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In this lecture, we will consider Laplacian eigenvalue problems for general do-
mains. Since the explicit formulas only exist for special domains (e.g., rectangles,
disks, balls, etc.), what can we say about {(λn, ϕn)} for a domain Ω of general
shape?

The basic references for this lecture are the texts by Strauss [6, Sec. 11.1-11.2],
and Courant and Hilbert [1, Sec. VI.1]. For the details and the survey up to the
recent results, consult [3].

1 The Eigenvalues as the Minima of the Potential
Energy

Consider the following Dirichlet-Laplacian (DL) Problem, where Ω is an open
domain with general shape, |Ω| < ∞, and ∂Ω is piecewise smoooth.

{ −∆u = λu in Ω,
u = 0 on ∂Ω. (1)
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In this lecture, we list

0 < λ1 ≤ λ2 · · · ≤ λn ≤ · · · ,

where each eigenvalue is repeated according to its multiplicity.

Now consider the following minimization problem (MP):

m = min
w∈C2

0(Ω)

w 6≡0

{‖∇w‖2

‖w‖2

}
(MP)

where C2
0(Ω) = {w ∈ C2(Ω) |w = 0 on ∂Ω}. The term

‖∇w‖2

‖w‖2
is called the

Rayleigh quotient. And 1
2
‖∇w‖2 = 1

2

∫
Ω
|∇w|2 dx is the potential energy or

roughness of w(x) in Ω.

Notice that if u(x) is solution for (MP), then so is a ·u(x), where a is an arbitrary
nonzero constant.

Theorem 1.1. Let

λ1 = m = min
w∈C2

0(Ω)

w 6≡0

{‖∇w‖2

‖w‖2

}
and

ϕ1 = arg min
w∈C2

0(Ω)

w 6≡0

{‖∇w‖2

‖w‖2

}
.

then −∆ϕ1 = λ1ϕ1.

In other words, “the first eigenvalue is the minimum of the potential energy, and
the first eigenfunction is the ground state (state of the lowest energy).”

Proof. From now on, we will call a function from C2
0(Ω) a trial function.

Let u be the solution of (MP) with minimum value m ≥ 0. Then, for any trial
function w ∈ C2

0(Ω), we have

m =

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

≤
∫

Ω
|∇w|2 dx∫

Ω
|w|2 dx

.

2



Let v ∈ C2
0(Ω) be any other trial function such that w(x) = u(x) + εv(x), where

ε is any real constant.

Then define

f(ε)
∆
=

∫
Ω
|∇(u + εv)|2 dx∫
Ω
|u + εv|2 dx

,

which has a minimum at ε = 0, i.e., f
′
(0) = 0.

Expanding f(ε) in ε yields

f(ε) =

∫
Ω

(|∇u|2 + 2ε∇u · ∇v + ε2|∇v|2) dx∫
Ω

(u2 + 2εuv + ε2v2) dx
.

Using the quotient rule for differentiation and substituting ε = 0, we obtain that

0 = f
′
(0) =

(∫
Ω

2∇u · ∇v dx
) (∫

Ω
u2 dx

)− (∫
Ω
|∇u|2 dx

) (∫
Ω

2uv dx
)

(∫
Ω

u2 dx
)2 .

A simple algebraic manipulation produces
∫

Ω

∇u · ∇v dx =

(∫
Ω
|∇u|2 dx∫
Ω

u2 dx

) ∫

Ω

uv dx = m

∫

Ω

uv dx.

Also, by Green’s first identity (G11), we may write
∫

Ω

∇u · ∇v dx +

∫

Ω

v∆u dx =

∫

∂Ω

v
∂u

∂ν
dS = 0.

The last equality follows from the fact that v ∈ C2
0(Ω), i.e., v|∂Ω = 0. Therefore,

∫

Ω

(∆u + mu) v dx = 0.

This is true for any v ∈ C2
0(Ω). Therefore, we must have ∆u + mu = 0, i.e., m

and u are the eigenpair for the Dirichlet-Laplacian problem (1).

We still need to show m is actually the smallest eigenvalue, i.e., m = λ1, u = ϕ1.

1See Lecture 4 for some details.
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Let −∆vj = λjvj , where λj is any eigenvalue of the Dirichlet-Laplacian problem
(1). Then, by definition,

m ≤
∫
Ω
|∇vj|2 dx∫
Ω

v2
j dx

= −
∫
Ω

vj∆vj dx∫
Ω

v2
j dx

=

∫
Ω

λjv
2
j dx∫

Ω
v2

j dx
= λj.

The first equality follows from (G1). So, m ≤ λj, ∀j, and m is an eigenvalue of
(1). So m = λ1 and u = ϕ1.

In this proof, we apply the idea of calculus of variations. Classical but excellent
general references on calculus of variations are [1, Chap. IV], [4, Part II], and [5,
Chap. II]. Finally, an excellent treatment of calculus of variations related to PDEs
is [8, Chap. 8].

Example 1.2. Find m = min
w∈C2

0(Ω)

w 6≡0

∫ 1

0

(
w
′)2

dx∫ 1

0
w2 dx

, w ∈ C2
0(0, 1).

Answer. m = π2, since the solution of this (MP) is w(x) = sin πx = ϕ1 and
λ1 = π2.

Interesting to Note: We can easily pick a function w ∈ C2
0(0, 1) to get an ap-

proximate value of m. For example, we can choose w(x) = ax(1 − x), a is an
arbitrary constant. Let us compare the true solution and this w. Here we choose
the functions with unit L2 norm. See Figure 1.

√
2 sin πx ⇒

∫ 1

0

((
√

2 sin πx)′)2 dx = π2 ≈ 9.8696,

√
30x(1− x) ⇒

∫ 1

0

((
√

30x(1− x))′)2 dx = 10.

(2)

2 The Other Eigenvalues
Theorem 2.1 (Minimum Principle for the nth Eigenvalue). Suppose that {(λj, ϕj)}n−1

j=1

are already known. Then

λn = min
w∈C2

0(Ω),

w 6≡0,
〈w,ϕj〉=0, ∀j∈{1,...,n−1}

{‖∇w‖2

‖w‖2

}
. (MP)n
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Figure 1: Plots of (MP) solution
√

2 sin πx and a trial function
√

30x(1− x).

assuming that the minimum exists. Furthermore, the minimizing function is ϕn(x),
i.e. the nth eigenfunction.

Note that this theorem implies λn−1 ≤ λn, ∀n ≥ 2.

Proof. By assumption, there exists u(x) that is a solution to (MP)n. Let m∗ be
the minimum value of (MP)n. So u|∂Ω = 0, and u ⊥ ϕ1, . . . , ϕn−1.

As in the proof of the previous theorem, let w(x) = u(x) + εv(x), where w and
v satisfy the conditions for (MP)n. Then, exactly as before, we have

∫

Ω

(∆u + m∗u) v dx = 0, (3)

for any v ∈ C2
0(Ω) with v ⊥ ϕ1, . . . , ϕn−1.

Now consider, for j = 1, . . . , n− 1,
∫

Ω

(∆u + m∗u) ϕj dx
(a)
=

∫

Ω

u (∆ϕj + m∗ϕj) dx

(b)
= (m∗ − λj)

∫

Ω

uϕj dx

(c)
= 0.

(4)
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where (a) is derived by Green’s second identity (G21), (b) is from the fact that
∆ϕj = −λjϕj , and (c) is derived by the fact u ⊥ ϕj .

Now let h(x) be an arbitrary trial function and set

v(x) = h(x)−
n−1∑

k=1

ckϕk(x), ck =
〈h, ϕk〉
〈ϕk, ϕk〉 . (5)

Then 〈v, ϕj〉 = 0 for j = 1, . . . , n− 1.

Since h, ϕj ∈ C2
0(Ω), ∀j ∈ {1, . . . , n− 1}, (3) is valid for v defined in (5).

From (3) and (4),

∫

Ω

(∆u + m∗u)

(
v +

n−1∑

k=1

ckϕk

)
dx =

∫

Ω

(∆u + m∗u) h dx = 0, ∀h ∈ C2
0(Ω).

This implies that −∆u = m∗u. Similarly to the previous theorem with induction,
we can show that m∗ = λn, u = ϕn.

Remark 2.2. The existence of the minima (MP) and (MP)n is a delicate mathe-
matical issue that we have avoided, which led to the theory of Sobolev spaces. In
fact, there are domains D with rough boundaries for which (MP) does not have
any solution at all. For further information, see [7], [8, Chap. 5], [9, Chap. 6] and
[10, Chap. 7-8]. Also [11] is the paper that put the end to the confusion of the two
different definitions of the Sobolev spaces.
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1See Lecture 4 for some details.

6



[4] S. G. MIKHLIN, Mathematical Physics, An Advanced Course, North-
Holland Publ., 1970.

[5] V. I. SMIRNOV, A Course of Higher Mathematics, Vol. IV, Pergamon
Press/Addison-Wesley, 1964.

[6] W. A. STRAUSS, Partial Differential Equations: An Introduction, John Wi-
ley & Sons, 1992.

[7] R. A. ADAMS AND J. J. F. FOURNIER, Sobolev Spaces, 2nd Ed., Elsevier
Science Ltd., Oxford, UK, 2003.

[8] L. C. EVANS, Partial Differential Equations, AMS, 1998.

[9] G. B. FOLLAND, Introduction to Partial Differential Equations, Princeton
Univ. Press, 1995.

[10] E. H. LOSS AND M. LOSS, Analysis, 2nd Ed., AMS, 2001.

[11] N. G. MEYERS AND J. SERRIN: “H=W”, Proc. Nat. Acad. Sci., vol. 51,
pp. 1055-1056, 1964.

7


