jn(βn,mr) cos nθ r dr dθ

Cn,mBn,m =
1

πan,m

∫ π

−π

∫ a

0

f(r, θ)Jn(βn,mr) sin nθ r dr dθ

and

cβ0,mD0,m =
1

2πa0,m

∫ π

−π

∫ a

0

g(r, θ)J0(β0,mr) r dr dθ

cβn,mDn,mAn,m =
1

πan,m

∫ π

−π

∫ a

0

g(r, θ)Jn(βn,mr) cos nθ r dr dθ

cβn,mDn,mBn,m =
1

πan,m

∫ π

−π

∫ a

0

g(r, θ)Jn(βn,mr) sin nθ r dr dθ,

where the normalization constant an,m is defined as

an,m
∆
=

∫ a

0

[
Jn(βn,mr)

]2

r dr dθ

=
1

2
a2

[
J ′n(βn,ma)

]2

=
1

2
a2

[
Jn±1(βn,ma)

]2

.

Example: Beat this drum with a stick in the middle (i.e., at r = 0) at t = 0, with
ICs u(r, θ, 0) = f(r, θ) = 0, and ut(r, θ, 0) = g(r, θ) = g(r). Since f(r, θ) = 0,
it must be that Cn,m = 0,∀n,m. Moreover, in examining g(r) we see that n = 0
is the only remaining term, i.e., Dn,mAn,m = Dn,mBn,m = 0, for n ≥ 1. So we
have

u(r, θ, t) = u(r, t) =
∞∑

m=1

D0,mJ0(β0,m r) sin(β0,mct)
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where

D0,m =
1

cβ0,ma0,m

∫ a

0

g(r)J0(β0,mr) rdr

=

∫ a

0
g(r)J0(β0,mr) rdr

1
2
a2cβ0,m

[
J1(β0,ma)

]2 .

Therefore, the lowest “note” (or “frequency”) we hear is the fundamental fre-
quency corresponding to β0,1c = 1

a
j0,1c ≈ 2.40483c

a
. Compare this with a 1-D

string of length a (with density ρ and under tension T ). There, the lowest note
would be πc

a
≈ 3.141592c

a
, where c =

√
T
ρ

. Thus, if the c parameter is the same
in both of the 1-D and 2-D cases, we see that the 2-D drum can support a lower
note. In the next lecture we will see, curiously, under the same conditions that the
lowest note of a 3-D ball is actually equal to that of the 1-D string! For the science
of real drums and percussion, see [11].

2 Neumann BC
Denote λ(N) as Neumann-Laplacian eigenvalues, and λ(D) as Dirichlet-Laplacian
eigenvalues. Let

ψ(r, θ) = ψn(r, θ) = Jn(
√

λ(N)r)
(
An cos(nθ) + Bn sin(nθ)

)
.

The Neumann BC specifies

∂ψn

∂r

∣∣∣∣
∂Ω

=
∂ψn

∂r
(a, 0) = 0

which implies
√

λ(N)J ′n(
√

λ(N)a)
(
An cos(nθ) + Bn sin(nθ)

)
= 0.

Therefore, either J ′n(
√

λ(N)a) = 0, n = 0, 1, 2, . . ., or λ(N) = 0.
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2.1 Recurrence relations of Bessel Functions
The Bessel functions obey the following relationships (see e.g. [4, Sec. 3.2], [10,
Sec. 9.1]):

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x)

Jν−1(x)− Jν+1(x) = 2J ′ν(x)

J ′ν(x) = Jν−1(x)− ν

x
Jν(x)

J ′ν(x) = −Jν+1(x) +
ν

x
Jν(x).

In particular,

J ′0(x) = −J1(x)

J ′1(x) = J0(x)− J1(x)

x

=
1

2

(
J0(x)− J2(x)

)

J ′2(x) =
1

2

(
J1(x)− J3(x)

)
.

Therefore, λ
(N)
0,m = λ

(D)
1,m,m = 1, 2, . . . , and from Figure 1, we have

0 = λ
(N)
0,1 < λ

(N)
1,1 < λ

(N)
2,1 < λ

(N)
0,2 < λ

(N)
3,1 < · · ·

Also, the Dirichlet BC Laplacian eigenvalue λ
(D)
0,1 lies in the interval

λ
(D)
0,1 ∈ (λ

(N)
1,1 , λ

(N)
2,1 )

and
λ

(D)
1,2 = λ

(N)
0,2 .

Thus, Neumann BCs have the potential in general to give lower fundamental fre-
quencies.

In general, we can show that

λ
(N)
n+1 ≤ λ(D)

n , n = 1, 2, . . .

which is a special case of the Friedlander Theorem discussed in Lecture 3.
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