
1 Compressive Sensing

Compressive sensing is an idea proposed by Emmanuel Candès, Justin Romberg, Terence
Tao [CRT06a, CRT06b] and David Donoho [Don06a, Don06b] around year 2005. In compres-
sive sensing, we design a “sensing matrix” A ∈ Rk×d(k < d), and try to recover a s-sparse
vector x using y = Ax. We can’t solve y = Ax to find x directly because it is underde-
termined, however we want A to preserve as much information as possible, and hopefully
recover x by exploiting its sparsity.

Definition 1. We define the quantity ‖x‖0 := {#k : xk 6= 0}, i.e., ‖x‖0 counts the number
of non-zero coefficients of vector x.

‖x‖0 is not a norm, but we call it 0-norm anyway. This misnomer is partly justified by the
fact that ‖x‖pp → ‖x‖0 as p→ 0.

Suppose that x ∈ Rd, if ‖x‖0 = s, we call x s-sparse. We are particularly interested in the
case when s � d. If x is s-sparse, we may not know the locations of the non-zero entries a
priori. Indeed, we usually assume that the non-zero locations of x are (initially) unknown.

Assume now we know that x ∈ Rd is s-sparse. We could compress x by first measuring all
d coefficients of x then keeping the s non-zero ones and associated indices. Thus, we can
compress x ∈ Rd into a vector of length 2s (without loss). But can we do almost as good
without acquiring all d coefficients of x first.

Example: Let x be a vector of length d = 2n for some n ∈ N > 0 and assume that x is
1-sparse and non-negative (the non-negativity assumption is just for convenience and will
not be needed later):

x =
[
0, . . . 0, xk, 0, . . . , 0

]
,

where xk > 0 for some unknown index k. In order to locate the one non-zero entry xk we
could measure all d coefficients of x one by one. Or we could use the following more efficient
strategy: The first measurement we take consists of suming up the first d/2 entries of x. If
the sum is non-zero, we know that xk is contained in the first d/2 entries of x and continue
to step 2 using the first d/2 entries of x, otherwise we proceed to step 2 using the second d/2
entries of x. Let us assume w.l.o.g. that the first sum is zero. We now split the second half
of x into two parts and sum up the first d/4 entries of the first part. If the sum is non-zero
we proceed with that part, otherwise we take the other part. We can proceed in that way
and within log2 d steps we have located the non-zero coefficient xk.

Admittedly, the procedure of taking measurements has changed now from point evaluations
to summing (integrating) over parts of the signal. Depending on the application this may or
may not be an issue. This adaptive strategy of measuring signals is a form of group testing,
which was used for instance in the analysis of blood samples to test soldiers during World
War II. However, we prefer a non-adaptive data acquisition scheme (which does not adapt
the measurement strategy to a specific x), as this is much more convenient in applications.

Difficulty: The space of all s-sparse vectors is not a linear subspace of Rd because the sum
of two s-sparse signals can be 2s-sparse. Simply randomly sampling s-sparse signals does
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not give useful compression because it would require O(d) measurement. Hence, motivated
by Johnson-Lindenstrauss, can we design a random sensing matrix A that allows us to take
only k measurements of x, where k is approximately proportional to s? More precisely, let
A = k × d matrix, x ∈ Rd, x is s-sparse, k < d (ideally k ∼ s). We measure y:

y = Ax (1)

and hope that y preserves the information of x i.e. we can recover x from y.
Note that (1) is an under-determined system so there is no way of recovering an arbitrary x
from y.

We want A to have the following properties:

1. If x1 6= x2, we want to ensure that y1 6= y2, where y1 = Ax1, y2 = Ax2;

2. We want to have an algorithm to solve x knowing y.

In general, it is not possible to satisfy (1), since A is underdetermined and has a non-empty
null space. We could pick h ∈ null(A), and have y = Ax = A(x + h), so that both x and
x + h have the same y. However, if we can ensure that x + h cannot be a s-sparse vector,
we might be able to exclude this possibility, and thus find some good matrix A that satisfies
property (1).

Suppose we have two s-sparse vector x1 and x2, and we want Ax1 6= Ax2 when x1 6= x2.
When Ax1 = Ax2, we have A(x1 − x2) = 0, where x1 − x2 is up to 2s-sparse. We want to
make sure that x1 − x2 is not in A’s null space to exclude this situation. In other words,
we want A’s null space to have no 2s-sparse vectors. To make our idea more precise, we
introduce the restricted isometry property (RIP):

Definition 2 (Restricted Isometry Property). We say that A satifies the Restricted Isometry
Property (s, δs)-RIP when for each s = 1, 2, 3, · · · , define the isometry constraints δs of matrix
A as the smallest constants such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

holds for all s-sparse vector x.

RIP quantifies how well A ensures that measurements of 2s-sparse vectors are different. If
δ2s < 1 then x1 6= x2 =⇒ Ax1 6= Ax2.

Now let us look at property (2). We can show that, finding the unique solution x to Ax = y,
where x is a s-sparse vector, is equivalent to the following optimization problem:

Definition 3 (The L0 minimization problem).

min
z
‖z‖0, subject to Az = y
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The L0 norm ‖ · ‖0 reflects the number of non-zero elements in a vector. Unfortunately,
solving the L0 minimization problem has been proven to be NP-hard, and there are no
effective algorithms when s is relatively large. However, we recall that

lim
p→0
‖z‖pp → ‖z‖0

we can probably use some other small p other than 0 to solve the minimization problem.
Figure 1 shows the unit ball for p-norm ‖x‖p ≤ 1 with different p. In the two dimension
case, we can clearly see the how the shape of the unit ball gradually changes, from 0 to ∞.

(a) p = 0 (b) p = 1
2 (c) p = 1 (d) p = 2 (e) p =∞

Figure 1: Unit balls of Lp norm with different p

Now we consider the Lp minimization problem:

min
z
‖z‖p, subject to Az = y, for some p > 0

When 0 < p < 1, this optimization problem is non-convex and is hard to solve. When p = 1,
this becomes a convex optimization problem and good algorithms (for example, gradient
descent) exist to solve it efficiently. We also observe that, L1 minimization tends to give
us a sparse solution. In figure 2, the constraint Ax = y is visualized as a line, and we
gradually increase the radius of the ball ‖x‖p ≤ r. We stop increasing the radius when the
ball just touches the line Ax = b, and the intersecting point is the optimal solution of the
Lp minimization problem.

If we draw several different lines Ax = y, we find that in the L1 minimization problem the
solution is more likely to be on an axis, indicating a sparse solution. In L2 minimization, a
sparse solution can only be found when Ax = y is either vertical or horizontal. L1 promotes
sparsity much better then L2 does. From what we learned in lecture 1, in high dimensions,
the polytope of L1 unit ball will be more “peaky”, thus it is a good approximation of the L0

minimization problem.

To precisely describe our idea of replacing L0 minimization with L1 minimization, we state
the following theorem:

Theorem 4. Let y = Ax0 where x0 is a s-sparse vector. Assume that A satisfies the RIP
property with δ2s <

1
3
, then the solution x∗ to the L1 minimization problem

min
z
‖z‖1, subject to Az = y = Ax0
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(a) p = 1 (b) p = 2

Figure 2: Sparsity of the solution of Lp minimization

becomes x0 exactly, i.e., x∗ = x0

The theorem basically says that under certain conditions, the optimizer of the L1 minimiza-
tion problem Az = Ax0, where x0 is a s-sparse vector, will be exactly x0. Note that in general
we don’t know x0, but we have the measurements Ax0. If A satisfies the RIP property as in
Theorem 4, we can recover x0 by finding the L1 minimizer, which can be solved efficiently.

2 Proof of the Theorem

Lemma 5. There holds
|〈Ax,Ax′〉| ≤ δs+s′‖x‖2‖x′‖2

for all x, x′ supported 1 on disjoint subsets S, S ′ ⊆ [1, · · · , d], x, x′ ∈ Rd, and |S| ≤ s, |S ′| ≤ s′

Proof. Without loss of generality, we can assume ‖x‖2 = ‖x′‖2 = 1, so that the right hand
size of the inequality becomes just δs+s′ . From A’s RIP property,

(1− δs+s′)‖x± x′‖22 ≤ ‖A(x± x′)‖22 ≤ (1 + δs+s′)‖x± x′‖22

Since the support of x and x′ is disjoint, ‖x ± x′‖22 = ‖x‖22 + ‖x‖22 = 2; the RIP property
then becomes

2(1− δs+s′) ≤ ‖Ax± Ax′‖22 ≤ 2(1 + δs+s′)

The polarization identity then implies:

1The support of a vector, supp(x), is the set of indices i such that xi = 0. The size of the support of x,
|supp(x)|, is denoted ‖x‖0
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|〈Ax,Ax′〉| = 1

4

∣∣∣‖Ax+ Ax′‖22 − ‖Ax− Ax′‖22
∣∣∣

≤ 1

4

∣∣∣2(1 + δs+s′)− 2(1− δs+s′)
∣∣∣

= δs+s′

Lemma 6 (Null-space property). Given A ∈ Rk×d. Every vector x ∈ Rd supported on a set
S is the unique solution to the L1 optimization problem

min
z
‖z‖1, subject to Az = Ax

if and only if A satisfies the following null-space property (NP) w.r.t S

‖hS‖1 < ‖hSC‖1, for all h ∈ null(A) \ 0

for all S of cardinality |S| ≤ s.

Here, hS is defined as h restricted to set S, and SC is the complement of S.

Proof. We are going to show both directions are true:

⇒):

For any h ∈ null(A) \ 0, hS is supported on S and thus the unique minimizer of

min
z
‖z‖1, s.t. Az = AhS

Because h = hS+hSC and Ah = 0, we have A(−hSC ) = AhS. Now we consider −hSC which is
also a feasible solution of this minimization problem. Because S and SC are complementary,
we have −hSC 6= hS. Also since hS 6= 0 is the unique minimizer, ‖ − hCS ‖1 must be greater
than the minimizer:

‖hS‖1 < ‖ − hSC‖1 = ‖hSC‖1

⇐):

Now assume null-space property holds. Then, given an s-sparse x and any z 6= x both
satisfies the constraint Az = Ax. Consider h = x − z ∈ null(A). Using the null-space
property, we get:
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‖x‖1 = ‖x− zS + zS‖1
≤ ‖x− zS‖1 + ‖zS‖1
= ‖hS‖1 + ‖zS‖1 (by definition h = x− z)

< ‖hSC‖1 + ‖zS‖1 (by null-space property)

= ‖ − zSC‖1 + ‖zS‖1 (because xSC = 0)

= ‖z‖1 (by additive of disjoint support)

‖x‖1 is less than any other ‖z‖1 where z 6= x, thus it is the unique minimizer.

Now we are ready to prove Theorem 4. We simply need to show that Null-space Property
holds for the given conditions.

Proof. Take h ∈ null(A) \ 0. Let index set S0 be the set of indices of s largest entries (by
modulus) of h. Let index sets S1, S2, · · · be index sets corresponding to the next s to 2s, 2s
to 3s, · · · largest entries of h.

Because of the RIP property of A, we have

‖hS0‖22 ≤
1

1− δs
‖AhS0‖2 (2)

=
1

1− δs

∑
j≥1

〈AhS0 , A(−hSj)〉 Because hS0 =
∑
j≥1

(−hSj) (3)

=
1

1− δs

∑
j≥1

δ2s‖hS0‖2‖hSj‖2 By Lemma 6 (4)

≤ δ2s
1− δs

‖hS0‖2
∑
j≥1

‖hSj‖2 (5)

‖hS0‖2 ≤
δ2s

1− δs

∑
j≥1

‖hSj‖2 (6)

Note that

‖hSj‖2 ≤ s
1
2‖hSj‖∞ ≤ s−

1
2‖hSj−1

‖1

We can rewrite (6) as
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‖hS0‖2 ≤
δ2s

1− δs
s−

1
2

∑
j≥1

‖hSj−1
‖1 (7)

=
δ2s

1− δs
s−

1
2‖h‖1 (8)

Also, by Cauchy-Schwartz inequality,

‖hS0‖1 =
∑
i∈S0

1× |hi| ≤
√∑

i∈S0

12

√∑
i∈S0

h2i =
√
s‖hS0‖2 (9)

We have δ2s <
1
3

as a condition, so

δ2s
1− δs

<
δ2s

1− δ2s
<

1

2
for δ2s <

1

3
(10)

Combining (8) (9) (10) we get

‖hS0‖1 <
1

2
‖h‖1 (11)

Now we show (11) is equivalent to ‖hS‖1 < ‖hSC‖1:

‖hS‖1 < ‖hSC‖1
⇔ 2‖hS‖1 < ‖hSC‖1 + ‖hS‖1
⇔ 2‖hS‖1 < ‖h‖1

⇔ ‖hS‖1 <
1

2
‖h‖1

Thus, we have shown that ‖hS0‖1 < ‖hSC‖1, which is the null-space property. Then by
Lemma 6, we know that every vector x ∈ Rd supported on the set S0 is the unique solution
of the L1 minimization problem; in other words, we can recover the s-sparse vector x by
solving the L1 minimization problem.

3 Constructing RIP matrices

We start by presenting two ways of constructing the compressive sensing matrix A that
satisfies the Restricted Isometry Property.
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Theorem 7. Let A = (aij)k×d, where aij ∼ N(0, 1), be a k × d Gaussian random matrix.
Then there exists a constant C such that if k ≤ Cs log(d

s
), then 1√

k
A satisfies the (s, 1

3
)-RIP

with probability at least 1− e−d.

Theorem 8. Let Fd = {e− 2πi
d

kl}k,l=0,1,...d−1 be the d× d Discrete Fourier Transform (DFT)
matrix. Let A be the k× d matrix attained by selecting k rows from Fd uniformly randomly.
If k ≤ Cs(log d)4, then A satisfies the (s, 1

3
)-RIP with probability 1− e−k.

Remarks:

• Theorem 1 is theoretical and it does not appear too much in practical application
compared to Theorem 2 which constructs RIP matrix by DFT.

• One may read [1] for how to use the latest CVX toolbox in Matlab.

• Note that
δS = max

|s|≤S
‖A∗sAs − Is‖op

where As consists of s columns of A with |S| = s. Also Ax = Asxs where xs is x
restricted to its s nonzero entries.

• The above two theorems are based on probabilistic arguments. However, one should
note that they are the probabilities that one matrix A satisfies the RIP and that once
A satisfies RIP, it is true for all s-sparse vectors x.

4 RIP versus JL

In the previous lectures, we discussed linear dimension reduction technique via Johnson-
Lindenstrauss (JL) projection. Here, we make several comments on the features of JL
projection and RIP.

Johnson-Lindenstrauss:

• In JL projection, the number of vectors are supposed to be fixed and finite. The vectors
do not have to be sparse.

• JL projection preserves (up to ε) pairwise distances between vectors.

• JL projection does not allow one to recover x from y = Ax.

Restricted Isometry Property:

• RIP works for infinitely many vectors. However, it requires the vectors to be s-sparse
in d-dimension. As a result, if one does not have sparsity on vectors, one should use
JL.
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• RIP allows one to recover x from y = Ax numerically efficiently.

Connection between JL and RIP:

Question: If a matrix A satisfies RIP, can we use it for dimension reduction matrix in JL?
The answer is NO.

Example: randomly subsampled DFT matrix (or Hadamard matrix). Then the matrix we
get satisfies RIP with high probability but it does not fit in JL. To get JL, we need to pre-
multiply A by a random diagonal sign matrix D = (dij), where dij = 0 if i 6= j and dii = ±1
with probability 1

2
, respectively. As a result, if A is a RIP matrix, then AD is a JL matrix

with high probability.

To solve L1 problems in Matlab, it is convenient to use the software package cvx, see [1].
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