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The basic references for this lecture are the texts by Strauss [2, Sec. 11.3], and
Courant and Hilbert [3, Sec. VI.1, VI.2]. For more advanced treatments, see [4,
Chap. 4] and [5, Chap. 1].

The Dirichlet-Laplacian eigenvalues, in particular, λ1 (the smallest), is quite im-
portant in many applications. To compute them we will use the Rayleigh quotient.

For any trial function w ∈ C2
0(Ω), with w 6≡ 0, we have

λ1 ≤ ‖∇w‖2

‖w‖2
.

If w = ϕ1, we get exactly λ1, but we do not know ϕ1 at this point. So, we should
be satisfied with a moderately clever choice of w that might provide a relatively
good approximation.

Example 0.1. In Lecture 8, we already discussed the approximate minimum of
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(MP):

m = min
w∈C2

0(Ω)

w 6≡0

∫ 1

0

(
w
′)2

dx

∫ 1

0

w2 dx

, w ∈ C2
0(0, 1).

We choose the trial function w =
√

30x(1− x), which gives an estimate λ̂1 = 10
where the true eigenvalue is λ1 = π2 ≈ 9.8696.

In this case we have done well, but in general, it is too difficult to come up with a
good trial function to produce a good approximation of λ1 or λj .

1 Rayleigh-Ritz Approximation (RRA)
Let w1, · · · , wn ∈ C2

0(Ω), wj 6≡ 0 be arbitrary trial functions. Let A = (ajk),
B = (bjk), where ajk, bjk are defined as:

ajk
∆
= 〈∇wj,∇wk〉 =

∫

Ω

∇wj · ∇wk dx,

bjk
∆
= 〈wj, wk〉 =

∫

Ω

wjwk dx,
(1)

for j, k = 1, . . . , n. Thus, A and B are n× n symmetric matrices. Then

The roots of the polynomial equation det(A − λB) are approxi-
mation to the first n eigenvalues λ1, · · · , λn.

Before presenting an informal proof of this, let us consider the following example.

Example 1.1. Consider the radial vibrations of a circular membrane Ω = {(x, y) |x2+
y2 < 1}. Then the Dirichlet-Laplacian (DL) problem is −∆u = λu, which can
be written in the polar coordinates (r, θ) as

(−rur)r = λru (0 < r < 1), u = 0 at r = 1.

Here we apply the fact that radial function depends only on the parameter r, i.e.,
u(x, y) = u(r).

Then the Rayleigh quotient is given by
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Q =

∫∫
|∇w|2 dx

∫∫
w2 dx

=

2π

∫ 1

0

rw2
r dr

2π

∫ 1

0

rw2
r dr

. (2)

Now we ask “what trial functions should we use?” The trial functions are required
to satisfy the boundary conditions

w(0) : finite, wr(0) = 0 = w(1).

A simple choice of a pair of them is 1 − r2 and (1 − r2)2. In this case, we can
compute the entries for matrices A and B in (1) as follows

A =

(
2π 4π/3

4π/3 4π/3

)
, B =

(
π/3 π/4
π/4 π/5

)
.

Hence

det(A− λB) = det
[(

2π − λπ/3 4π/3− λπ/4
4π/3− λπ/4 4π/3− λπ/5

)]

= π2

{(
2− λ

3

)(
4

3
− λ

5

)
−

(
4

3
− λ

4

)2
}

.

Solving the characteristic equation det(A− λB) = 0 gives us the estimates

λ̂1 =
64− 8

√
34

3
' 5.7841, λ̂2 =

64 + 8
√

34

3
' 36.8825 (3)

On the otherhand, the true eigenvalues are given by

λ1 = j2
0,1 = 5.783, λ2 = j2

0,2 = 30.4705 (4)

where j0,k denote the kth zero of the Bessel function of the first kind of order 0.
It becomes clear that our estimate for the first eigenvalue is good, but the second
has significant error. To improve, we need to use either better trial functions or
possibly use three trial functions.
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1.1 Informal derivation of the Rayleigh-Ritz Approximation
(RRA)

Let {wj}n
j=1 ⊂ C2

0(Ω) be arbitrary trial functions and linearly independent. As an
approximation to the true minimum problem (MP)n (see Lecture 8), let us impose
an additional condition for w:

w(x) =
n∑

k=1

ckwk(x), ck : some constant (5)

So we only seek w of the form (5). Therefore, in general λ̂1 ≥ λ1, because we
impose more constraints in (MP)n. If we are incredibly smart, so that w(x) would
be an eigenfunction, then we have −∆w = λw, and

〈∇w,∇wj〉 =

∫

Ω

∇w · ∇wj dx

(∗)
= −

∫

Ω

∆w · wj dx +

∫

∂Ω

∂w

∂ν
wj dx

= λ 〈w,wj〉 ,

(6)

where we used Green’s first identity in (*). Therefore, recalling the definitions of
ajk and bjk, we get

〈∑

k

ck∇wk,∇wj

〉
= λ

〈∑

k

ckwk, wj

〉
⇒

∑

k

ckajk = λ
∑

k

ckbjk. (7)

So, we can write them in a matrix form

Ac = λBc, c 6= 0.

which leads to det(A− λB) = 0.

If we are not so smart, which is usually the case, we can still use this determinant
as our approximation method. This leads to the Minimax Principle. See [5, Sec.
1.3] for more details.

2 Minimax Principle
In reality, what we really want is an exact formula to compute the eigenvalues
instead of an approximation.
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Let λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n be the roots of det(A− λB) = 0. From numerical linear
algebra (see Sec. 2.1), it is easy to see that

λ∗n = max
c 6=0

cT Ac

cT Bc
= max

c6=0

〈Ac, c〉
〈Bc, c〉

Thus, we have

λ∗n = max
c6=0

∑
j,k ajkcjck∑
j,k bjkcjck

= max
c6=0

〈
∇(

∑
j cjwj),∇(

∑
k ckwk)

〉
〈∑

j cjwj,
∑

k ckwk

〉

= max
c 6=0

w∈span{w1,...,wn}

||∇w||2
||w||2

(8)

with w ∈ span{w1, · · ·wn}. Hence we have from the (MP)n

λn ≤ λ∗n
.
Thus this allows us to take the minimum on the RHS to get

λn = min λ∗n, (9)

where the minimization is taken over all possible choices of {w1, . . . , wn} ⊂
C2

0(Ω).

Theorem 2.1 (Minimax Principle). Let {wj}n
j=1 ⊂ C2

0(Ω) be an arbitrary set of
n trial functions. Define λ∗n by (8), Then the nth eigenvalue is

λn = min λ∗n
where min is taken over all possible choices of the n trial functions {wj}n

j=1 ⊂
C2

0(Ω).

Before presenting the proof, consider the following intermission which plays a
role in the proof.
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2.1 Intermission: Rayleigh Quotient & Linear Algebra
This intermission is taken from [1, Lect. 27].

Let A ∈ Rm×m be symmetric and x ∈ Rm. Then we know A has real eigenvalues
λ1, . . . , λm and real orthogonal eigenvectors ϕ1, . . . , ϕm.

Define

r(x) , xT Ax

xT x
(10)

Clearly if x = ϕj , then r(ϕj) = λj . Of course, we do not know ϕj a priori. So
a motivating question is: “Given x, what scalar α acts most like an eigenvalue for
x?”

The answer to this question leads to the following least square problem

min
α∈R

‖Ax− αx‖2. (11)

The answer to this least square problem is α̂ = r(x). The reason is as follows:

‖Ax− αx‖2
2 = 〈(A− αI)x, (A− αI)x〉

= xT (A− αI)T (A− αI)x

= xT A2x− 2αxT Ax + α2xT x

By
∂

∂α
‖Ax− αx‖2

2 = 0, we get 2αxT x− 2xT Ax = 0. So

α =
xT Ax

xT x
(12)

is the solution of the least square problem (11).

Thus, if x is close to one of the eigenvectors, then the α in (12) should be close to
the corresponding eigenvalue. Also notice that

∇r(x) =
2

xT x
(Ax− r(x)x). (13)

So if x = ϕj , then ∇r(ϕj) = 0. Conversely if ∇r(x) = 0 for x 6= 0, then x is
an eigenvector of A and r(x) is the corresponding eigenvalue. Thus the key point
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is that {ϕj} are the stationary points of r(x). Further we can show that

r(x)− r(ϕj) = O(‖x−ϕj‖2) as x → ϕj (14)

This property is the basis for the method of power iterations. See [1, Lecture 27]
and [6, Sec. 8.2].

2.2 Proof of Theorem 2.1
Proof. First let’s fix {w1, · · ·wn} ⊂ C2

0(Ω). Then choose c1, c2, · · · cn (not all
zeros) such that

w(x)
∆
=

n∑

k=1

ckwk(x) ⊥ {ϕj, · · · , ϕn−1},

i.e., 〈w,ϕk〉 =
n∑

j=1

cj 〈wj, ϕk〉 = 0, k = 1, . . . , n− 1.

It is clear now that we have n unknowns and n − 1 equations. Therefore it is
possible to find {cj}n

j=1 not all zero. By the minimum principle, we have

λn ≤ ‖∇w‖2

‖w‖2
. (15)

On the other hand, the maximum in (8) is taken over all possible {cj}. So

‖∇w‖2

‖w‖2
≤ λ∗n. (16)

Therefore, we have

λn ≤ ‖∇w‖2

‖w‖2
≤ λ∗n. (17)

Now (17) must be true for all possible {w1, · · ·wn} ⊂ C2
0(Ω), which allows us to

take minimum on the RHS, i.e.,

λn ≤ min λ∗n (18)

where the minimum is taken over all possible wj . Yet we still need to show that
λn = min λ∗n is attainable.
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Choose wj = ϕj for j = 1, · · ·n where ‖ϕj‖ = 1. With this choice we have

λ∗n = max
c6=0

‖∇(
∑

j cjϕj)‖2

‖∑
j cjϕj‖2

. (19)

Using Green’s first identity (G1) results in

〈∇ϕj,∇ϕk〉 = 〈−∆ϕj, ϕk〉 = λjδjk.

Therefore, we have

λ∗n = max
c6=0

∑
j λjc

2
j∑

j c2
j

≤ λn

∑
j c2

j∑
j c2

j

= λn (20)

so that λ∗n ≤ λn. Therefore λn = min λ∗n is attainable.
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