MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 6: Diffusions on and Vibrations of a Membrane in 2D/3D-III. 3D Ball

Lecturer: Naoki Saito
Scribe: Eunghyun Lee/Allen Xue

April 28, 2007

In this lecture, we consider diffusions on and vibrations of a membrane in 3D ball. Basic references for this lecture are [1, Sec. 10.3], [2, Sec. V. 8, V. 9.1, VII. 5] and [3, Sec. 6.3].

Consider a ball Ω of radius a in \mathbb{R}^{3}, i.e., $\Omega=B_{a}^{3}(0)=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}<\right.$ $\left.a^{2}\right\}, \partial \Omega=S_{a}^{2}$. The wave equation for $u(\boldsymbol{x}, t)$ on this domain is as follows:

$$
\begin{cases}u_{t t}=c^{2} \Delta u & \text { in } \Omega, \tag{1}\\ u=0 & \text { on } \partial \Omega, \\ u(\boldsymbol{x}, 0)=f(\boldsymbol{x}), u_{t}(\boldsymbol{x}, 0)=g(\boldsymbol{x}) & \text { in } \Omega\end{cases}
$$

By using the method of separation of variables, i.e., setting $u(\boldsymbol{x}, t)=T(t) \cdot v(\boldsymbol{x})$, we get Dirichlet-Laplacian eigenvalue problem (see Lecture 4 for more details):

$$
\begin{cases}-\Delta v=\lambda v & \text { in } \Omega \tag{2}\\ v=0 & \text { on } \partial \Omega .\end{cases}
$$

Now consider the spherical (or polar) coordinates in \mathbb{R}^{3}, which introduce three parameters (r, ϕ, θ) as shown in Fig. 1, satisfying the followings:

$$
\left\{\begin{aligned}
x & =r \sin \theta \cos \phi, \\
y & =r \sin \theta \sin \phi, \\
z & =r \cos \theta
\end{aligned}\right.
$$

Figure 1: Spherical Coordinates in \mathbb{R}^{3}.
where $0 \leq r<a,-\pi \leq \phi<\pi, 0 \leq \theta \leq \pi$.
Therefore, we can write

$$
\begin{align*}
0 & =\Delta v+\lambda v \\
& =v_{r r}+\frac{2}{r} v_{r}+\frac{1}{r^{2}}\left(\frac{1}{\sin ^{2} \theta} v_{\phi \phi}+\frac{1}{\sin \theta}\left(v_{\theta} \sin \theta\right)_{\theta}\right) \tag{3}
\end{align*}
$$

We do the following separation of variables $v=R(r) \cdot Y(\theta, \varphi)$ and obtain:

$$
0=\lambda r^{2}+\frac{r^{2} R_{r r}+2 r R_{r}}{R}+\frac{\frac{1}{\sin ^{2} \theta} Y_{\phi \phi}+\frac{1}{\sin \theta}\left(Y_{\theta} \sin \theta\right)_{\theta}}{Y}
$$

Notice that the first two terms in the right-hand side depend on r only and so does the last term in the right-hand side on θ and ϕ only. This means both of them must be constants whose sum is equal to zero, i.e.,

$$
\lambda r^{2}+\frac{r^{2} R_{r r}+2 r R_{r}}{R}=+\gamma, \quad \frac{\frac{1}{\sin ^{2} \theta} Y_{\phi \phi}+\frac{1}{\sin \theta}\left(Y_{\theta} \sin \theta\right)_{\theta}}{Y}=-\gamma
$$

where γ is a constant.
Then we have

$$
\begin{equation*}
R_{r r}+\frac{2}{r} R_{r}+\left(\lambda-\frac{\gamma}{r^{2}}\right) R=0, \quad \text { with } R(0) \text { is finite and } R(a)=0 . \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\sin ^{2} \theta} Y_{\phi \phi}+\frac{1}{\sin \theta}\left(Y_{\theta} \sin \theta\right)_{\theta}+\gamma Y=0 . \tag{5}
\end{equation*}
$$

(4) is similar to Bessel's equation, except the coefficient of R_{r} term $\frac{2}{r}$, instead of $\frac{1}{r}$.

So, let us use the change of dependent variable:

$$
w(r) \triangleq \sqrt{r} R(r), \text { which gives us } R=\frac{1}{\sqrt{r}} w, \quad R_{r}=-\frac{1}{2} r^{-3 / 2} w+r^{-1 / 2} w_{r} .
$$

Then (4) \Rightarrow

$$
\begin{equation*}
w_{r r}+\frac{1}{r} w_{r}+\left(\lambda-\frac{\gamma+\frac{1}{4}}{r^{2}}\right) w=0, \quad \text { with } w(0) \text { is finite and } w(a)=0 \tag{6}
\end{equation*}
$$

This is now Bessel's differential equation with $n=\sqrt{\gamma+\frac{1}{4}}$. So,

$$
w(r)=J_{\sqrt{\gamma+\frac{1}{4}}}(\sqrt{\lambda} r) \text { or its constant multiple. }
$$

\Rightarrow

$$
R(r)=\frac{J_{\sqrt{\gamma+\frac{1}{4}}}(\sqrt{\lambda} r)}{\sqrt{r}} .
$$

$R(a)=0$ forces us to have $J_{\sqrt{\gamma+\frac{1}{4}}}(\sqrt{\lambda} a)=0$. We will analyze this later after we proceed a bit more on Y. (By doing so, we get the possible values of γ.)

Notice that the boundary conditions for Y are: $Y(\theta, \phi+2 \pi)=Y(\theta, \phi)$, i.e., Y is 2π periodic in ϕ. And also $Y(0, \phi), Y(\pi, \phi)$ are finite. Such Y satisfying (5) and the above boundary conditions are called spherical harmonics (see [4, Sec. 2H], [5, Sec. IV.2], and [6]). Also, see [7], [8], and [9] for computational aspect of spherical harmonics.

To solve (5) with these boundary conditions, we do one step of separation variables as $Y(\theta, \phi)=p(\theta) q(\phi)$ to get

$$
\frac{q_{\phi \phi}}{q}+\frac{\sin \theta\left(p_{\theta} \sin \theta\right)_{\theta}}{p}+\gamma \sin ^{2} \theta=0
$$

Notice that the first term in the left-hand side depends on ϕ only, so does the last two terms in the left-hand side on θ only. So, both of them must be constant:

$$
\frac{q_{\phi \phi}}{q}=-\alpha, \quad \frac{\sin \theta\left(p_{\theta} \sin \theta\right)_{\theta}}{p}+\gamma \sin ^{2} \theta=\alpha .
$$

where α is a constant.

Now let us solve them one by one.
First:

$$
\begin{aligned}
& q_{\phi \phi}+\alpha q=0, \quad \text { with } q \text { is } 2 \pi \text { periodic in } \phi, \\
& \Rightarrow q(\phi)=A \cos m \phi+B \sin m \phi, \quad \alpha=m^{2} .
\end{aligned}
$$

Second:

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d p}{d \theta}\right)+\left(\gamma-\frac{m^{2}}{\sin ^{2} \theta}\right) p=0 \tag{7}
\end{equation*}
$$

Here we have boundary conditions that $p(0)$ and $p(\pi)$ are finite.
Let us introduce a new variable $s=\cos \theta$, i.e., $\sin ^{2} \theta=1-s^{2}$. Then (7) becomes

$$
\begin{equation*}
\frac{d}{d s}\left[\left(1-s^{2}\right) \frac{d p}{d s}\right]+\left(\gamma-\frac{m^{2}}{1-s^{2}}\right) p=0, \quad-1 \leq s \leq 1 \tag{8}
\end{equation*}
$$

where $p(\pm 1)$ are finite. This is the so-called associated Legendre equation.
Note that $m=0$ case corresponds to the usual Legendre equation whose solutions are the Legendre polynomial $P_{n}(s)$, where $\gamma=\ell(\ell+1)$ and $\ell \in \mathbb{N}$. The equation (8) can be solved via the power series as in Bessel's equation. We need to omit the details of computation, which can be found in [3, Sec. 6.3] and [1].

Now let $P(s)$ be a general solution for the Legendre equation with general γ, $\left(\left(1-s^{2}\right) P^{\prime}\right)^{\prime}+\gamma P=0$. Then the solution to (8) can be written as $p(s)=$ $\left(1-s^{2}\right)^{\frac{m}{2}} P^{(m)}(s)$. If $\gamma=\ell(\ell+1)$, with $\ell \geq m$ and $\ell \in \mathbb{N}$, then $p(s)$ can be written as

$$
p(s)=P_{\ell}^{m}(s) \triangleq \frac{(-1)^{m}}{2^{\ell} \ell!}\left(1-s^{2}\right)^{\frac{m}{2}} \frac{d^{\ell+m}}{d s^{\ell+m}}\left(s^{2}-1\right)^{\ell}
$$

Here $P_{\ell}^{m}(s)$ is called the associated Legendre function, which is merely a polynomial in s with multiplication of a power of $\sqrt{1-s^{2}}$. Also notice that $\sqrt{\gamma+\frac{1}{4}}=$ $\sqrt{\ell^{2}+\ell+\frac{1}{4}}=\sqrt{\left(\ell+\frac{1}{2}\right)^{2}}=\ell+\frac{1}{2}$.

Finally, putting everything together, we have

$$
\begin{aligned}
v(r, \theta, \phi) & =R(r) p(\theta) q(\phi) \\
& =\frac{J_{\ell+\frac{1}{2}}(\sqrt{\lambda} r)}{\sqrt{r}} P_{\ell}^{m}(\cos \theta)(A \cos m \phi+B \sin m \phi)
\end{aligned}
$$

By replacing cos, sin by complex exponentials, we can also write a basic solution as

$$
\left\{\begin{array}{l}
v_{\ell m j}(r, \theta, \phi)=\frac{J_{\ell+\frac{1}{2}}\left(\sqrt{\left.\lambda_{\ell j} r\right)}\right.}{\sqrt{r}} P_{\ell}^{|m|}(\cos \theta) \mathrm{e}^{i m \phi} \\
J_{\ell+\frac{1}{2}}\left(\sqrt{\lambda_{\ell j}} a\right)=0, \quad \lambda_{\ell 1}<\lambda_{\ell 2}<\cdots, \text { for each } \ell
\end{array}\right.
$$

where $\ell=0,1, \ldots, \infty, m=-\ell, \ldots, 0, \ldots, \ell$, and $j=1,2, \ldots, \infty$. Therefore, for each (ℓ, j), there exist $2 \ell+1$ eigenfunctions, i.e., $\lambda_{\ell j}$ has $2 \ell+1$ multiplicity.

Notice that $v_{\ell m j}$ are orthogonal, i.e.,

$$
\begin{aligned}
\left\langle v_{\ell m j}, v_{\ell^{\prime} m^{\prime} j^{\prime}}\right\rangle & =\int_{-\pi}^{\pi} \int_{0}^{\pi} \int_{0}^{a} v_{\ell m j} v_{\ell^{\prime} m^{\prime} j^{\prime}} r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \\
& =c \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \delta_{j j^{\prime}}
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
& \left\{\begin{array}{l}
u(\boldsymbol{x}, t)=\sum_{\ell=0}^{\infty} \sum_{j=0}^{\infty} \sum_{m=-\ell}^{\ell}\left(A_{\ell m j} \cos \sqrt{\lambda_{\ell j}} c t+B_{\ell m j} \sin \sqrt{\lambda_{\ell j}} c t\right) \cdot v_{\ell m j}, \\
u(\boldsymbol{x}, 0)=f(\boldsymbol{x})=\sum_{\ell=0}^{\infty} \sum_{j=0}^{\infty} \sum_{m=-\ell}^{\ell} A_{\ell m j} v_{\ell m j}, \\
u_{t}(\boldsymbol{x}, 0)=g(\boldsymbol{x})=\sum_{\ell=0}^{\infty} \sum_{j=0}^{\infty} \sum_{m=-\ell}^{\ell} c \sqrt{\lambda_{\ell j}} B_{\ell m j} v_{\ell m j} .
\end{array}\right. \\
& \Rightarrow A_{\ell m j}=\frac{\left\langle f, v_{\ell m j}\right\rangle}{\left\|v_{\ell m j}\right\|_{2}^{2}}, \quad c \sqrt{\lambda_{\ell j}} B_{\ell m j}=\frac{\left\langle g, v_{\ell m j}\right\rangle}{\left\|v_{\ell m j}\right\|_{2}^{2}} .
\end{aligned}
$$

$A_{\ell m j}, B_{\ell m j}$ are complex numbers in general and more simplification happens by $\mathrm{e}^{i m \phi} \rightarrow(\cos m \phi, \sin m \phi)$.

Example: Let $f(\boldsymbol{x}) \equiv 0$ and $g(\boldsymbol{x})=g(r)$.
Then $A_{\ell m j}=0, m=0, \ell=0$. We also know that $P_{0}^{0}(s)=P_{0}(s)=1$. Therefore

$$
\begin{aligned}
u(\boldsymbol{x}, t) & =\sum_{j=1}^{\infty} B_{j} \sin \left(\sqrt{\lambda_{0 j}} c t\right) v_{00 j} \\
& =\sum_{j=1}^{\infty} B_{j} \sin \left(\sqrt{\lambda_{0 j}} c t\right) \cdot \frac{J_{1 / 2}\left(\sqrt{\lambda_{0 j}} r\right)}{\sqrt{r}}
\end{aligned}
$$

with $B_{j}=\frac{1}{\sqrt{\lambda_{0 j}} c} \int_{0}^{a} r^{2} \frac{J_{1 / 2}\left(\sqrt{\lambda_{0 j}} r\right)}{\sqrt{r}} g(r) \mathrm{d} r / \int_{0}^{a} \frac{J_{1 / 2}^{2}\left(\sqrt{\lambda_{0 j}} r\right)}{r} r^{2} \mathrm{~d} r$.
Amazingly, in this case $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$ (see Appendix). Thus

$$
u(\boldsymbol{x}, t)=\sqrt{\frac{2}{\pi}} \sum_{j=1}^{\infty} B_{j} \sin \left(\sqrt{\lambda_{0 j}} c t\right) \cdot \frac{\sin \left(\sqrt{\lambda_{0 j}} r\right)}{\sqrt{\lambda_{0 j}} r},
$$

where $\sqrt{\lambda_{0 j}} a=j \pi, \quad j=1,2, \cdots$, by the Dirichlet boundary condition.
Therefore, $u(\boldsymbol{x}, t)=\sqrt{\frac{2}{\pi}} \sum_{j=1}^{\infty} B_{j} \sin \left(\frac{c \pi j t}{a}\right) \cdot \frac{\sin \left(\frac{j \pi r}{a}\right)}{\frac{j \pi r}{a}}$.
We get the fundamental frequency $\sqrt{\lambda_{01}} c=\frac{\pi}{a} c$, which is the same as that of the 1D string of length a.

Appendix

To derive the formula $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$, we need the series definition of the Bessel function of first kind of order α as follows

$$
J_{\alpha}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\alpha+1)}\left(\frac{x}{2}\right)^{2 m+\alpha} .
$$

Let $\alpha=1 / 2$. Since for the gamma function $\Gamma(z)$, we have

$$
\begin{gathered}
\left\{\begin{array}{l}
\Gamma(z+1)=z \Gamma(z) \\
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{array}\right. \\
\Rightarrow \Gamma\left(\frac{1}{2}+m+1\right)=\frac{1}{2} \cdot\left(\frac{1}{2}+1\right) \cdot \cdots \cdot\left(\frac{1}{2}+m\right) .
\end{gathered}
$$

We have

$$
\begin{aligned}
J_{1 / 2}(x) & =\sqrt{\frac{2}{x}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma\left(\frac{1}{2}+m+1\right)}\left(\frac{x}{2}\right)^{2 m+1} \\
& =\sqrt{\frac{2}{\pi x}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)!} x^{2 m+1}
\end{aligned}
$$

from which we get $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.

References

[1] W. A. Strauss, Partial Differential Equations: An Introduction, Brooks/Cole Publishing Company, 1992.
[2] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Wiley-Interscience, 1953.
[3] G. B. Folland, Fourier Analysis and Its Applications, Brooks/Cole Publishing Company, 1992.
[4] G. B. Folland: Introduction to Partial Differential Equations, 2nd Ed., Princeton Univ. Press, 1995.
[5] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
[6] R. T. Steeley: "Spherical Harmonics," Amer. Math. Monthly, vol. 73, no. 4, pp. 115-121, 1966.
[7] Spherepack at NCAR:
http://www.cisl.ucar.edu/css/software/spherepack
[8] Software for a fast transform for spherical harmonics by Martin Mohlenkamp:
http://www.math.ohiou.edu/ mjm/research/libftsh.html
[9] A User's Guide to Spherical Harmonics:
http://www.math.ohiou.edu/ mjm/research/uguide.pdf

