
1 Graphs

Graphs play a key role in data analysis. A graph G = (V,E) contains a set of nodes
V = {v1, . . . , vn} and edges E ⊆

(
V
2

)
. An edge (i, j) ∈ E if vi and vj are connected. Here is

one of the graph theorists favorite examples, the Petersen graph1:

Figure 1: The Petersen graph

Graphs are crucial tools in many fields, the intuitive reason being that many phenomena,
while complex, can often be thought about through pairwise interactions between objects
(or data points), which can be nicely modeled with the help of a graph.

Let us recall some concepts about graphs that we will need.

• A graph is complete if, for all pairs of vertices, there is a path between these vertices
on the graph. The number of connected components is simply the size of the smallest
partition of the nodes into connected subgraphs. The Petersen graph is connected (and
thus it has only 1 connected component).

• A clique of a graph G is a subset S of its nodes such that the subgraph corresponding
to it is complete. In other words S is a clique if all pairs of vertices in S share an edge.
The clique number c(G) of G is the size of the largest clique of G. The Petersen graph
has a clique number of 2.

• An independence set of a graph G is a subset S of its nodes such that no two nodes
in S share an edge. Equivalently it is a clique of the complement graph Gc := (V,Ec).
The independence number of G is simply the clique number of Sc. The Petersen graph
has an independence number of 4.

1The Peterson graph is often used as a counter-example in graph theory.
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2 Graph Laplacian

A particularly useful way to represent a graph is through its adjacency matrix. Given a
graph G = (V,E) on n nodes (|V | = n), we define its adjacency matrix A ∈ Rn×n as the
symmetric matrix with entries

Aij =


1 if (i, j) ∈ E
0 if i, j are not connected
0 if i = j

Figure 2 shows some examples of graphs and their adjacency matrices.

Figure 2: Some graphs and their adjacency matrices.

Sometimes, we will consider weighted graphs G = (V,E,W ), where edges may have weights
wij, we think of the weights as non-negative wij ≥ 0 and symmetric wij = wji, wij = 0 if two
vertices are not connected and wii = 0. For undirected graph, wij = wji. Unweighted graphs
are weighted graphs with wij = 0 if not connected and wij = 1 if connected.

The degree of a vertex vi ∈ V is di =
∑n

j=1wij.
The degree matrix D is the diagonal matrix with entries di.
The (unweighted) adjacancy matrix A is defined as:

The incidence matrix ∇ is a matrix of size |E| × |V |

∇ :=


∇ = −1 if v is the initial vertex of the edge
∇ = 1 if v is the terminal vertex of the edge
∇ = 0 if v is not in the edge,

where we assume each edge has an arbitrary, but fixed orientation. If we have an undirected
graph, we can obtain the incidence matrix by simply choosing a (fixed) orientation of the
edges.
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Here is an example:

∇ =

v1 v2 v3 v4
e12 −1 1 0 0
e13 1 0 −1 0
e23 0 −1 1 0
e24 0 −1 0 1

Let f be a function acting on the vertices, then ∇f = f(vj)− f(vi)i,j. Hence ∇ is a kind of
difference operator.

The unnormalized graph Laplacian L is defined as L := ∇T∇. It is easy to see that there
holds L = D − A. For the same example above,

D =


2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

 , A =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0



⇒ L = D − A =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1

 = ∇T∇.

Sometimes L is defined directly via L = D−A. For weighted graphs, we define L = D−W .

Theorem 1. The graph Laplacian L satisfies the following properties:

1. For every vector f ∈ Rn there holds

f ∗Lf =
1

2

n∑
i,j=1

wij(fi − fj)2. (1)

2. L is symmetric and positive semidefinite.

3. 0 is an eigenvalue of L and the associated eigenvector is
1√
n

[
1, 1, · · · , 1

]T
.
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Proof. 1. We have

f ∗Lf = f ∗Df − f ∗Wf =
n∑

i=1

dif
2
i −

∑
i,j

wijfifj

=
1

2

( n∑
i=1

dif
2
i − 2

∑
i,j

wijfifj +
n∑

j=1

djf
2
j

)
=

1

2

n∑
i,j=1

wij(fi − fj)2.

2. The symmetry of L follows from the symmetry ofD andW and the positive-semidefiniteness
follows e.g. from (5) which implies that f ∗Lf ≥ 0 for all f ∈ Rn.
3. Follows immediately from (5).

The unnormalized graph Laplacian and its eigenvalues and eigenvectors can be used to de-
scribe many properties of graphs [1]. In connection with clustering it leads to an approach
called spectral clustering. The following theorem illustrated one such connection to cluster-
ing [2].

Theorem 2. [Number of connected components and the spectrum of L] Let G be an undi-
rected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals
the number of connected components A1, . . . , Ak in the graph. The eigenspace associated with
the eigenvalue 0 is spanned by the indicator vectors 1A1 , . . . ,1Ak

of those components.

Proof. We start with the case k = 1, that is, the graph is connected. Assume that f is an
eigenvector with eigenvalue 0. Then we know from Theorem 1 that

0 = f ∗Lf =
1

2

n∑
i,j=1

wij(fi − fj)2. (2)

Since wi,j ≥ 0, the sum in (2) can only be zero if all terms wij(fi − fj)2 are zero. Thus, if
two vertices vi and vj are connected (i.e., wij > 0), then fi must be equal to fj . Hence, f
must be constant for all vertices which can be connected by a path in the graph, which in
turn implies that f is constant on the whole connected component. In a graph consisting
of only one connected component we thus only have the constant-one vector as eigenvector
with eigenvalue 0, which obviously is the indicator vector of the connected component.

Now consider the case of k connected components. Without loss of generality we assume
that the vertices are ordered according to the connected components they belong to. In this
case, the adjacency matrix W is block diagonal, and so is the matrix L:

L =


L1

L2

. . .
Lk

 .
Note that each of the blocks Li can be considered as a graph Laplacian on its own, namely
the Laplacian corresponding to the subgraph of the i-th connected component. Since L is a
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block diagonal matrix, its spectrum is the union of the spectra of Li and the corresponding
eigenvectors of L are the eigenvectors of Li, padded with zeroes at the positions of the other
blocks. As each Li is a graph Laplacian of a connected graph, we know that each Li has
eigenvalue 0 with multiplicity 1, and the corresponding eigenvector is the constant-one vector
on the i-th connected component. Thus, the matrix L has as many eigenvalues 0 as there
are connected components, and the corresponding eigenvectors are the indicator vectors of
the connected components.

There are two normalized versions of the graph Laplacian, a symmetric one and a non-
symmetric one, given by

LS = D− 1
2LD− 1

2 = I −D− 1
2WD− 1

2 (3)

LN = D−1L = I −D−1W. (4)

We will later see that LN has a nice and natural interpretation of a random walk on a graph.

Theorem 3. The normalized graph Laplacians satisfy the following properties:

1. For every vector f ∈ Rn there holds

f ∗LSf =
1

2

n∑
i,j=1

wij

( fi√
di
− fj√

dj

)2
. (5)

2. λ is an eigenvalue of LN with eigenvector u if and only if λ is an eigenvalue of LS with
eigenvector w = D

1
2u.

3. λ is an eigenvalue of LN with eigenvector u if and only if λ and u solve the generalized
eigenproblem Lu = λDu.

4. 0 is an eigenvalue of LN and the associated eigenvector is 1. 0 is an eigenvalue of LS

and the associated eigenvector is D
1
21.

Theorem 2 can be easily adapted to LS and LN .
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