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In this lecture, we consider diffusions on and vibrations of a membrane in 3D ball.
Basic references for this lecture are [1, Sec. 10.3], [2, Sec. V. 8, V. 9.1, VII. 5]
and [3, Sec. 6.3].

Consider a ball Ω of radius a in R3, i.e., Ω = B3
a(0) = {(x, y, z) |x2 + y2 + z2 <

a2}, ∂Ω = S2
a . The wave equation for u(x, t) on this domain is as follows:





utt = c2∆u in Ω,
u = 0 on ∂Ω,
u(x, 0) = f(x), ut(x, 0) = g(x) in Ω

(1)

By using the method of separation of variables, i.e., setting u(x, t) = T (t) · v(x),
we get Dirichlet-Laplacian eigenvalue problem (see Lecture 4 for more details):

{ −∆v = λv in Ω,
v = 0 on ∂Ω. (2)

Now consider the spherical (or polar) coordinates in R3, which introduce three
parameters (r, φ, θ) as shown in Fig. 1, satisfying the followings:





x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ.
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Figure 1: Spherical Coordinates in R3.

where 0 ≤ r < a, −π ≤ φ < π, 0 ≤ θ ≤ π.

Therefore, we can write

0 = ∆v + λv

= vrr + 2
r
vr + 1

r2

(
1

sin2 θ
vφφ + 1

sin θ

(
vθ sin θ

)
θ

) (3)

We do the following separation of variables v = R(r) · Y (θ, ϕ) and obtain:

0 = λr2 +
r2Rrr + 2rRr

R
+

1
sin2 θ

Yφφ + 1
sin θ

(
Yθ sin θ

)
θ

Y

Notice that the first two terms in the right-hand side depend on r only and so does
the last term in the right-hand side on θ and φ only. This means both of them must
be constants whose sum is equal to zero, i.e.,

λr2 +
r2Rrr + 2rRr

R
= +γ,

1
sin2 θ

Yφφ + 1
sin θ

(
Yθ sin θ

)
θ

Y
= −γ.

where γ is a constant.

Then we have
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Rrr +
2

r
Rr +

(
λ− γ

r2

)
R = 0, with R(0) is finite and R(a) = 0. (4)

and
1

sin2 θ
Yφφ +

1

sin θ

(
Yθ sin θ

)
θ
+ γY = 0. (5)

(4) is similar to Bessel’s equation, except the coefficient of Rr term 2
r
, instead of

1
r
.

So, let us use the change of dependent variable:

w(r)
∆
=
√

rR(r), which gives us R =
1√
r
w, Rr = −1

2
r−3/2w + r−1/2wr.

Then (4)⇒

wrr +
1

r
wr +

(
λ− γ + 1

4

r2

)
w = 0, with w(0) is finite and w(a) = 0. (6)

This is now Bessel’s differential equation with n =
√

γ + 1
4
. So,

w(r) = J√
γ+ 1

4

(
√

λr) or its constant multiple.

⇒
R(r) =

J√
γ+ 1

4

(
√

λr)
√

r
.

R(a) = 0 forces us to have J√
γ+ 1

4

(
√

λa) = 0. We will analyze this later after we
proceed a bit more on Y . (By doing so, we get the possible values of γ.)

Notice that the boundary conditions for Y are: Y (θ, φ + 2π) = Y (θ, φ), i.e., Y is
2π periodic in φ. And also Y (0, φ), Y (π, φ) are finite. Such Y satisfying (5) and
the above boundary conditions are called spherical harmonics (see [4, Sec. 2H],
[5, Sec. IV.2], and [6]). Also, see [7], [8], and [9] for computational aspect of
spherical harmonics.

To solve (5) with these boundary conditions, we do one step of separation vari-
ables as Y (θ, φ) = p(θ)q(φ) to get

qφφ

q
+

sin θ(pθ sin θ)θ

p
+ γ sin2 θ = 0.
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Notice that the first term in the left-hand side depends on φ only, so does the last
two terms in the left-hand side on θ only. So, both of them must be constant:

qφφ

q
= −α,

sin θ(pθ sin θ)θ

p
+ γ sin2 θ = α.

where α is a constant.

Now let us solve them one by one.

First:
qφφ + αq = 0, with q is 2π periodic in φ,

⇒ q(φ) = A cos mφ + B sin mφ, α = m2.

Second:
1

sin θ

d

dθ

(
sin θ

dp

dθ

)
+

(
γ − m2

sin2 θ

)
p = 0. (7)

Here we have boundary conditions that p(0) and p(π) are finite.

Let us introduce a new variable s = cos θ, i.e., sin2 θ = 1− s2. Then (7) becomes

d

ds

[
(1− s2)

dp

ds

]
+

(
γ − m2

1− s2

)
p = 0, −1 ≤ s ≤ 1. (8)

where p(±1) are finite. This is the so-called associated Legendre equation.

Note that m = 0 case corresponds to the usual Legendre equation whose solutions
are the Legendre polynomial Pn(s), where γ = `(` + 1) and ` ∈ N. The equation
(8) can be solved via the power series as in Bessel’s equation. We need to omit
the details of computation, which can be found in [3, Sec. 6.3] and [1].

Now let P (s) be a general solution for the Legendre equation with general γ,(
(1 − s2)P

′)′
+ γP = 0. Then the solution to (8) can be written as p(s) =

(1 − s2)
m
2 P (m)(s). If γ = `(` + 1), with ` ≥ m and ` ∈ N, then p(s) can be

written as

p(s) = Pm
` (s)

∆
=

(−1)m

2``!
(1− s2)

m
2

d`+m

ds`+m
(s2 − 1)`
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Here Pm
` (s) is called the associated Legendre function, which is merely a polyno-

mial in s with multiplication of a power of
√

1− s2. Also notice that
√

γ + 1
4

=
√

`2 + ` + 1
4

=

√(
` + 1

2

)2

= ` + 1
2
.

Finally, putting everything together, we have

v(r, θ, φ) = R(r)p(θ)q(φ)

=
J`+ 1

2
(
√

λr)
√

r
Pm

` (cos θ)(A cos mφ + B sin mφ)

By replacing cos, sin by complex exponentials, we can also write a basic solution
as 




v`mj(r, θ, φ) =
J

`+1
2
(
√

λ`jr)
√

r
P
|m|
` (cos θ)eimφ,

J`+ 1
2
(
√

λ`ja) = 0, λ`1 < λ`2 < · · · , for each `.

where ` = 0, 1, . . . ,∞, m = −`, . . . , 0, . . . , `, and j = 1, 2, . . . ,∞. Therefore,
for each (`, j), there exist 2` + 1 eigenfunctions, i.e., λ`j has 2` + 1 multiplicity.

Notice that v`mj are orthogonal, i.e.,

〈v`mj, v`′m′j′ 〉 =

∫ π

−π

∫ π

0

∫ a

0

v`mj v`′m′j′ r
2 sin θ dr dθ dφ

= c δ``′δmm′δjj′

Finally, we have




u(x, t) =
∞∑

`=0

∞∑
j=0

∑̀

m=−`

(A`mj cos
√

λ`jct + B`mj sin
√

λ`jct) · v`mj,

u(x, 0) = f(x) =
∞∑

`=0

∞∑
j=0

∑̀

m=−`

A`mjv`mj,

ut(x, 0) = g(x) =
∞∑

`=0

∞∑
j=0

∑̀

m=−`

c
√

λ`jB`mjv`mj.

⇒ A`mj =
〈f, v`mj〉
‖v`mj‖2

2

, c
√

λ`jB`mj =
〈g, v`mj〉
‖v`mj‖2

2

.
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A`mj , B`mj are complex numbers in general and more simplification happens by
eimφ → (cos mφ, sin mφ).

Example: Let f(x) ≡ 0 and g(x) = g(r).
Then A`mj = 0,m = 0, ` = 0. We also know that P 0

0 (s) = P0(s) = 1. Therefore

u(x, t) =
∞∑

j=1

Bj sin(
√

λ0jct)v00j

=
∞∑

j=1

Bj sin(
√

λ0jct) ·
J1/2(

√
λ0jr)√
r

with Bj =
1√
λ0jc

∫ a

0

r2
J1/2(

√
λ0jr)√
r

g(r) dr

/∫ a

0

J2
1/2(

√
λ0jr)

r
r2 dr.

Amazingly, in this case J1/2(x) =
√

2
πx

sin x (see Appendix). Thus

u(x, t) =

√
2

π

∞∑
j=1

Bj sin(
√

λ0jct) ·
sin(

√
λ0jr)√

λ0jr
,

where
√

λ0ja = jπ, j = 1, 2, · · · , by the Dirichlet boundary condition.

Therefore, u(x, t) =

√
2

π

∞∑
j=1

Bj sin

(
cπjt

a

)
·
sin

(
jπr

a

)

jπr

a

.

We get the fundamental frequency
√

λ01c =
π

a
c, which is the same as that of the

1D string of length a.

Appendix

To derive the formula J1/2(x) =

√
2

πx
sin x, we need the series definition of the

Bessel function of first kind of order α as follows

Jα(x) =
∞∑

m=0

(−1)m

m! Γ(m + α + 1)

(x

2

)2m+α

.
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Let α = 1/2. Since for the gamma function Γ(z), we have
{

Γ(z + 1) = zΓ(z)
Γ(1

2
) =

√
π

⇒ Γ

(
1

2
+ m + 1

)
=

1

2
·
(

1

2
+ 1

)
· · · · ·

(
1

2
+ m

)
.

We have

J1/2(x) =

√
2

x

∞∑
m=0

(−1)m

m! Γ

(
1

2
+ m + 1

)
(x

2

)2m+1

=

√
2

πx

∞∑
m=0

(−1)m

(2m + 1)!
x2m+1,

from which we get J1/2(x) =

√
2

πx
sin x.
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