MAT 280: Laplacian Eigenfunctions: Theory, Applications, and ComputationsLecture 5: Diffusions on and Vibrations of a Membrane in 2D/3D–II 2D Disk

Lecturer: Naoki Saito Scribe: Matthew Herman

April 12 & 17, 2007

1 Vibrations of a 2D Drumhead

The basic references for this lecture are the texts by Strauss [1, Sec. 10.2], and Courant and Hilbert [2, Sec. V.5.5].

1.1 Dirichlet Boundary Conditions

Given a disk domain $\Omega = \{(x, y) | x^2 + y^2 < a^2\} \subset \mathbb{R}^2$, consider the following Dirichlet boundary condition (BC) problem

(DE):
$$u_{tt} = c^2 \Delta u = c^2 (u_{xx} + u_{yy})$$
 in Ω
(BC): $u = 0$ on $\partial \Omega$ (1)
(IC): $u(\boldsymbol{x}, 0) = f(\boldsymbol{x}), \ u_t(\boldsymbol{x}, 0) = g(\boldsymbol{x}).$

Recall in polar coordinates that $(x, y) = (r \cos \theta, r \sin \theta)$ for $0 \le r < a$ and $-\pi \le \theta < \pi$. In 2D the Laplace operator can be expressed as

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}.$$

As before, assume our solution admits a separation of variables

$$u(r, \theta, t) = R(r)\Theta(\theta)T(t).$$

This results in

$$\frac{T''}{c^2T} = \frac{R''}{R} + \frac{R'}{rR} + \frac{\Theta''}{r^2\Theta} = -\lambda.$$

Let $\frac{\Theta''}{\Theta} = -\gamma$, where γ is a constant. We obtain the following three ODEs:

- (i) $T'' + c^2 \lambda T = 0;$
- (ii) $\Theta'' + \gamma \Theta = 0;$
- (iii) $R'' + \frac{1}{r}R' + (\lambda \frac{\gamma}{r^2})R = 0.$

We begin by solving (ii) first (we will save (i) for last because it involves the IC). Note that we have the periodic BC $\Theta(\theta + \pi) = \Theta(\theta), \forall \theta$. The characteristic equation for (ii) is $p^2 + \gamma = 0$ or $p = \pm \sqrt{-\gamma}$. This will generate a feasible solution only when $\gamma > 0$. Thus,

$$\Theta(\theta) = A \cos \sqrt{\gamma}\theta + B \sin \sqrt{\gamma}\theta$$

which implies that $\sqrt{\gamma}=n\in\mathbb{N}$ due to the $2\pi\text{-periodicity}.$ Finally, we arrive at

$$\Theta(\theta) = \begin{cases} \frac{1}{2}A_0, & n = 0;\\ A_n \cos n\theta + B_n \sin n\theta, & n \in \mathbb{N}. \end{cases}$$

where A_0 , A_n and B_n are appropriate constants.

Next, we solve (iii) for $0 \le r < a$. We realistically impose that at the origin R(0) be finite. Also, the Dirichlet BC requires R(a) = 0. From the last lecture we know that the Dirichlet-Laplacian eigenvalues are positive, i.e., $\lambda > 0$.

Now let us use the change of variable: $\rho = \sqrt{\lambda} r$, which results in

$$R_r = R_{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}r} = \sqrt{\lambda} R_{\rho}, \qquad R_{rr} = \lambda R_{\rho\rho}.$$

Now, (iii) can be rewritten as

$$R_{\rho\rho} + \frac{1}{\rho}R_{\rho} + (1 - \frac{n^2}{\rho^2})R = 0$$
⁽²⁾

This is **Bessel's differential equation of order** n. For more about Bessel functions see [4], [5], [6, Ch. 5], [7, Ch. 8], [8, Ch. 5,6].

1.2 Solutions of Bessel's Differential Equation

At $\rho = 0$ the coefficients of the R_{ρ} and R terms in (2) blow up. So instead, multiply first by ρ^2 :

$$\rho^2 R_{\rho\rho} + \rho R_{\rho} + (\rho - n^2)R = 0.$$

Now at $\rho = 0$ the coefficients of the R_{ρ} and R do not blow up.

This $\rho = 0$ is called a *singular point*. However, it is not really a "bad" singular point since the denominators of the coefficients of R_{ρ} and R in (2) approach zero *polynomially* as $\rho \to 0$. In other words, the pole does not have *exponential* growth.

More precisely, if

$$\lim_{\rho \to 0} \rho \cdot \frac{\operatorname{coef}(R_{\rho})}{\operatorname{coef}(R_{\rho\rho})} < \infty$$

and

$$\lim_{\rho \to 0} \rho^2 \cdot \frac{\operatorname{coef}(R)}{\operatorname{coef}(R_{\rho\rho})} < \infty,$$

then such a singular point is called a *regular singular point*. In this case we seek a solution in the form of the following series (see [9, Part I, Sec. 5.2], [3, Ch. VII] for more about the method of series solution for ODEs, as well as regular singular points)

$$R(\rho) = \rho^{\alpha} \sum_{k=0}^{\infty} a_k \rho^k, \qquad a_0 \neq 0$$

for some α and $\{a_k\}_{k=0}^{\infty}$ to be determined. By plugging this into (2) we get

$$\rho^{\alpha} \sum_{k=0}^{\infty} \left[(\alpha+k)(\alpha+k-1)a_k \rho^{k-2} + (\alpha+k)a_k \rho^{k-2} + a_k \rho^k - n^2 a_k \rho^{k-2} \right] = 0.$$

Now rewriting $\sum_{k=0}^{\infty} a_k \rho^k = \sum_{k=2}^{\infty} a_{k-2} \rho^{k-2}$ we have

$$\begin{split} & [\alpha(\alpha-1)+\alpha-n^2]a_0=0, & \text{when } k=0; \\ & [(\alpha+1)\alpha+\alpha+1-n^2]a_1=0, & \text{when } k=1; \\ & [(\alpha+k)(\alpha+k-1)+\alpha+k-n^2]a_k+a_{k-2}=0, & \text{when } k\geq 2. \end{split}$$

So for $a_0 \neq 0$, from the Case k = 0, we have that $\alpha^2 - n^2 = 0$, i.e., $\alpha = \pm n$.

Consider $\alpha = n$. Substituting in the Case k = 1 above, we get

$$[n^{2} + n + n + 1 - n^{2}]a_{1} = 0 \implies [2n + 1]a_{1} = 0.$$

Thus, $a_1 = 0$. Note that when $k \ge 2$ above we see that the square bracket factor simplifies to $[(\alpha + k)^2 - n^2]$. Therefore,

$$a_k = \frac{-a_{k-2}}{(n+k)^2 - n^2}, \qquad k = 2, 3, \dots.$$

Since $a_1 = 0$, we know that $a_k = 0$ whenever k is odd. Now choose $a_0 = 1/(2^n n!)$. Then we get

$$R(\rho) = \frac{\rho^n}{2^n n!} \left[1 - \frac{\rho^2}{2^2(n+1)} + \frac{\rho^4}{2!2^4(n+1)(n+2)} - \cdots \right]$$

=
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{\rho}{2}\right)^{n+2k}$$

=
$$J_n(\rho)$$

where $J_n(\cdot)$ is defined as the Bessel function of the first kind of order $n, n = 0, 1, 2, \cdots$.

Asymptotically, $J_n(\rho) \sim \sqrt{\frac{2}{\pi\rho}} \cos(\rho - \frac{\pi}{4} - \frac{n\pi}{2}) + O(\rho^{-3/2})$ as $\rho \to \infty$. Here, the $\sqrt{\frac{2}{\pi\rho}}$ factor represents a decay.

1.3 The Eigenfunction Expansion

Now we know $R(\rho) = \kappa J_n(\rho)$, where κ is an arbitrary constant. With $\rho = \sqrt{\lambda}r$, we have the solution of the form (here we just consider the stationary part of the solution)

$$\underbrace{J_n(\sqrt{\lambda}r)}_{radial}\underbrace{(A_n\cos n\theta + B_n\sin n\theta)}_{angular}$$

which separates the radial and angular components.

The Dirichlet BC dictates at r = a that the radial component $J_n(\sqrt{\lambda}a) = 0$. Thus $\sqrt{\lambda}a$ is a zero of $J_n(x)$.

Note that each $J_n(x)$ has an infinite number of positive zeros, and that they are *not* regularly or periodically spaced. This can be seen more clearly in Figure 1. For a table of the zeros of Bessel functions, see [4] and [10, Ch. 9].

In general, let $j_{n,m}$ be the *m*th positive zero of $J_n(x)$ for n = 0, 1, 2, ... and m = 1, 2, 3, ... Then the zeros obey the following orders:

$$0 < j_{n,1} < j_{n,2} < \cdots$$
 and $j_{n,m} < j_{n+1,m} < j_{n,m+1}$,

where in our scenario $j_{n,m} = \sqrt{\lambda_{n,m}} a$, i.e., $\lambda_{n,m} = \left(\frac{j_{n,m}}{a}\right)^2$.

Finally, we have the solution modulo IC as

$$u(r,\theta,t) = \sum_{m=1}^{\infty} J_0(\sqrt{\lambda_{0,m}} r) \Big(C_{0,m} \cos(\sqrt{\lambda_{0,m}} ct) + D_{0,m} \sin(\sqrt{\lambda_{0,m}} ct) \Big) \\ + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} J_n(\sqrt{\lambda_{n,m}} r) \Big(A_{n,m} \cos(n\theta) + B_{n,m} \sin(n\theta) \Big) \\ \cdot \Big(C_{n,m} \cos(\sqrt{\lambda_{n,m}} ct) + D_{n,m} \sin(\sqrt{\lambda_{n,m}} ct) \Big) (3)$$

Note that the factors $J_0(\sqrt{\lambda_{0,m}} r)$ and $J_n(\sqrt{\lambda_{n,m}} r) \left(A_{n,m} \cos(n\theta) + B_{n,m} \sin(n\theta)\right)$ represent eigenfunctions of the Laplacian operator.

In order to determine the coefficients $A_{n,m}$, $B_{n,m}$ for n, m = 1, 2, ..., and $C_{n,m}$, $D_{n,m}$ for n = 0, 1, ..., m = 1, 2, ... we use the ICs: $u(\boldsymbol{x}, 0) = f(\boldsymbol{x}), u_t(\boldsymbol{x}, 0) = g(\boldsymbol{x})$.

Figure 1: Plots of the Bessel functions $J_n(x)$ of the first kind of order $n = 0, \dots, 4$.

Write $\sqrt{\lambda_{n,m}} = \beta_{n,m} = j_{n,m}/a$ for simplicity. Then at t = 0, (3) reduces to $u(r, \theta, 0) = f(r, \theta)$ $= \sum_{m=1}^{\infty} C_{0,m} J_0(\beta_{0,m} r) + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n,m} J_n(\beta_{n,m} r) \cdot (A_{n,m} \cos(n\theta) + B_{n,m} \sin(n\theta))$ and

$$u_t(r,\theta,0) = g(r,\theta)$$

=
$$\sum_{m=1}^{\infty} c\beta_{0,m} D_{0,m} J_0(\beta_{0,m} r) + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c\beta_{n,m} D_{n,m} J_n(\beta_{n,m} r)$$
$$\cdot \left(A_{n,m} \cos(n\theta) + B_{n,m} \sin(n\theta)\right).$$

Let us exploit the orthogonality of $\varphi_{n,m,l}(r,\theta) = J_n(\beta_{n,m}r) {\cos(m\theta)}, l = 0$ for $\cos(m,\theta)$ and l = 1 for $\sin(m,\theta)$.

Define the inner product for any $p, q \in L^2(\Omega)$ as

$$\begin{array}{ll} \langle p,q\rangle & := & \int_{\Omega} p(\boldsymbol{x}) \, \overline{q(\boldsymbol{x})} \, \mathrm{d} \boldsymbol{x} \, \mathrm{d} \boldsymbol{y} \\ & = & \int_{-\pi}^{\pi} \int_{0}^{a} p(r,\theta) \, \overline{q(r,\theta)} \, r \, \, \mathrm{d} r \, \, \mathrm{d} \theta \end{array}$$

where the functional forms of p and q are adjusted with respect to the respective coordinate system (i.e., Cartesian, polar, etc.).

For fixed m it is easy to see that

$$\int_0^a J_n(\beta_{n,m} r) J_{n'}(\beta_{n',m} r) r \mathrm{d}r = \kappa \delta_{n,n'}$$

for some normalization constant κ . Here, δ is the Kronecker delta, and different *n*'s correspond to different "frequencies." Also, for fixed *n* (i.e., for a fixed "frequency") we have that

$$\int_0^a J_n(\beta_{n,m} r) J_n(\beta_{n,m'} r) r \mathrm{d}r = \tilde{\kappa} \delta_{m,m'}$$

for some normalization constant $\tilde{\kappa}$. Furthermore, $\cos n\theta$ and $\sin n\theta$ are mutually perpendicular for $-\pi \leq \theta < \pi$. In summary, we have

$$\langle \varphi_{n,m,l}, \varphi_{n,m,l'} \rangle = \operatorname{const} \cdot \delta_{n,n'} \, \delta_{m,m'} \, \delta_{l,l'}.$$

So, we can do the Fourier series expansion of $f(r, \theta)$ and $g(r, \theta)$, and find the

matching coefficients $\{C_{o,m}, C_{n,m}A_{n,m}, C_{n,m}B_{n,m}, D_{0,m}, D_{n,m}A_{n,m}, D_{n,m}B_{n,m}\}$ as

$$C_{0,m} = \frac{1}{2\pi a_{0,m}} \int_{-\pi}^{\pi} \int_{0}^{a} f(r,\theta) J_{0}(\beta_{0,m}r) r \, \mathrm{d}r \, \mathrm{d}\theta$$

$$C_{n,m}A_{n,m} = \frac{1}{\pi a_{n,m}} \int_{-\pi}^{\pi} \int_{0}^{a} f(r,\theta) J_{n}(\beta_{n,m}r) \cos n\theta r \, \mathrm{d}r \, \mathrm{d}\theta$$

$$C_{n,m}B_{n,m} = \frac{1}{\pi a_{n,m}} \int_{-\pi}^{\pi} \int_{0}^{a} f(r,\theta) J_{n}(\beta_{n,m}r) \sin n\theta r \, \mathrm{d}r \, \mathrm{d}\theta$$

and

$$c\beta_{0,m}D_{0,m} = \frac{1}{2\pi a_{0,m}} \int_{-\pi}^{\pi} \int_{0}^{a} g(r,\theta) J_{0}(\beta_{0,m}r) r \, \mathrm{d}r \, \mathrm{d}\theta$$

$$c\beta_{n,m}D_{n,m}A_{n,m} = \frac{1}{\pi a_{n,m}} \int_{-\pi}^{\pi} \int_{0}^{a} g(r,\theta) J_{n}(\beta_{n,m}r) \cos n\theta r \, \mathrm{d}r \, \mathrm{d}\theta$$

$$c\beta_{n,m}D_{n,m}B_{n,m} = \frac{1}{\pi a_{n,m}} \int_{-\pi}^{\pi} \int_{0}^{a} g(r,\theta) J_{n}(\beta_{n,m}r) \sin n\theta r \, \mathrm{d}r \, \mathrm{d}\theta,$$

where the normalization constant $a_{n,m}$ is defined as

$$a_{n,m} \stackrel{\Delta}{=} \int_{0}^{a} \left[J_{n}(\beta_{n,m}r) \right]^{2} r \, \mathrm{d}r \, \mathrm{d}\theta$$
$$= \frac{1}{2} a^{2} \left[J_{n}'(\beta_{n,m}a) \right]^{2}$$
$$= \frac{1}{2} a^{2} \left[J_{n\pm 1}(\beta_{n,m}a) \right]^{2}.$$

Example: Beat this drum with a stick in the middle (i.e., at r = 0) at t = 0, with ICs $u(r, \theta, 0) = f(r, \theta) = 0$, and $u_t(r, \theta, 0) = g(r, \theta) = g(r)$. Since $f(r, \theta) = 0$, it must be that $C_{n,m} = 0, \forall n, m$. Moreover, in examining g(r) we see that n = 0 is the only remaining term, i.e., $D_{n,m}A_{n,m} = D_{n,m}B_{n,m} = 0$, for $n \ge 1$. So we have

$$u(r, \theta, t) = u(r, t) = \sum_{m=1}^{\infty} D_{0,m} J_0(\beta_{0,m} r) \sin(\beta_{0,m} ct)$$

where

$$D_{0,m} = \frac{1}{c\beta_{0,m}a_{0,m}} \int_0^a g(r)J_0(\beta_{0,m}r) r dr$$

= $\frac{\int_0^a g(r)J_0(\beta_{0,m}r) r dr}{\frac{1}{2}a^2c\beta_{0,m} [J_1(\beta_{0,m}a)]^2}.$

Therefore, the lowest "note" (or "frequency") we hear is the fundamental frequency corresponding to $\beta_{0,1}c = \frac{1}{a}j_{0,1}c \approx \frac{2.40483c}{a}$. Compare this with a 1-D string of length *a* (with density ρ and under tension T). There, the lowest note would be $\frac{\pi c}{a} \approx \frac{3.141592c}{a}$, where $c = \sqrt{\frac{T}{\rho}}$. Thus, if the *c* parameter is the same in both of the 1-D and 2-D cases, we see that the 2-D drum can support a lower note. In the next lecture we will see, curiously, under the same conditions that the lowest note of a 3-D ball is actually equal to that of the 1-D string! For the science of real drums and percussion, see [11].

2 Neumann BC

Denote $\lambda^{(N)}$ as Neumann-Laplacian eigenvalues, and $\lambda^{(D)}$ as Dirichlet-Laplacian eigenvalues. Let

$$\psi(r,\theta) = \psi_n(r,\theta) = J_n(\sqrt{\lambda^{(N)}}r) \Big(A_n \cos(n\theta) + B_n \sin(n\theta)\Big).$$

The Neumann BC specifies

$$\left. \frac{\partial \psi_n}{\partial r} \right|_{\partial \Omega} = \left. \frac{\partial \psi_n}{\partial r}(a,0) \right|_{\partial \Omega} = 0$$

which implies

$$\sqrt{\lambda^{(N)}} J'_n(\sqrt{\lambda^{(N)}}a) \Big(A_n \cos(n\theta) + B_n \sin(n\theta) \Big) = 0.$$

Therefore, either $J'_n(\sqrt{\lambda^{(N)}}a) = 0, n = 0, 1, 2, \dots$, or $\lambda^{(N)} = 0$.

2.1 **Recurrence relations of Bessel Functions**

The Bessel functions obey the following relationships (see e.g. [4, Sec. 3.2], [10, Sec. 9.1]):

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x)$$

$$J_{\nu-1}(x) - J_{\nu+1}(x) = 2J'_{\nu}(x)$$

$$J'_{\nu}(x) = J_{\nu-1}(x) - \frac{\nu}{x} J_{\nu}(x)$$

$$J'_{\nu}(x) = -J_{\nu+1}(x) + \frac{\nu}{x} J_{\nu}(x).$$

In particular,

$$J'_{0}(x) = -J_{1}(x)$$

$$J'_{1}(x) = J_{0}(x) - \frac{J_{1}(x)}{x}$$

$$= \frac{1}{2} \Big(J_{0}(x) - J_{2}(x) \Big)$$

$$J'_{2}(x) = \frac{1}{2} \Big(J_{1}(x) - J_{3}(x) \Big).$$

Therefore, $\lambda_{0,m}^{(N)} = \lambda_{1,m}^{(D)}, m = 1, 2, \ldots$, and from Figure 1, we have

$$0 = \lambda_{0,1}^{(N)} < \lambda_{1,1}^{(N)} < \lambda_{2,1}^{(N)} < \lambda_{0,2}^{(N)} < \lambda_{3,1}^{(N)} < \cdots$$

Also, the Dirichlet BC Laplacian eigenvalue $\lambda_{0,1}^{(D)}$ lies in the interval

$$\lambda_{0,1}^{(D)} \in (\lambda_{1,1}^{(N)}, \lambda_{2,1}^{(N)})$$

and

$$\lambda_{1,2}^{(D)} = \lambda_{0,2}^{(N)}.$$

Thus, Neumann BCs have the potential in general to give lower fundamental frequencies.

In general, we can show that

$$\lambda_{n+1}^{(N)} \leq \lambda_n^{(D)}, \quad n=1,2,\ldots$$

which is a special case of the Friedlander Theorem discussed in Lecture 3.

References

- [1] W. A. STRAUSS, *Partial Differential Equations: An Introduction*, Brooks/Cole Publishing Company, 1992.
- [2] R. COURANT, D. HILBERT, *Methods of Mathematical Physics*, Vol. I, Wiley-Interscience, 1953.
- [3] E. L. INCE, Ordinary Differential Equations, Dover, 1956.
- [4] G. N. WATSON, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Mathematical Library, Cambridge Univ. Press, 1995 (Originally published in 1948).
- [5] F. BOWMAN, Introduction to Bessel Functions, Dover, 1958.
- [6] G. B. FOLLAND, *Fourier Analysis and Its Applications*, Brooks/Cole Publishing Company, 1992.
- [7] H. HOCHSTADT, *The Functions of Mathematical Physics*, Dover, 1986 (Originally published by Wiley-Interscience in 1971).
- [8] N. N. LEBEDEV, *Special Functions and Their Applications*, Dover, 1972 (Originally published by Prentice-Hall in 1965).
- [9] P. M. MORSE, H. FESHBACH, *Methods of Theoretical Physics*, McGraw-Hill, 1953 (Republished by Feshbach Publishing in 2005).
- [10] M. ABRAMOWITZ, I. A. STEGUN, Handbook of Mathematical Functions, Dover, 1972, http://www.math.sfu.ca/ cbm/aands/.
- [11] T. D. ROSSING, Science of Percussion Instruments, Series in Popular Science, Vol.3, World Scientific, 2000.