
1 Singular Value Decomposition and Principal Com-

ponent Analysis

In these lectures we discuss the SVD and the PCA, two of the most widely used tools in
machine learning. Principal Component Analysis (PCA) is a linear dimensionality reduction
method dating back to Pearson (1901) and it is one of the most useful techniques in ex-
ploratory data analysis. It is also known under different names such as the Karhunen-Love
Transform, the Hotelling transform, and Proper Orthogonal Decomposition (POD). PCA
can be applied to a data set comprising of n vectors x1, . . . , xn ∈ Rd and in turn returns a
new basis for Rd whose elements are terms the principal components. It is important that
the method is completely data-dependent, that is, the new basis is only a function of the
data. The PCA builds on the SVD (or the spectral theorem), we therefore start with the
SVD.

1.1 Singular Value Decomposition (SVD)

Consider a matrix A ∈ Rm×n or Cm×n and let us assume that m ≥ n. Then the singular
value decomposition (SVD) of A is given by [1]

A = UDW ∗,

where U is m×m, D is m×n, W is n×n, U and W are unitary (i.e., U ∗U = UU ∗ = Im,
WW ∗ = W ∗W = In), and D is a diagonal (rectangular) matrix

D =



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 0 σn
0 0 0 0
...

...
...

...
0 0 0 0


with Dii = σi > 0. Here, σi are called the singular values of A, the columns of U are
the corresponding left singular vectors, and the columns of W are the corresponding right
singular vectors.

Let U = [u1, . . . ,um], W = [w1, . . . ,wn] and let r be the rank of A. Then we can write

A =
r∑

i=1

σiuiw
∗
i ,

with r ≤ n (and σ1 ≥ σ2 ≥ · · · ≥ σr). (So A is a sum of weighted rank-one matrices.) The
SVD exists for any finite-dimensional matrix.

1



Remarks:

• The ui are eigenvectors of AA∗ and the wi are eigenvectors of A∗A.

• AA∗ and A∗A are positive semidefinite so their eigenvalues are nonnegative.

• If λi are the eigenvalues of A∗A, then σ2
i = λi if λi > 0. (Here we’re saying that

singular values must be positive, but this is more of a matter of taste.)

• If A is square and Hermitian, then the SVD and the eigenvalue decomposition are the
same.

• We could alternatively define the SVD with U as an m × n matrix, D as an n × n
matrix, andW as an n×n matrix. In this case, U ∗U = In, andW ∗W = WW ∗ = In.

Some intuition for SVD: SVD rotates the matrix A by U and W ∗ so that A becomes a
diagonal matrix.

2 Principal Component Analysis (PCA)

2.1 Motivation

Given x1, . . . ,xn ∈ Rd, we want to project the xi onto Rk, k < d. So, how do we choose k
and the orientation of the subspace? We consider two ideas:

1. Find the k-dimensional subspace for which the projections of x1, . . . ,xn best approxi-
mate the original points x1, . . . ,xn. (We define “best approximation” in the sense of
the 2-norm.)

2. We also want to conserve what makes the data points different from each other. Hence,
find the k-dimensional projection of x1, . . . ,xn that preserves most of the variance of
the xi.

Both of the two ideas above are solved by principal component analysis (PCA).

2.2 Optimization problem formulation [following lecture notes of
Singer and Bandeira]

We denote the sample mean by

µn :=
1

n

n∑
i=1

xi

2



and sample covariance matrix by

Σn :=
1

n

n∑
i=1

(xi − µn) (xi − µn)∗ .

Let us focus on the first idea in Section 2.1. We want to approximate each xi by an affine
low-dimensional subspace such that for each xi we have

xi ≈ µ+
k∑

j=1

(αi)j vj,

where V := [v1, . . . ,vk] is an orthonormal basis to be determined. We can rewrite the above
as

xi ≈ µ+ V αi,

where

αi =


αi1

αi2
...
αik

 ,
with V as a n × k matrix satisfying V ∗V = Ik. Now, we try to solve the optimization
problem

min
µ, V , α1,...,αn
V ∗V =Ik

I :=
n∑

i=1

‖xi − (µ+ V αi) ‖22.

Thus, we try to minimize the `2-error across all vectors xi. (Unlike in the JL approach we
do not strive for minimizing the error uniformly (within an ε-range) across all xi, but rather
the average error.)

2.3 Solving the optimization problem

Fortunately we can separate this problem and first optimize over µ, then α, then over V .
(There are optimization problems which look similar but where you can’t do this strategy
of separation of variables.)

Let us first optimize with respect to µ. Without loss of generality, we can assume that∑n
i=1αi = 0, because otherwise we could absorb the nonzero

∑
iαi into µ. Then:

∂I

∂µ
= −2

n∑
i=1

(xi − µ− V αi) .

3



Setting the right-hand side equal to zero, we get

µ =
1

n

n∑
i=1

xi

= µn.

Now let’s optimize in α. We calculate:

∂I

∂αi

= (xi − µ− V αi)
∗ V .

Setting the right-hand side equal to zero, we get

αi = V ∗ (xi − µ) .

Plugging in the expressions for µ and αi into I, we get

I =
n∑

i=1

‖xi − µn − V V ∗ (xi − µn) ‖22

where V V ∗ is an orthogonal projection matrix. Thus, letting yi := xi − µn,

I =
n∑

i=1

‖yi − V V ∗yi‖22.

Denote Y = [y1, . . . ,yn]. Then

min
V : V ∗V =Ik

n∑
i=1

‖yi − V V ∗yi‖22 = min
V : V ∗V =Ik

trace [(Y − V V ∗Y )∗ (Y − V V ∗Y )] .

= min
V : V ∗V =Ik

trace [Y ∗(I − V V ∗)(I − V V ∗)Y ] .

Using properties of the trace (i.e., the circular shift property and linearity), and the fact
that (I − V V ∗)(I − V V ∗) = I − V V ∗,

min
V : V ∗V =Ik

n∑
i=1

‖yi − V V ∗yi‖22 = min
V : V ∗V =Ik

trace [Y Y ∗(I − V V ∗)(I − V V ∗)]

= min
V : V ∗V =Ik

trace [Y Y ∗(I − V V ∗)]

= min
V : V ∗V =Ik

[trace (Y Y ∗)− trace (Y Y ∗V V ∗)]

= min
V : V ∗V =Ik

[trace (Y Y ∗)− trace (Y Y ∗V V ∗)]

= min
V : V ∗V =Ik

[trace (Y Y ∗)− trace (V ∗Y Y ∗V )] . (1)

4



But Y does not depend on V ! Hence, the minimum in (1) is idependent of the expression
trace (Y Y ∗) and thus coincides with the solution to

max
V : V ∗V =Ik

1

n
trace (V ∗Y Y ∗V ) = max

V : V ∗V =Ik
trace (V ∗ΣnV ) .

Let Σn have eigenvalue decomposition

Σn =
n∑

i=1

λiviv
∗
i ,

where λi ≥ 0. (λi can’t be negative because Σn is positive semidefinite.) The λi are the
eigenvalues and the vi are the eigenvectors of Σn. Since Σn is symmetric, the eigenvectors
vi are orthogonal.

From linear algebra, we know that

max
V : V ∗V =Ik

trace (V ∗ΣnV ) =
k∑

i=1

λi,

and moreover, the maximizer V is the one given by V = [v1, . . . ,vk]. Hence, these particular
vj give us the desired optimal orthonormal basis for our data xi.

2.4 Intuition for PCA

PCA takes the eigenvector decomposition of Σn and analyzes the projection of the centered
data points (“centered” = subtract sample mean µn) on the k top eigenvectors of the sample
covariance matrix Σn as principal components. (“k top eigenvectors” = the eigenvectors
associated with the largest k eigenvalues.)

2.5 Cost for PCA

The cost of this PCA procedure without using SVD is as follows. We need O (nd2) opera-
tions to construct Σn, and if you do the eigenvector decomposition in a traditional, naive
sense, you need O (d3) operations to find V . However, the cost is a little bit cheaper via
SVD, which we explain below.

Let X = [x1, . . . ,xn] and

1n :=


1
1
...
1


 (n times).

5



Then Σn = 1
n

(X − µn1
∗
n) (X − µn1

∗
n)∗. Now, the idea for saving computational cost is to

just compute the SVD of X − µn1
∗
n.

The left singular vectors of A := X −µn1
∗
n are the same as the eigenvectors of AA∗ = Σn,

i.e., they are v1, . . . ,vn. Therefore, the new cost via SVD is O(min{n2d, nd2}).

Now, from the full SVD we get all of v1, . . . ,vn. But we really only want v1, . . . ,vk,
with k < n (or even k � n). Computing only the top k singular vectors can be done in
O(dnk) operations. In MATLAB, we can do this with the command svds1. This is much
faster than computing the full SVD. This computation of only the top k singular vectors is
done via Lanczos-type methods2.

We also note that randomized SVD algorithms can reduce this cost further to
O (nd log(k) + (n+ d)k2). We will discuss this later.

2.6 Another optimality property of the SVD

Let A ∈ Rm×n with m ≥ n and let A =
∑n

i=1 σiuiw
∗
i . Denote Ak =

∑k
i=1 σiuiw

∗
i for k < n.

Given A, then for any matrix B of rank at most k, we have the following best approxi-
mation result:

‖A−Ak‖op ≤ ‖A−B‖op,

and ‖A−Ak‖op = σk+1. In other words, Ak is the best rank-k approximation to A.

References

[1] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins, Baltimore, third
edition, 1996.

1Note: inside the code svds, MATLAB actually runs the eigenvector decomposition code eigs in a smart
way.

2This has something to do with using power methods to compute the top eigenvector very quickly. Note:
Google’s PareRank algorithm computes the top eigenvector from a huge matrix when ranking websites with
respect to a key word search.

6


