
Spectral Clustering - MAT180

Prepared by Shuyang Ling

May 6, 2017

1 Spectral clustering

Spectral clustering is a graph-based method which uses the eigenvectors of the graph
Laplacian derived from the given data to partition the data. It outperforms K-means
since it can capture the geometry of data.

The spectral clustering algorithm takes two steps in general:

1. Construct an undirected weighted graph based on the data. Given {xi}ni=1 with
pairwise affinities wij, we obtain the unnormalized Laplacian L = D − W (or
the normalized graph Laplacian LS = I − D−1/2WD−1/2). Then we compute the
eigenvectors φ1, · · · , φk, corresponding to the first smallest k eigenvectors of L, i.e.,

Lφl = λlφl,

where {φl}nl=1 is an orthonormal basis in Rn and the eigenvalues are

λ1 ≤ λ2 ≤ · · · ≤ λn.

Let Φ ∈ Rn×k be a matrix consisting of {φl}kl=1,

Φ(xi) = (φ1(xi), · · · , φk(xi))T ∈ Rk.

In other words, we transform the original data xi from Rn to Rk through the
eigenvectors of L.

2. Apply K-means clustering to Φ to group the data into k clusters.

One thing we need to discuss here is the choice of the affinities wij. There are several
common ways to choose wij (the weight on the edge between node xi and xj). The rule
of thumb is: the larger wij means more similarities/associations between xi and xj. Here
are several useful examples:

• The ε-neighborhood graph:

wij =

{
1, ‖xi − xj‖ ≤ ε

0, otherwise.

If xi and xj are close to each other, then wij = 1; otherwise, wij = 0.

• The fully connected graph: wij = exp
(
−‖xi−xj‖

2

2σ2

)
where σ is the width of the

neighborhoods (just like ε in the previous example). If xi is close to xj, then wij is
close to 1. On the other hand, if xi is far away from xj (what “far away” means
depends strongly on the choice of σ), then wij would be close to 0.

1

1.1 Applying spectral clustering to a disconnected graph

To warm up, we apply the spectral clustering to a disconnected graph. Suppose we have
an undirected graph with weight wij and k connected components S1, · · · , Sk.

Based on the spectral clustering, we first construct its graph Laplacian. After rear-
ranging data points, the graph Laplacian L can be written as a block-diagonal matrix,

L =


L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · Lk


where each Li ∈ R|Si|×|Si| is the graph Laplacian for each connected component.

Since Li1|Si| = 0 for all 1 ≤ i ≤ k where 1|Si| is a |Si| × 1 vector with all entries equal
to 1. Therefore, the k smallest eigenvalues of L equal 0. Moreover, the null space of this
matrix is spanned by k indicator functions such as

φ1 =
1√
|S1|


1|S1|

0
...
0

 , · · · · · · , φk =
1√
|Sk|


0
0
...

1|Sk|

 .
This representation is unique up to an orthogonal transformation.

Hence the Φ is in the form of

Φ =


1√
|S1|

1|S1| 0 · · · 0

0 1√
|S2|

1|S2| · · · 0

...
...

. . .
...

0 0 · · · 1√
|Sk|

1|Sk|

 ∈ Rn×k.

Each row of Φ is a vector with only one nonzero entry and it is equal to 1√
Si

. In other
words, this spectral mapping transforms all points in the i-th connected component Si
into a single point 1√

|Si|
ei where {ei}ki=1 is the canonical basis in Rk.

1.2 Graph cut point of view on spectral clustering

The intuition of clustering is to separate points in different groups according to their
similarities. For data given in an undirected graph with weight W , we want to find a
partition such that the connection between each group is small. Such a partition corre-
sponds to a cut on the graph. In particular, as discussed before, for a disconnected graph
with weight W , we can find partition such that the connection between two components
is zero. Spectral clustering can be explained and derived from the notion of a cut on
graph.

First we define what a cut means here for two sets. Suppose we have two disjoint sets
of vertices on the graph S and S s.t. S ∩ S = ∅ and S ∪ S = V. We define a cut w.r.t.
S ⊆ V as

cut(S) =
∑

i∈S,j∈S

wij = cut(S),

2

is the total summation of the edge weights whose two vertices are in different sets. In
particular, cut(V) = 0.

Here, cut(S) measures how much S and S are associated/connected. A smaller value
for cut(S) means fewer connections between S and S.

But would minimizing cut(S) over all S ⊆ V give us a good partition of the graph? It
does not always work. For example, the cut can return unwanted and meaningless results:
declaring a single vertex as a cluster. In other words, minimizing cut(S) is likely to give
us unbalanced clusters/partitions. Therefore, we define the ratio cut and normalized cut:

Rcut(S) =
cut(S)

|S|
+

cut(S)

|S|
, (1)

Ncut(S) =
cut(S)

vol(S)
+

cut(S)

vol(S)
(2)

where vol(S) is the volume of S and is defined as vol(S) =
∑

i∈S di =
∑

i∈S
∑

j∈V wij.

Now let us consider the strength and weakness of Rcut(S) and Ncut(S):

1. Pros: given the same value of cut(S), we will have smaller Rcut(S) and Ncut(S)
if S and S are more or less of the same size. Due to this property, we can avoid
unbalanced clusters by using Rcut(S) and Ncut(S) as new criteria.

2. Cons: both two criteria are difficult to minimize, i.e.,

min
S⊂V

Rcut(S) (3)

min
S⊂V

Ncut(S) (4)

are NP-hard in general since they are discrete/combinatorial optimization. Using
brute force requires us to search over 2|V | (the total number of subsets in V) choices.

1.3 Relaxation of the ratio cut

We find it difficult to minimize this function over all subsets of S. However, it does not
mean that we cannot approximate (1) and (2) by other optimization programs which are
easier to solve. We hope the solutions to the alternative programs are able to give us
good approximations of the original ones.

In this section, we will show that the ratio cut (1) can be approximated by a continuous
optimization program (eigenvalue/vector problem of L) which exactly matches the first
step of spectral clustering. We start with relating the ratio cut to the quadratic form of
L.

Let us consider the following function fS : V → R (depending on the set S) as

fS(i) =


√

|S|
|V ||S| , i ∈ S,

−
√

|S|
|V ||S| , i ∈ S.

(5)

It is a simple step function over V and in particular, fS(i) = −fS(i).

Lemma 1. There holds
fTS LfS = Rcut(S).

for all fS defined in (5).

3

Proof: The proof is quite straightforward,

fTS LfS =
1

2

∑
i∈V,j∈V

wij(fS(i)− fS(j))2

=
1

2

 ∑
i∈S,j∈S

+
∑

i∈S,j∈S

wij(fS(i)− fS(j))2 by (5)

=
∑

i∈S,j∈S

wij(fS(i)− fS(j))2 by symmetry of i, j

=
∑

i∈S,j∈S

wij

√ |S|
|V ||S|

+

√
|S|
|V ||S|

2

by (5)

=
1

|V |
∑

i∈S,j∈S

wij

(
|S|
|S|

+
|S|
|S|

+ 2

)

=
∑

i∈S,j∈S

wij

(
1

|S|
+

1

|S|

)
= Rcut(S) by |V | = |S|+ |S|

So far, we have not yet made (3) any easier since we just replaced the expression
in (3) with minfS f

T
S LfS. Now the idea of the next step is to enlarge the constraint set

by investigating what properties all {fS}S⊆ satisfy.
There are two common properties about fS which hold for all S:

Lemma 2. For all S ⊆ V and fS defined in (5), there hold

‖fS‖ = 1, fTS 1 = 0 (6)

Proof: By definition of fS in (5),

‖fS‖2 =
∑
i∈V

|fS(i)|2 =
∑
i∈S

|S|
|V ||S|

+
∑
i∈S

|S|
|V ||S|

=
|S|
|V ||S|

|S|+ |S|
|V ||S|

|S| = 1.

For fTS 1, we have

fTS 1 =
∑
i∈V

fS(i) =
∑
i∈S

fS(i)−
∑
i∈S

fS(i) =

√
|S||S|
|V |

−

√
|S||S|
|V |

= 0.

We replace the original program (3) by

min fTLf, s.t. ‖f‖2 = 1, fT1 = 0. (7)

Note that {fS}S⊆V ⊆ {f : ‖f‖ = 1, fT1 = 0}; in fact, (7) minimizes fTLf over a
larger set than {fS : S ⊆ V }, and we hope to get an approximate solution from this
alternative approach. Moreover, (7) is much easier to solve since it directly corresponds
to the eigenvalue/vector problem of L, which matches exactly the first step of the spectral
clustering. We call (7) the relaxation of (3).

4

Lemma 3. The minimizer of (7) is φ2, the eigenvector of the Laplacian L w.r.t. the
second smallest eigenvalue λ2. In other words, the minimum of (7) is λ2.

Proof: Note that 1 is inside the null space of L. For any f satisfying ‖f‖ = 1 and
fT1 = 0, we can rewrite f as f =

∑n
l=1 αlφl where {φl}nl=1 is an orthonormal basis in

Rn and αl = fTφl. Moreover, α1 = 0 follows from fT1 = 0 and
∑n

l=2 α
2
l = 1. Therefore,

f =
∑n

l=2 αlφl for all f satisfying ‖f‖ = 1 and fT1 = 0.

fTLf =
n∑
l=2

λlα
2
l ≥ λ2

n∑
l=2

α2
l = λ2.

In particular, if α2 = 1 and αl = 0 for all l ≥ 3, i.e., f = φ2, the minimum is attained.

Compared with (3), we know that {fS}S⊆V ⊆ {f : ‖f‖ = 1, fT1 = 0} and hence

Rcut(S) ≥ λ2, min
S⊆V

Rcut(S) ≥ λ2.

How to get clustering (or get fS over 2|V | choices) based on φ2? We can just run
k-means, which is equivalent to setting a threshold r such that

φ2(i) > r ⇐⇒ i ∈ S, φ2(i) ≤ r ⇐⇒ i ∈ S.

This is also called “rounding” procedure.

1.4 Relaxation of the normalized cut

Like ratio cut (1), normalized cut (2) also has a relaxation form. Let fS(i) be a function
from V → R,

fS(i) :=


√

vol(S)
vol(V) vol(S)

, i ∈ S,

−
√

vol(S)

vol(V) vol(S)
, i ∈ S.

(8)

It is easy to see that (8) can be obtained by replacing |S|, |S| and |V | in (5) by vol(S),
volS and vol(V) respectively.

Lemma 4. For fS defined in (8), there holds

fTS LfS = Ncut(S). (9)

Proof: The proof is similar to what we have done in the previous section.

fTS LfS =
1

2

∑
i∈V,j∈V

wij(fS(i)− fS(j))2

=
∑

i∈S,j∈S

wij(fS(i)− fS(j))2

=
∑

i∈S,j∈S

wij

√ vol(S)

vol(V) vol(S)
+

√
vol(S)

vol(V) vol(S)

2

=
1

vol(V)

(
vol(S)

vol (S)
+

vol(S)

vol(S)
+ 2

) ∑
i∈S,j∈S

wij

=

(
1

vol(S)
+

1

vol(S)

)
cut(S) = Ncut(S).

5

All {fS} in the form of (8) share two common properties.

Lemma 5. For all S ⊆ V and fS defined in (8), there hold

fTSDfS = 1, fTSD1 = 0. (10)

Proof: For fTSDfS,

fTSDfS =
∑
i∈V

dif
2
S(i) =

vol(S)

vol(V) vol(S)

∑
i∈S

di +
vol(S)

vol(V) vol(S)

∑
i∈S

di

=
vol(S) + vol(S)

vol(V)
= 1.

For fTSD1, we have

fTSD1 =
∑
i∈V

fS(i)di =
∑
i∈S

fS(i)di +
∑
i∈S

fS(i)di

=

√
vol(S)

vol(V) vol(S)

∑
i∈S

di −

√
vol(S)

vol(V) vol(S)

∑
i∈S

di

=

√
vol(S)

vol(V) vol(S)
vol(S)−

√
vol(S)

vol(V) vol(S)
vol(S) = 0.

Just like the relaxation (7) for ratio cut (3), we propose the following program as a
relaxation for (4).

min fTLf, s.t. fTDf = 1, fTD1 = 0. (11)

Actually (11) is equivalent to the eigenvalue/vector problem of LS, the normalized
graph Laplacian LS = I − D−1/2WD−1/2 = D−1/2LD−1/2. Letting x = D1/2f and
substitute it into (11), we get

minxTLSx, s.t. ‖x‖ = 1, xTD1/21 = 0. (12)

Remember D1/21 satisfies LSD
1/21 = D−1/2L1 = 0. This means D1/21 is in the null

space of LS. Therefore, the minimizer of this program is actually φ2, the eigenvector
corresponding to the second smallest eigenvalue of LS. The proof can be easily adapted
from the proof of Lemma 3.

How to get clustering (or get fS over 2|V | choices) based on the φ2? We still can apply
k-means to φ2, which is equivalent to setting a threshold r such that

φ2(i) > r ⇐⇒ i ∈ S, φ2(i) ≤ r ⇐⇒ i ∈ S.

1.5 Comparison

In conclusion,

• The relaxation of the ratio cut = the eigenvalue and eigenvector problem of L =
D −W .

6

• The relaxation of the normalized cut = the eigenvalue and eigenvector problem of
LS = I −D−1/2WD−1/2.

• Moreover, all those results can be easily extended to the multi-cluster scenario.

Which algorithm is better:

• Empirically, Ncut is a better choice. If the graph is regular (all di are the same),
they are same.

• The goal of clustering is not just to minimize the cut, but also to maximize the
in-cluster association.

assoc(S, S) =
∑

i∈S,j∈S

wij =
∑

i∈S,j∈V

wij −
∑

i∈S,j∈S

= vol(S)− cut(S).

Therefore, we want to minimize cut(S) and maximize vol(S), which is exactly what
normalized cut does.

This note is based on Amit Singer’s notes and Ulrike von Luxburg’s tutorial on spectral
clustering.

7

	Spectral clustering
	Applying spectral clustering to a disconnected graph
	Graph cut point of view on spectral clustering
	Relaxation of the ratio cut
	Relaxation of the normalized cut
	Comparison

