MAT 280: Laplacian Eigenfunctions: Theory,
Applications, and Computations
Lecture 6: Diffusions on and Vibrations of a
Membrane in 2D/3D-I11. 3D Ball

Lecturer: Naoki Saito
Scribe: Eunghyun Lee/Allen Xue

April 28, 2007

In this lecture, we consider diffusions on and vibrations of a membrane in 3D ball.
Basic references for this lecture are [1, Sec. 10.3], [2, Sec. V. 8, V. 9.1, VIIL 5]
and [3, Sec. 6.3].

Consider a ball Q2 of radius a in R?, i.e., Q = B3(0) = {(z,y,2) |2? + y* + 22 <
a*}, 0 = S2. The wave equation for u(x,t) on this domain is as follows:

uy = 2 Au in ,
u=0 on 0f), (1)
u(z,0) = f(x), w(z,0) = g(x) inf

By using the method of separation of variables, i.e., setting u(x,t) = T'(t) - v(x),
we get Dirichlet-Laplacian eigenvalue problem (see Lecture 4 for more details):

—Av =M in (),
{ v=20 on 0f). @)

Now consider the spherical (or polar) coordinates in R?, which introduce three
parameters (7, ¢, 0) as shown in Fig. 1, satisfying the followings:

xr = rsinfcos o,
= rsinfsin ¢,
z = rcosb.
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Volume element
dV=rsine de do dr

Figure 1: Spherical Coordinates in R3.

where 0 <r <a,—n1<¢p<m0<0 <.

Therefore, we can write
(3)

0 = Av+ )
= v+ 20, + & (rgves + 525 (vosin) )

We do the following separation of variables v = R(r) - Y (0, ¢) and obtain:
1 .
0= 24 r’Ry + 2rR, i sn7e Yoo + g (Yasin 9)9
R Y
Notice that the first two terms in the right-hand side depend on 7 only and so does
the last term in the right-hand side on ¢ and ¢ only. This means both of them must

1

be constants whose sum is equal to zero, i.e.,
1 1 .

79 Yoo T sna (Y9 Sin 9)0 _

e Y = —7.

2Rrr 2 Rr
Ar? + % =+

where -y is a constant.

Then we have



2
Ry =Ry + (A - %)R —0, with R(0) is finite and R(a) = 0.  (4)

and 1
Y+ —— (Ypsinh), £AY = 0. 5
sin? 6 ¢¢+Sin6( oS )9+7 ©)

(4) is similar to Bessel’s equation, except the coefficient of R, term %, instead of
1

T

So, let us use the change of dependent variable:

1
w(r) 2 VTR(r), whichgivesus R = —w, R, = —=r 2w+ 2w,
T 2
Then (4)=-
1 Y+ 3 . o
Wy + —w, + ()x S )w =0, withw(0) is finite and w(a) = 0.  (6)
r r
This is now Bessel’s differential equation with n = /v + }1. So,

w(r)=J \/w—i(\/Xr) or its constant multiple.

(VA
R(T> _ J\/E(\/—T)
R(a) = 0 forces us to have J \/w—l(\/Xa) = 0. We will analyze this later after we

proceed a bit more on Y. (By doing so, we get the possible values of +.)

Notice that the boundary conditions for Y are: Y (0, ¢ + 27) = Y (0, ¢), i.e., Y is
27 periodic in ¢. And also Y (0, ¢), Y (, ¢) are finite. Such Y satisfying (5) and
the above boundary conditions are called spherical harmonics (see [4, Sec. 2H],
[5, Sec. IV.2], and [6]). Also, see [7], [8], and [9] for computational aspect of
spherical harmonics.

To solve (5) with these boundary conditions, we do one step of separation vari-
ables as Y (6, ¢) = p(0)q(¢) to get

Qoo sin 0(py sin )y
q b

+ ysin® 6 = 0.



Notice that the first term in the left-hand side depends on ¢ only, so does the last
two terms in the left-hand side on 6 only. So, both of them must be constant:

in¢ in¢
do¢ _ _a, sin f(pe sin 6)o 1 ysin?f = a.
q p

where « is a constant.

Now let us solve them one by one.

First:
Ggp + g = 0, with ¢ is 27 periodic in ¢,
= q(¢) = Acosme¢ + Bsinma, a =m2.
Second: ; . )
1 p m
(o) 4 (- Y, .
sin 0 df <Sm a0) T\ n2e)? (7

Here we have boundary conditions that p(0) and p(r) are finite.

Let us introduce a new variable s = cos 6, i.e., sin?# = 1 — s2. Then (7) becomes

Lot (- o es W

where p(+1) are finite. This is the so-called associated Legendre equation.

Note that m = 0 case corresponds to the usual Legendre equation whose solutions
are the Legendre polynomial P,(s), where v = ¢({ + 1) and ¢ € N. The equation
(8) can be solved via the power series as in Bessel’s equation. We need to omit
the details of computation, which can be found in [3, Sec. 6.3] and [1].

Now let P(s) be a general solution for the Legendre equation with general ~,
(1 — s*)P") + P = 0. Then the solution to (8) can be written as p(s) =
(1 — 522 Pm(s). If v = (£ 4 1), with £ > m and ¢ € N, then p(s) can be

written as
( -1 ) m dé+m

S 5*)

1=

v[3

p(s) = P"(s) —1)f
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Here P} (s) is called the associated Legendre function, which is merely a polyno-

mial in s with multiplication of a power of v/1 — s2. Also notice that /v + i =

OO+ = (£+%>2:€+§.

Finally, putting everything together, we have

v(r,0,6) = R(r)p(0)q()

- Jé—i—%(\/XT)Pm N(A B si
— T " (cos 8) (A cosme + Bsinma)

By replacing cos, sin by complex exponentials, we can also write a basic solution

as
J 7( >\ j’f‘) m .
Vs (r,0,6) = O P (cos f)e™,
Jué( Aa) = 0, Aot < App < ---, foreach /.

where { = 0,1,...,00,m = —/,...,0,...,¢,and j = 1,2,...,00. Therefore,
for each (¢, j), there exist 2¢ + 1 eigenfunctions, i.e., A;; has 2¢ + 1 multiplicity.

Notice that v,,; are orthogonal, i.e.,

(Vemjs Vet 1) = / / / Vb Vgl !/ T 2sin 6 dr df d¢

= 00,10

o' Omm 77

Finally, we have

u(e,t) = Y

=0 j

u(m, 0) = CC) = Z Z Z Aémjvﬁmjv

(=0 j=0 m=—¢

w(@,0) = g(@)=> > > ey/NjBimjVim;.

L =0 j=0 m=—¢

(

M#

¢
Z (Apmj cos v/ Aejct + Bimj sin / Agjct) - Vpmj,

m=—/t

I
=)

fa Ve ga Vem,
= Amj = %; c\/ Aj Bumj = j>
2

||ij||2



Agmj, By, are complex numbers in general and more simplification happens by
e™? — (cosme, sinmao).

Example: Let f(x) = 0 and g(x) = g(r).
Then Ayy; = 0,m = 0,¢ = 0. We also know that PJ(s) = Py(s) = 1. Therefore

U(iB, t) = Z Bj SiIl( )\Oth)UOOj
=1

Jij2(v/Aos7)
\/F

a \ Ao;T)
with B; = i /r2‘]1/2( 037” // 1/2 077 2 4
0;CJ0

Amazingly, in this case Jy5(z) = /= sinz (see Appendix). Thus

A
u(z, t) \/>ZB sin(y/Aojct) - sin( X oﬂ”)’

OJT

= Z Bj sin( )\Ojct) :
j=1

where \/\oja = jm, j=1,2,--- by the Dirichlet boundary condition.

) (jWT)
it sin o
Therefore, u(x,t) \/7 g Bj sin ( J ) T .

a
We get the fundamental frequency /A\g1c = Ec, which is the same as that of the
a

1D string of length a.

Appendix

2
To derive the formula .J; /5(x) = |/ — sinx, we need the series definition of the
e

Bessel function of first kind of order « as follows

1= 3 erita T ()
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Let o = 1/2. Since for the gamma function I'(z), we have

We have

m=0m! T (§+m+ 1)
e SR
mr A= (2m + 1) ’

2
from which we get J; o(x) = |/ —sinx.
™
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