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Abstract

More than 50 years ago, John Tukey called for a reformation of academic statistics. In ‘The
Future of Data Analysis’, he pointed to the existence of an as-yet unrecognized science, whose
subject of interest was learning from data, or ‘data analysis’. Ten to twenty years ago, John
Chambers, Bill Cleveland and Leo Breiman independently once again urged academic statistics
to expand its boundaries beyond the classical domain of theoretical statistics; Chambers called
for more emphasis on data preparation and presentation rather than statistical modeling; and
Breiman called for emphasis on prediction rather than inference. Cleveland even suggested the
catchy name “Data Science” for his envisioned field.

A recent and growing phenomenon is the emergence of “Data Science” programs at major
universities, including UC Berkeley, NYU, MIT, and most recently the Univ. of Michigan, which
on September 8, 2015 announced a $100M “Data Science Initiative” that will hire 35 new faculty.
Teaching in these new programs has significant overlap in curricular subject matter with tradi-
tional statistics courses; in general, though, the new initiatives steer away from close involvement
with academic statistics departments.

This paper reviews some ingredients of the current “Data Science moment”, including recent
commentary about data science in the popular media, and about how/whether Data Science is
really different from Statistics.

The now-contemplated field of Data Science amounts to a superset of the fields of statistics
and machine learning which adds some technology for ‘scaling up’ to ‘big data’. This chosen
superset is motivated by commercial rather than intellectual developments. Choosing in this way
is likely to miss out on the really important intellectual event of the next fifty years.

Because all of science itself will soon become data that can be mined, the imminent revolution
in Data Science is not about mere ‘scaling up’, but instead the emergence of scientific studies of
data analysis science-wide. In the future, we will be able to predict how a proposal to change data
analysis workflows would impact the validity of data analysis across all of science, even predicting
the impacts field-by-field.

Drawing on work by Tukey, Cleveland, Chambers and Breiman, I present a vision of data
science based on the activities of people who are ‘learning from data’, and I describe an academic
field dedicated to improving that activity in an evidence-based manner. This new field is a better
academic enlargement of statistics and machine learning than today’s Data Science Initiatives,
while being able to accommodate the same short-term goals.

Based on a presentation at the Tukey Centennial workshop, Princeton NJ Sept 18 2015:
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Acronym Meaning

ASA American Statistical Association
CEO Chief Executive Officer
CTF Common Task Framework

DARPA Defense Advanced Projects Research Agency
DSI Data Science Initiative
EDA Exploratory Data Analysis
FoDA The Furure of Data Analysis, 1962
GDS Greater Data Science
HC Higher Criticism
IBM IBM Corp.
IMS Institute of Mathematical Statistics
IT Information Technology (the field)

JWT John Wilder Tukey
LDS Lesser Data Science
NIH National Institutes of Health
NSF National Science Foundation

PoMC The Problem of Multiple Comparisons, 1953
QPE Quantitative Programming Environment

R R – a system and language for computing with data
S S – a system and language for computing with data

SAS System and lagugage produced by SAS, Inc.
SPSS System and lagugage produced by SPSS, Inc.
VCR Verifiabe Computational Result

Table 1: Frequent Acronyms
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1 Today’s Data Science Moment

On Tuesday September 8, 2015, as I was preparing these remarks, the University of Michigan an-
nounced a $100 Million “Data Science Initiative” (DSI), ultimately hiring 35 new faculty.

The university’s press release contains bold pronouncements:

“Data science has become a fourth approach to scientific discovery, in addition to
experimentation, modeling, and computation,” said Provost Martha Pollack.

The web site for DSI gives us an idea what Data Science is:

“This coupling of scientific discovery and practice involves the collection, manage-
ment, processing, analysis, visualization, and interpretation of vast amounts of het-
erogeneous data associated with a diverse array of scientific, translational, and inter-
disciplinary applications.”

This announcement is not taking place in a vacuum. A number of DSI-like initiatives started
recently, including

(A) Campus-wide initiatives at NYU, Columbia, MIT, ...

(B) New Master’s Degree programs in Data Science, for example at Berkeley, NYU, Stanford,...

There are new announcements of such initiatives weekly.1

2 Data Science ‘versus’ Statistics

Many of my audience at the Tukey Centennial where these remarks were presented are applied
statisticians, and consider their professional career one long series of exercises in the above “...
collection, management, processing, analysis, visualization, and interpretation of vast amounts of
heterogeneous data associated with a diverse array of ... applications.” In fact, some presentations at
the Tukey Centennial were exemplary narratives of “... collection, management, processing, analysis,
visualization, and interpretation of vast amounts of heterogeneous data associated with a diverse array
of ... applications.”

To statisticians, the DSI phenomenon can seem puzzling. Statisticians see administrators touting,
as new, activities that statisticians have already been pursuing daily, for their entire careers; and
which were considered standard already when those statisticians were back in graduate school.

The following points about the U of M DSI will be very telling to such statisticians:

• U of M’s DSI is taking place at a campus with a large and highly respected Statistics Depart-
ment

• The identified leaders of this initiative are faculty from the Electrical Engineering and Computer
Science Department (Al Hero) and the School of Medicine (Brian Athey).

1For an updated interactive geographic map of degree programs, see http://data-science-university-programs.silk.co
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• The inagural symposium has one speaker from the Statistics department (Susan Murphy), out
of more than 20 speakers.

Seemingly, statistics is being marginalized here; the implicit message is that statistics is a part
of what goes on in data science but not a very big part. At the same time, many of the concrete de-
scriptions of what the DSI will actually do will seem to statisticians to be bread-and-butter statistics.
Statistics is apparently the word that dare not speak its name in connection with such an initiative!2

Searching the web for more information about the emerging term ‘Data Science’, we encounter
the following definitions from the Data Science Association’s “Professional Code of Conduct”3

‘‘Data Scientist" means a professional who uses scientific methods to liberate

and create meaning from raw data.

To a statistician, this sounds an awful lot like what applied statisticians do: use methodology to
make inferences from data. Continuing:

‘‘Statistics" means the practice or science of collecting and analyzing

numerical data in large quantities.

To a statistician, this definition of statistics seems already to encompass anything that the def-
inition of Data Scientist might encompass, but the definition of Statistician seems limiting, since a
lot of statistical work is explicitly about inferences to be made from very small samples — this been
true for hundreds of years, really. In fact Statisticians deal with data however it arrives - big or
small.

The statistics profession is caught at a confusing moment: the activities which preoccupied it
over centuries are now in the limelight, but those activities are claimed to be bright shiny new,
and carried out by (although not actually invented by) upstarts and strangers. Various professional
statistics organizations are reacting:

• Aren’t we Data Science?
Column of ASA President Marie Davidian in AmStat News, July, 20134

• A grand debate: is data science just a ‘rebranding’ of statistics?
Martin Goodson, co-organizer of the Royal Statistical Society meeting May 11, 2015 on the
relation of Statistics and Data Science, in internet postings promoting that event.

• Let us own Data Science.
IMS Presidential address of Bin Yu, reprinted in IMS bulletin October 20145

2At the same time, the two largest groups of faculty participating in this initiative are from EECS and Statistics.
Many of the EECS faculty publish avidly in academic statistics journals – I can mention Al Hero himself, Raj Rao
Nadakaduti and others. The underlying design of the initiative is very sound and relies on researchers with strong
statistics skills. But that’s all hidden under the hood.

3http://www.datascienceassn.org/code-of-conduct.html

4http://magazine.amstat.org/blog/2013/07/01/datascience/

5http://bulletin.imstat.org/2014/10/ims-presidential-address-let-us-own-data-science/
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One doesn’t need to look far to see click-bait capitalizing on the befuddlement about this new
state of affairs:

• Why Do We Need Data Science When We’ve Had Statistics for Centuries?
Irving Wladawsky-Berger
Wall Street Journal, CIO report, May 2, 2014

• Data Science is statistics.
When physicists do mathematics, they don’t say they’re doing number science. They’re doing

math. If you’re analyzing data, you’re doing statistics. You can call it data science

or informatics or analytics or whatever, but it’s still statistics. ... You may not like

what some statisticians do. You may feel they don’t share your values. They may embarrass

you. But that shouldn’t lead us to abandon the term ‘‘statistics’’.

Karl Broman, Univ. Wisconsin6

On the other hand, we can find pointed comments about the (near-) irrelevance of statistics:

• Data Science without statistics is possible, even desirable.
Vincent Granville, at the Data Science Central Blog7

• Statistics is the least important part of data science.
Andrew Gelman, Columbia University 8

Clearly, there are many visions of Data Science and its relation to Statistics. In discussions one
recognizes certain recurring ‘Memes’. We now deal with the main ones in turn.

2.1 The ‘Big Data’ Meme

Consider the press release announcing the University of Michigan Data Science Initiative with which
this article began. The University of Michigan President, Mark Schlissel, uses the term ‘big data’
repeatedly, touting its importance for all fields and asserting the necessity of Data Science for handling
such data. Examples of this tendency are near-ubiquitous.

We can immediately reject ‘big data’ as a criterion for meaningful distinction between statistics
and data science9.

• History. The very term ‘statistics’ was coined at the beginning of modern efforts to compile
census data, i.e. comprehensive data about all inhabitants of a country, for example France
or the United States. Census data are roughly the scale of today’s big data; but they have
been around more than 200 years! A statistician, Hollerith, invented the first major advance in

6https://kbroman.wordpress.com/2013/04/05/data-science-is-statistics/

7http://www.datasciencecentral.com/profiles/blogs/data-science-without-statistics-is-possible-even-desirable

8http://andrewgelman.com/2013/11/14/statistics-least-important-part-data-science/

9One sometimes encounters also the statement that statistics is about ‘small datasets, while Data Science is about
‘big datasets. Older statistics textbooks often did use quite small datasets in order to allow students to make hand
calculations.
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big data: the punched card reader to allow efficient compilation of an exhaustive US census.10

This advance led to formation of the IBM corporation which eventually became a force pushing
computing and data to ever larger scales. Statisticians have been comfortable with large
datasets for a long time, and have been holding conferences gathering together experts in
‘large datasets’ for several decades, even as the definition of large was ever expanding.11

• Science. Mathematical statistics researchers have pursued the scientific understanding of big
datasets for decades. They have focused on what happens when a database has a large number
of individuals or a large number of measurements or both. It is simply wrong to imagine that
they are not thinking about such things, in force, and obsessively.

Among the core discoveries of statistics as a field were sampling and sufficiency, which allow
to deal with very large datasets extremely efficiently. These ideas were discovered precisely
because statisticians care about big datasets.

The data-science=‘big data’ framework is not getting at anything very intrinsic about the re-
spective fields.12

2.2 The ‘Skills’ Meme

Computer Scientists seem to have settled on the following talking points:

(a) data science is concerned with really big data, which traditional computing resources could not
accommodate

(b) data science trainees have the skills needed to cope with such big datasets.

The CS evangelists are thus doubling down on the ‘Big Data’ meme13, by layering a ‘Big Data
skills meme’ on top.

What are those skills? Many would cite mastery of Hadoop, a variant of Map/Reduce for use
with datasets distributed across a cluster of computers. Consult the standard reference Hadoop:
The Definitive Guide. Storage and Analysis at Internet Scale, 4th Edition by Tom White. There we
learn at great length how to partition a single abstract dataset across a large number of processors.
Then we learn how to compute the maximum of all the numbers in a single column of this massive
dataset. This involves computing the maximum over the sub database located in each processor,
followed by combining the individual per-processor-maxima across all the many processors to obtain
an overall maximum. Although the functional being computed in this example is dead-simple, quite
a few skills are needed in order to implement the example at scale.

10http://bulletin.imstat.org/2014/10/ims-presidential-address-let-us-own-data-science/

11During the Centennial workshop, one participant pointed out that John Tukey’s definition of ‘Big Data’ was:
“anything that won’t fit on one device”. In John’s day the device was a tape drive, but the larger point is true today,
where device now means ‘commodity file server’.

12It may be getting at something real about the Masters’ degree programs, or about the research activities of
individuals who will be hired under the new spate of DSI’s.

13... which we just dismissed!
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Lost in the hoopla about such skills is the embarrassing fact that once upon a time, one could
do such computing tasks, and even much more ambitious ones, much more easily than in this fancy
new setting! A dataset could fit on a single processor, and the global maximum of the array ‘x’ could
be computed with the six-character code fragment ‘max(x)’ in, say, Matlab or R. More ambitious
tasks, like large-scale optimization of a convex function, were easy to set up and use. In those less-
hyped times, the skills being touted today were unnecessary. Instead, scientists developed skills to
solve the problem they were really interested in, using elegant mathematics and powerful quantitative
programming environments modeled on that math. Those environments were the result of 50 or more
years of continual refinement, moving ever closer towards the ideal of enabling immediate translation
of clear abstract thinking to computational results.

The new skills attracting so much media attention are not skills for better solving the real problem
of inference from data; they are coping skills for dealing with organizational artifacts of large-scale
cluster computing. The new skills cope with severe new constraints on algorithms posed by the
multiprocessor/networked world. In this highly constrained world, the range of easily constructible
algorithms shrinks dramatically compared to the single-processor model, so one inevitably tends to
adopt inferential approaches which would have been considered rudimentary or even inappropriate
in olden times. Such coping consumes our time and energy, deforms our judgements about what is
appropriate, and holds us back from data analysis strategies that we would otherwise eagerly pursue.

Nevertheless, the scaling cheerleaders are yelling at the top of their lungs that using more data
deserves a big shout.

2.3 The ‘Jobs’ Meme

Big data enthusiasm feeds off the notable successes scored in the last decade by brand-name global
Information technology (IT) enterprises, such as Google and Amazon, successes currently recognized
by investors and CEOs. A hiring ‘bump’ has ensued over the last 5 years, in which engineers with
skills in both databases and statistics were in heavy demand. In ‘The Culture of Big Data’ [1], Mike
Barlow summarizes the situation

According to Gartner, 4.4 million big data jobs will be created by 2014 and only a
third of them will be filled. Gartner’s prediction evokes images of “gold rush” for big data
talent, with legions of hardcore quants converting their advanced degrees into lucrative
employment deals.

While Barlow suggests that any advanced quantitative degree will be sufficient in this environ-
ment, today’s Data Science initiatives per se imply that traditional statistics degrees are not enough
to land jobs in this area - formal emphasis on computing and database skills must be part of the
mix.14

We don’t really know. The booklet ‘Analyzing the Analyzers: An Introspective Survey of Data
Scientists and Their Work’ [20] points out that

Despite the excitement around “data science”, “big data”, and “analytics”, the ambi-
guity of these terms has led to poor communication between data scientists and those who
seek their help.

14Of course statistics degrees require extensive use of computers, but often omit training in formal software develop-
ment and formal database theory.
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Yanir Seroussi’s blog15 opines that “there are few true data science positions for people with no work
experience.”

A successful data scientist needs to be able to become one with the data

by exploring it and applying rigorous statistical analysis ... But good data

scientists also understand what it takes to deploy production systems, and

are ready to get their hands dirty by writing code that cleans up the data

or performs core system functionality ... Gaining all these skills takes time

[on the job].

Barlow implies that would-be data scientists may face years of further skills development post
masters degree, before they can add value to their employer’s organization. In an existing big-data
organization, the infrastructure of production data processing is already set in stone. The databases,
software, and workflow management taught in a given Data Science Masters program are unlikely
to be the same as those used by one specific employer. Various compromises and constraints were
settled upon by the hiring organizations and for a new hire, contributing to those organizations is
about learning how to cope with those constraints and still accomplish something.

Data Science degree programs do not actually know how to satisfy the supposedly voracious
demand for graduates. As we show below, the special contribution of a data science degree over a
statistics degree is additional information technology training. Yet hiring organizations face diffi-
culties making use of the specific information technology skills being taught in degree programs. In
contrast, Data Analysis and Statistics are broadly applicable skills that are portable from organiza-
tion to organization.

2.4 What here is real?

We have seen that today’s popular media tropes about Data Science don’t withstand even basic
scrutiny. This is quite understandable: writers and administrators are shocked out of their wits.
Everyone believes we are facing a zero-th order discontinuity in human affairs.

If you studied a tourist guidebook in 2010, you would have been told that life in villages in India
(say) had not changed in thousands of years. If you went into those villages in 2015, you would see
that many individuals there now have mobile phones and some have smartphones. This is of course
the leading edge fundamental change. Soon, 8 billion people will be connected to the network, and
will therefore be data sources, generating a vast array of data about their activities and preferences.

The transition to universal connectivity is very striking; it will, indeed, generate vast amounts
of commercial data. Exploiting that data seems certain to be a major preoccupation of commercial
life in coming decades.

2.5 A Better Framework

However, a science doesn’t just spring into existence simply because a deluge of data will soon be
filling telecom servers, and because some administrators think they can sense the resulting trends in
hiring and government funding.

15http://yanirseroussi.com/2014/10/23/what-is-data-science/
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Fortunately, there is a solid case for some entity called ‘Data Science’ to be created, which would
be a true science: facing essential questions of a lasting nature and using scientifically rigorous
techniques to attack those questions.

Insightful statisticians have for at least 50 years been laying the groundwork for constructing
that would-be entity as an enlargement of traditional academic statistics. This would-be notion of
Data Science is not the same as the Data Science being touted today, although there is significant
overlap. The would-be notion responds to a different set of urgent trends - intellectual rather than
commercial. Facing the intellectual trends needs many of the same skills as facing the commercial
ones and seems just as likely to match future student training demand and future research funding
trends.

The would-be notion takes Data Science as the science of learning from data, with all that this
entails. It is matched to the most important developments in science which will arise over the
coming 50 years. As science itself becomes a body of data that we can analyze and study, there
are staggeringly large opportunities for improving the accuracy and validity of science, through the
scientific study of data analysis.

Understanding these issues gives Deans and Presidents an opportunity to rechannel the energy
and enthusiasm behind today’s Data Science movement towards lasting, excellent programs canoni-
calizing a new scientific discipline.

In this paper, I organize insights that have been published over the years about this new would-
be field of Data Science, and put forward a framework for understanding its basic questions and
procedures. This framework has implications both for teaching the subject and for doing scientific
research about how data science is done and might be improved.

3 The Future of Data Analysis, 1962

This paper was prepared for the John Tukey centennial. More than 50 years ago, John prophecied
that something like today’s Data Science moment would be coming. In “The Future of Data Anal-
ysis” [42], John deeply shocked his readers (academic statisticians) with the following introductory
paragraphs:16

For a long time I have thought I was a statistician, interested in inferences from the
particular to the general. But as I have watched mathematical statistics evolve, I have
had cause to wonder and to doubt. ... All in all I have come to feel that my central
interest is in data analysis, which I take to include, among other things: procedures
for analyzing data, techniques for interpreting the results of such procedures, ways of
planning the gathering of data to make its analysis easier, more precise or more accurate,
and all the machinery and results of (mathematical) statistics which apply to analyzing
data

This paper was published in 1962 in “The Annals of Mathematical Statistics”, the central venue
for mathematically-advanced statistical research of the day. Other articles appearing in that journal

16One questions why the journal even allowed this to be published! Partly one must remember that John was
a Professor of Mathematics at Princeton, which gave him plenty of authority! Sir Martin Rees, the famous as-
tronomer/cosmologist once quipped that “God invented space just so not everything would happen at Princeton”. JL
Hodges Jr. of UC Berkeley was incoming editor of Annals of Mathematical Statistics, and deserves credit for publishing
such a visionary but deeply controversial paper.
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at the time were mathematically precise and would present definitions, theorems, and proofs. John’s
paper was instead a kind of public confession, explaining why he thought such research was too
narrowly focused, possibly useless or harmful, and the research scope of statistics needed to be
dramatically enlarged and redirected.

Peter Huber, whose scientific breakthroughs in robust estimation would soon appear in the same
journal, recently commented about FoDA:

Half a century ago, Tukey, in an ultimately enormously influential paper redefined
our subject... [The paper] introduced the term “data analysis” as a name for what applied
statisticians do, differentiating this term from formal statistical inference. But actually,
as Tukey admitted, he “stretched the term beyond its philology” to such an extent that it
comprised all of statistics.
Peter Huber (2010)

So Tukey’s vision embedded statistics in a larger entity. Tukey’s central claim was that this new
entity, which he called ‘Data Analysis’, was a new science, rather than a branch of mathematics:

There are diverse views as to what makes a science, but three constituents will be
judged essential by most, viz:

(a1) intellectual content,
(a2) organization in an understandable form,
(a3) reliance upon the test of experience as the ultimate standard of validity.

By these tests mathematics is not a science, since its ultimate standard of validity is
an agreed-upon sort of logical consistency and provability.

As I see it, data analysis passes all three tests, and I would regard it as a science,
one defined by a ubiquitous problem rather than by a concrete subject. Data analysis
and the parts of statistics which adhere to it, must then take on the characteristics of a
science rather than those of mathematics, ...

These points are meant to be taken seriously.

Tukey identified four driving forces in the new science:

Four major influences act on data analysis today:
1. The formal theories of statistics
2. Accelerating developments in computers and display devices
3. The challenge, in many fields, of more and ever larger bodies of data
4. The emphasis on quantification in an ever wider variety of disciplines

John’s 1962 list is surprisingly modern, and encompasses all the factors cited today in press
releases touting today’s Data Science initiatives. Shocking at the time was item #1, implying that
statistical theory was only a (fractional!) part of the new science.

Tukey and Wilk 1969 compared this new science to established sciences and further circumscribed
the role of Statistics within it:

11



... data analysis is a very difficult field. It must adapt itself to what people can and
need to do with data. In the sense that biology is more complex than physics, and the
behavioral sciences are more complex than either, it is likely that the general problems
of data analysis are more complex than those of all three. It is too much to ask for close
and effective guidance for data analysis from any highly formalized structure, either now
or in the near future.

Data analysis can gain much from formal statistics, but only if the connection is kept
adequately loose.

So not only is Data Analysis a scientific field, it is as complex as any major field of science! And
theoretical statistics can only play a partial role in its progress.

Mosteller and Tukey’s 1968 title reiterated this point: “Data Analysis, including Statistics”.

4 The 50 years since FoDA

While Tukey called for a much broader field of statistics, it could not develop overnight – even in
one individual’s scientific oeuvre.

PJ Huber wrote that “The influence of Tukey’s paper was not immediately recognized ... it took
several years until I assimilated its import ...”. From observing Peter first-hand I would say that 15
years after FoDA he was visibly comfortable with its lessons. At the same time, full evidence of this
effect in Huber’s case came even much later – see his 2010 book Data Analysis: What can be learned
from the last 50 years, which summarizes Peter’s writings since the 1980’s and appeared 48 years
after FoDA!

4.1 Exhortations

While Huber obviously made the choice to explore the vistas offered in Tukey’s vision, the academic
field as a whole did not. John Tukey’s Bell Labs colleagues, not housed in academic statistics
departments, more easily adopted John’s vision of a field larger than what academic statistics could
deliver.

John Chambers, co-developer of the S language for statistics and data analysis while at Bell Labs,
published already in 1993 the essay [6], provocatively titled “Greater or Lesser Statistics, A Choice
for Future Research”. His abstract pulled no punches:

The statistics profession faces a choice in its future research between continuing con-
centration on traditional topics – based largely on data analysis supported by mathematical
statistics – and a broader viewpoint – based on an inclusive concept of learning from data.

The latter course presents severe challenges as well as exciting opportunities. The
former risks seeing statistics become increasingly marginal...

A call to action, from a statistician who feels ‘the train is leaving the station’. Like Tukey’s paper,
it proposes that we could be pursuing research spanning a much larger domain than the Statistical
research we do today; such research would focus on opportunities provided by new types of data and
new types of presentation. Chambers states explicitly that the enlarged field would be larger even
than data analysis. Specifically, it is larger than Tukey’s 1962 vision.
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William S. Cleveland developed many valuable statistical methods and data displays while at
Bell Labs, and served as a co-editor of Tukey’s collected works. His 2001 paper [8], titled “Data
Science: An Action Plan for Expanding the Technical Areas of the field of Statistics”17 addressed
academic statistics departments and proposed a plan to reorient their work. His abstract read:

An action plan to expand the technical areas of statistics focuses on the data analyst.
The plan sets out six technical areas of work for a university department and advocates
a specific allocation of resources devoted to research in each area and to courses in each
area. The value of technical work is judged by the extent to which it benefits the data
analyst, either directly or indirectly. The plan is also applicable to government research
labs and corporate research organizations.

In the paper’s introduction, Cleveland writes that18 19

...[results in] data science should be judged by the extent to which they enable the
analyst to learn from data... Tools that are used by the data analyst are of direct benefit.
Theories that serve as a basis for developing tools are of indirect benefit.

Cleveland proposed 6 foci of activity, even suggesting allocations of effort.

(*) Multidisciplinary investigations (25%)
(*) Models and Methods for Data (20%)
(*) Computing with Data (15%)
(*) Pedagogy (15%)
(*) Tool Evaluation (5%)
(*) Theory (20%)

Several academic statistics departments that I know well could, at the time of Cleveland’s publi-
cation, fit 100% of their activity into the 20% Cleveland allowed for Theory. Cleveland’s paper was
republished in 2014. I can’t think of an academic department that devotes today 15% of its effort on
pedagogy, or 15% on Computing with Data. I can think of several academic statistics departments
that continue to fit essentially all their activity into the last category, Theory.

In short, academic Statisticians were exhorted repeatedly across the years, by John Tukey and by
some of his Bell Labs colleagues, to change paths, towards a much broader definition of their field.
Such exhortations had relatively little apparent effect before 2000.

17This may be earliest use of the term Data Science in which it is utterly clear that the writer means it in exactly
the modern sense. An even earlier use by Jeff Wu proposes that Statisticians change the name of their profession to
data science because so much of what we do involves data cleaning and preparation.

18This echoes statements that John Tukey also made in FoDA, as I am sure Bill Cleveland would be proud to
acknowledge.

19Geophysicsts make a distinction between mathematical geophysicists who ‘care about the earth’ and those who
‘care about math’. Probably biologists make the same distinction in quantitative biology. Here Cleveland is introducing
it as a litmus test re Statistical theorists: do they ‘care about the data analyst’ or do they not?
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4.2 Reification

One obstacle facing the earliest exhortations was that many of the exhortees couldn’t see what the
fuss was all about. Making the activity labelled ‘Data Analysis’ more concrete and visible was
ultimately spurred by code, not words.

Over the last 50 years, many statisticians and data analysts took part in the invention and
development of computational environments for data analysis. Such environments included the
early statistical packages BMDP, SPSS, SAS, and Minitab, all of which had roots in the mainframe
computing of the late 1960’s, and more recently packages such as S, ISP, STATA, and R, with roots in
the minicomputer/personal computer era. This was an enormous effort carried out by many talented
individuals - too many to credit here properly20.

To quantify the importance of these packages, try using Google’s N-grams viewer 21 to plot the
frequency of the words SPSS, SAS, Minitab, in books in the English language from 1970 to 2000;
and for comparison, plot also the frequency of the bigrams ‘Data Analysis’ and ‘Statistical Analysis’.
It turns out that SAS and SPSS are both more common terms in the English language over this
period than either ‘Data Analysis’ or ‘Statistical Analysis’ – about twice as common, in fact.

John Chambers and his colleague Rick Becker at Bell Labs developed the quantitative computing
environment ‘S’ starting in the mid-1970’s; it provided a language for describing computations, and
many basic statistical and visualization tools. In the 1990’s, Gentleman and Ihaka created the
work-alike ‘R’ system, as an open source project which spread rapidly. R is today the dominant
quantitative programming environment used in academic Statistics, with a very impressive on-line
following.

Quantitative programming environments run ‘scripts’ which codify precisely the steps of a com-
putation, describing them at a much higher and more abstract level than in traditional computer
languages like C++. Such scripts are often today called workflows. When a given QPE becomes
dominant in some research community, as R has become in academic Statistics22, workflows can be
widely shared within the community and re-executed, either on the original data (if it were also
shared) or on new data. This is a game changer. What was previously somewhat nebulous – say the
prose description of some data analysis in a scientific paper – becomes instead tangible and useful,
as one can download and execute code immediately. One can also easily tweak scripts, to reflect
nuances of one’s data, for example changing a standard covariance matrix estimator in the origi-
nal script to a robust covariance matrix estimator. One can document performance improvements
caused by making changes to a baseline script. It now makes sense to speak of a scientific approach
to improving a data analysis, by performance measurement followed by script tweaking. Tukey’s
claim that the study of data analysis could be a science now becomes self-evident. One might agree
or disagree with Chambers and Cleveland’s calls to action; but everyone could agree with Cleveland
by 2001 that there could be such a field as ‘Data Science’.

20One can illustrate the intensity of development activity by pointing to several examples strictly relevant to the
Tukey Centennial at Princeton. I used three ‘Statistics packages’ while a Princeton undergraduate. P-STAT was an
SPSS-like mainframe package which I used on Princeton’s IBM 360/91 Mainframe; ISP was a UNIX minicomputer
package on which I worked as a co-developer for the Princeton Statistics Department; and my teacher Don McNeil had
developed software for a book of his own on explotatory data analysis; this ultimately became SPIDA after he moved
to Macquarie University.

21
https://books.google.com/ngrams/graph?content=SPSS%2CSAS%2CMinitab%2CData+Analysis%2CStatistical+Analysis&year start=1970&year end=2000&corpus=15&smoothing=3...

22or Matlab in Signal Processing
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5 Breiman’s ‘Two Cultures’, 2001

Leo Breiman, a UC Berkeley statistician who re-entered academia after years as a statistical con-
sultant to a range of organizations, including the Environmental Protection Agency, brought an
important new thread into the discussion with his 2001 paper in Statistical Science. Titled ‘Statisti-
cal Modeling: The Two Cultures’, Breiman described two cultural outlooks about extracting value
from data.

Statistics starts with data. Think of the data as being generated by a black box in
which a vector of input variables x (independent variables) go in one side, and on the
other side the response variables y come out. Inside the black box, nature functions to
associate the predictor variables with the response variables ...

There are two goals in analyzing the data:

• Prediction. To be able to predict what the responses are going to be to future input
variables;

• [Inference].23 To [infer] how nature is associating the response variables to the input
variables.

Breiman says that users of data split into two cultures, based on their primary allegiance to one
or the other of these goals.

The ‘Generative Modeling’24 culture seeks to develop stochastic models which fit the data, and
then make inferences about the data-generating mechanism based on the structure of those models.
Implicit in their viewpoint is the notion that there is a true model generating the data, and often
a truly ‘best’ way to analyze the data. Breiman thought that this culture encompassed 98% of all
academic statisticians.

The ‘Predictive Modeling’ culture25 prioritizes prediction and is estimated by Breiman to encom-
pass 2% of academic statisticians - including Breiman - but also many computer scientists and, as the
discussion of his article shows, important industrial statisticians. Predictive modeling is effectively
silent about the underlying mechanism generating the data, and allows for many different predictive
algorithms, preferring to discuss only accuracy of prediction made by different algorithm on various
datasets. The relatively recent discipline of Machine Learning, often sitting within computer science
departments, is identified by Breiman as the epicenter of the Predictive Modeling culture.

Breiman’s abstract says, in part

The statistical community has been committed to the almost exclusive use of [gener-
ative] models. This commitment has led to irrelevant theory, questionable conclusions,
and has kept statisticians from working on a large range of interesting current problems.
[Predictive] modeling, both in theory and practice, has developed rapidly in fields outside
statistics. It can be used both on large complex data sets and as a more accurate and

23I changed Breiman’s words here slightly; the original has ‘Information’ in place of [Inference] and ‘extract some
information about’ in place of [infer]

24Breiman called this ‘Data Modeling’, but ‘Generative modeling’ brings to the fore the key assumption: that a
stochastic model could actually generate such data. So we again change Breiman’s terminology slightly.

25Breiman used ‘Algorithmic’ rather than ‘Predictive’
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informative alternative to data modeling on smaller data sets. If our goal as a field is
to use data to solve problems, then we need to move away from exclusive dependence on
[generative] models ...

Again, the statistics discipline is called to enlarge its scope.
In the discussion to Breiman’s paper, esteemed statisticians Sir David Cox of Oxford and Bradley

Efron of Stanford both objected in various ways to the emphasis that Breiman was making.

• Cox states that in his view, ‘predictive success ... is not the primary basis for model choice’
and that ‘formal methods of model choice that take no account of the broader objectives are
suspect ...’.

• Efron states that ‘Prediction is certainly an interesting subject but Leo’s paper overstates both
its role and our profession’s lack of interest in it.’

In the same discussion, Bruce Hoadley - a statistician for credit-scoring company Fair, Isaac -
engages enthusiastically with Breiman’s comments:

Professor Breiman’s paper is an important one for statisticians to read. He and Sta-
tistical Science should be applauded ... His conclusions are consistent with how statistics
is often practiced in business.

Fair, Isaac’s core business is to support the billions of credit card transactions daily by issuing in
real time (what amount to) predictions that a requested transaction will or will not be repaid. Fair,
Isaac not only create predictive models but must use them to provide their core business and they
must justify their accuracy to banks, credit card companies, and regulatory bodies. The relevance
of Breiman’s predictive culture to their business is clear and direct.

6 The Predictive Culture’s Secret Sauce

Breiman was right to exhort Statisticians to better understand the Predictive modeling culture, but
his paper didn’t clearly reveal the culture’s ‘secret sauce’.

6.1 The Common Task Framework

To my mind, the crucial but unappreciated methodology driving predictive modeling’s success is what
computational linguist Marc Liberman (Liberman, 2009) has called the Common Task Framework
(CTF). An instance of the CTF has these ingredients:

(a) A publicly available training dataset involving, for each observation, a list of (possibly many)
feature measurements, and a class label for that observation.

(b) A set of enrolled competitors whose common task is to infer a class prediction rule from the
training data.

(c) A scoring referee, to which competitors can submit their prediction rule. The referee runs the
prediction rule against a testing dataset which is sequestered behind a Chinese wall. The
referee objectively and automatically reports the score (prediction accuracy) achieved by the
submitted rule.
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All the competitors share the common task of training a prediction rule which will receive a good
score; hence the phase common task framework.

A famous recent example is the Netflix Challenge, where the common task was to predict Netflix
user movie selections. The winning team (which included ATT Statistician Bob Bell) won $1M.
The dataset used proprietary customer history data from Netflix. However, there are many other
examples, often with much greater rewards (implicitly) at stake.

6.2 Experience with CTF

The genesis of the CTF paradigm has an interesting connection to our story. In Marc Liberman’s
telling it starts with JR Pierce, a colleague of Tukey’s at Bell Labs. Pierce had invented the word
‘transistor’ and supervised the development of the first communication satellite, and served on the
Presidential Science Advisory Committee with Tukey in the early/mid 1960’s. At the same time
that Tukey was evaluating emerging problems caused by over-use of pesticides, Pierce was asked to
evaluate the already extensive investment in machine translation research. In the same way that
Tukey didn’t like much of what he saw passing as statistics research in the 1960’s, Pierce didn’t like
much of what he saw passing as 1960’s machine translation research.

Now we follow Marc Liberman closely26. Judging that the field was riddled with susceptibility
to ‘Glamor and Deceit’, Pierce managed to cripple the whole US machine translation research effort
– sending it essentially to zero for decades.

As examples of glamor and Deceit, Pierce referred to theoretical approaches to translation de-
riving from for example Chomsky’s so-called theories of language; while many language researchers
at the time apparently were in awe of the charisma carried by such theories, Pierce saw those re-
searchers as being deceived by the glamor of (a would-be) theory, rather than actual performance in
translation.

Machine Translation research finally re-emerged decades later from the Piercian limbo, but only
because it found a way to avoid a susceptibility to Pierce’s accusations of glamor and deceit. A
research team led by Fred Jelinek at IBM, which included true geniuses like John Cocke, began to
make definite progress towards machine translation based on an early application of the common
task framework. A key resource was data: they had obtained a digital copy of the so-called Cana-
dian Hansards, a corpus of government documents which had been translated into both English
and French. By the late 1980’s DARPA was convinced to adopt the CTF as a new paradigm for
machine translation research. NIST was contracted to produce the sequestered data and conduct
the refereeing, and DARPA challenged teams of researchers to produce rules that correctly classified
under the CTF.

Variants of CTF have by now been applied by DARPA successfully in many problems: machine
translation, speaker identification, fingerprint recognition, information retrieval, OCR, automatic
target recognition, and on and on.

The general experience with CTF was summarized by Liberman as follows:

1. Error rates decline by a fixed percentage each year, to an asymptote depending on task and data
quality.

2. Progress usually comes from many small improvements; a change of 1% can be a reason to break
out the champagne.

26
https://www.simonsfoundation.org/lecture/reproducible-research-and-the-common-task-method/
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3. Shared data plays a crucial role – and is re-used in unexpected ways.

The ultimate success of many automatic processes that we now take for granted – Google trans-
late, smartphone touch ID, smartphone voice recognition – derives from the CTF research paradigm,
or more specifically its cumulative effect after operating for decades in specific fields. Most impor-
tantly for our story: those fields where machine learning has scored successes are essentially those
fields where CTF has been applied systematically.

6.3 The Secret Sauce

It is no exaggeration to say that the combination of a Predictive Modeling culture together with
CTF is the ‘secret sauce’ of machine learning.

The synergy of minimizing prediction error with CTF is worth noting. This combination leads
directly to a total focus on optimization of empirical performance, which as Marc Liberman has
pointed out, allows large numbers of researchers to compete at any given common task challenge,
and allows for efficient and unemotional judging of challenge winners. It also leads immediately to
applications in a real-world application. In the process of winning a competition, a prediction rule
has necessarily been tested, and so is essentially ready for immediate deployment.27

Many ‘outsiders’ are not aware of the CTF’s paradigmatic nature and its central role in many
of machine learning’s successes. Those outsiders may have heard of the Netflix challenge, without
appreciating the role of CTF in that challenge. They may notice that ‘deep learning’ has become a
white hot topic in the high-tech media, without knowing that the buzz is due to successes of deep
learning advocates in multiple CTF-compliant competitions.

Among the outsiders are apparently many mainstream academic statisticians who seem to have
little appreciation for the power of CTF in generating progress, in technological field after field. I
have no recollection of seeing CTF featured in a major conference presentation at a professional
statistics conference or academic seminar at a major research university.

The author believes that the Common Task Framework is the single idea from machine learning
and data science that is most lacking attention in today’s statistical training.

6.4 Required Skills

The Common Task Framework imposes numerous demands on workers in a field:

• The workers must deliver predictive models which can be evaluated by the CTF scoring pro-
cedure in question. They must therefore personally submit to the information technology
discipline imposed by the CTF developers.

• The workers might even need to implement a custom-made CTF for their problem; so they
must both develop an information technology discipline for evaluation of scoring rules and they
must obtain a dataset which can form the basis of the shared data resource at the heart of the
CTF.

27However, in the case of the Netflix Challenge the winning algorithm was never implemented.
https://www.techdirt.com/blog/innovation/articles/20120409/03412518422/why-netflix-never-implemented-algorithm-that-won-netflix-1-million-
challenge.shtml
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In short, information technology skills are at the heart of the qualifications needed to work in pre-
dictive modeling. These skills are analogous to the laboratory skills that a wet-lab scientist needs in
order to carry out experiments. No math required.

The use of CTFs really took off at about the same time as the open source software movement
began and as the ensuing arrival of quantitative programming environments dominating specific
research communities. QPE dominance allowed researchers to conveniently share scripts across their
communities, in particular scripts that implement either a baseline prediction model or a baseline
scoring workflow. So the skills required to work within a CTF became very specific and very teachable
– can we download and productively tweak a set of scripts?

7 Teaching of today’s consensus Data Science

It may be revealing to look at what is taught in today’s Data Science programs at some of the
universities that have recently established them. Let’s consider the attractive and informative web
site for the UC Berkeley Data Science Masters’ degree at datascience.berkeley.edu.

Reviewing the curriculum at https://datascience.berkeley.edu/academics/curriculum/ we find
5 foundation courses

Research Design and Application for Data and Analysis

Exploring and Analyzing Data

Storing and Retrieving Data

Applied Machine Learning

Data Visualization and Communication

Only “Storing and Retrieving Data” seems manifestly not taught by traditional Statistics de-
partments; and careful study of the words reveals that the least traditional topic among the others,
the actual topics covered in“Applied Machine Learning”, seem to a statistician very much like what
a statistics department might or should offer – however, the use of ‘Machine Learning’ in the course
title is a tip off that the approach may be heavily weighted towards predictive modeling rather than
inference.

Machine learning is a rapidly growing field at the intersection of computer

science and statistics concerned with finding patterns in data. It is responsible

for tremendous advances in technology, from personalized product recommendations

to speech recognition in cell phones. This course provides a broad introduction

to the key ideas in machine learning. The emphasis will be on intuition and

practical examples rather than theoretical results, though some experience

with probability, statistics, and linear algebra will be important.

The choice of topics might only give a partial idea of what takes place in the course. Under
“Tools”, we find an array of core information technology.

Python libraries for linear algebra, plotting, machine learning: numpy,

matplotlib, sk-learn / Github for submitting project code
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In short, course participants are producing and submitting code. Code development is not yet
considered utterly de rigueur for statistics teaching, and in many statistics courses would be accom-
plished using code in R or other quantitative programming environments, which is much ‘easier’ for
students to use for data analysis because practically the whole of modern data analysis is already
programmed in. However R has the reputation of being less scalable than Python to large problem
sizes. In that sense, a person who does their work in Python might be considered to have worked
harder and shown more persistence and focus than one who does the same work in R.

Such thoughts continue when we consider the advanced courses.

Experiments and Causal Inference

Applied regression and Time Series Analysis

Legal, Policy, and Ethical Considerations for Data Scientists

Machine Learning at Scale.

Scaling up! Really big data.

The first two courses seem like mainstream statistics courses that could be taught by stat departments
at any research university. The third is less familiar but overlaps with “Legal Policy and Ethical
Considerations for researchers” courses that have existed at research universities for quite a while.

The last two courses address the challenge of scaling up processes and procedures to really large
data. These are courses that ordinarily wouldn’t be offered in a traditional statistics department.

Who are the faculty in the UC Berkeley Data Science program? Apparently not traditionally-
pedigreed academic statisticians. In the division of the website “About MIDS faculty” on Friday
September 11, 2015 I could find mostly short bios for faculty associated with the largely non-statistical
courses (such as “Scaling Up! really Big Data” or “Machine Learning at Scale”). For the approx-
imately 50% of courses covering traditional statistical topics, fewer bios were available, and those
seemed to indicate different career paths than traditional Statistics Ph.D.’s – sociology Ph.D.’s or
information science Ph.D.’s. The program itself is run by the information school.28

In FoDA, Tukey argued that the teaching of statistics as a branch of mathematics was holding
back data analysis. He saw apprenticeship with real data analysts and hence real data as the solution:

All sciences have much of art in their makeup. As well as teaching facts and well-
established structures, all sciences must teach their apprentices how to think about things
in the manner of that particular science, and what are its current beliefs and practices.
Data analysis must do the same. Inevitably its task will be harder than that of most
sciences.

Physicists have usually undergone a long and concentrated exposure to those who are
already masters of the field. Data analysts even if professional statisticians, will have had
far less exposure to professional data analysts during their training. Three reasons for
this hold today, and can at best be altered slowly:
(c1) Statistics tends to be taught as part of mathematics.
(c2) In learning statistics per se, there has been limited attention to data analysis.

28I don’t wish to imply in the above that there’s anything concerning to me about the composition of the faculty. I do
wish to demonstrate that this is an opportunity being seized by non-statisticians. An important even in the history of
academic statistics was Hotelling’s article “The Teaching of Statistics” (1940) [23] which decried the teaching of statistics
by non-mathematicians, and motivated the formation of academic statistics departments. The new developments may
be undoing the many years of postwar professionalization of statistics instruction.
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(c3) The number of years of intimate and vigorous contact with professionals is far less
for statistics Ph.D.’s than for physics or mathematics Ph.D.’s

Thus data analysis, and adhering statistics, faces an unusually difficult problem of
communicating certain of its essentials, one which cannot presumably be met as well as
in most fields by indirect discourse and working side by side.

The Berkeley Data Science masters program features a capstone course which involves a data
analysis project with a large dataset. The course listing states in part that in the capstone class

The final project ... provides experience in formulating and carrying out

a sustained, coherent, and significant course of work resulting in a tangible

data science analysis project with real-world data. ... The capstone is completed

as a group/team project (3-4 students), and each project will focus on open,

pre-existing secondary data.

This project seems to offer some of the ‘apprenticeship’ opportunities that John Tukey knew from
his college Chemistry degree work, and considered important for data analysis.

Tukey insisted that mathematical rigor was of very limited value in teaching data analysis. This
view was already evident in the quotation from FoDA immediately above. Elsewhere in FoDA Tukey
said:

Teaching data analysis is not easy, and the time allowed is always far from sufficient.
But these difficulties have been enhanced by the view that “avoidance of cookbookery
and growth of understanding come only by mathematical treatment, with emphasis upon
proofs”.

The problem of cookbookery is not peculiar to data analysis. But the solution of
concentrating upon mathematics and proof is.

Tukey saw Data Analysis as like other sciences and not like mathematics, in that there existed
knowledge which needed to be related rather than Theorems which needed proof. Drawing again on
his chemistry background, he remarked that

The field of biochemistry today contains much more detailed knowledge than does the
field of data analysis. The overall teaching problem is more difficult. Yet the textbooks
strive to tell the facts in as much detail as they can find room for.

He also suggested that experimental labs offered a way for students to learn statistics

These facts are a little complex, and may not prove infinitely easy to teach, but any
class can check almost any one of them by doing its own experimental sampling.

One speculates that John Tukey might have viewed the migration of students away from statistics
courses and into equivalent data science courses as possibly not a bad thing.

In his article ‘Statistical Modeling: the two cultures’, Leo Breiman argued that teaching stochastic
model building and inference to the exclusion of predictive modeling was damaging the ability of
statistics to attack the most interesting problems he saw on the horizon. The problems he mentioned
at the time are among today’s hot applications of Data Science. So Breiman might have welcomed
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teaching programs which reverse the balance between inference and prediction; i.e. programs such
as the UC Berkeley Data Science masters.

Although my heroes Tukey, Chambers, Cleveland and Breiman would recognize positive features
in these programs, it’s difficult to say whether they would approve of their long-term direction - or
if there is even a long-term direction to comment about. Consider this snarky definition:

Data Scientist (n.): Person who is better at statistics than any software

engineer and better at software engineering than any statistician.

This definition is grounded in fact. Data Science Masters’ curricula are compromises: taking some
material out of a Statistics masters program to make room for large database training; or, equally,
as taking some material out of a database masters in CS and inserting some statistics and machine
learning. Such a compromise helps administrators to quickly get a degree program going, without
providing any guidance about the long-term direction of the program and about the research which
its faculty will pursue. What long-term guidance could my heroes have offered?

8 The Full Scope of Data Science

John Chambers and Bill Cleveland each envisioned a would-be field that is considerably larger than
the consensus Data Science Master’s we have been discussing but also more intellectually productive
and lasting.

The larger vision posits a professional on a quest to extract information from data – exactly as in
the definitions of data science we saw earlier. The larger field cares about each and every step that
the professional must take, from getting acquainted with the data all the way to delivering results
based upon it, and extending even to that professional’s continual review of the evidence about best
practices of the whole field itself.

Following Chambers, let’s call the collection of activities mentioned until now ‘Lesser Data Sci-
ence’ (LDS) and the larger would-be field Greater Data Science (GDS). Chambers and Cleveland
each parsed out their enlarged subject into specific divisions/topics/subfields of activity. I find it
helpful to merge, relabel, and generalize the two parsings they proposed. This section presents and
then discusses this classification of GDS.

8.1 The Six Divisions

The activities of Greater Data Science are classified into 6 divisions:

1. Data Exploration and Preparation

2. Data Representation and Transformation

3. Computing with Data

4. Data Modeling

5. Data Visualization and Presentation

6. Science about Data Science

Let’s go into some detail about each division.

22



GDS1: Data Exploration and Preparation. Some say that 80% of the effort devoted to data
science is expended by diving into or becoming one with one’s messy data to learn the basics
of what’s in them, so that data can be made ready for further exploitation. We identify two
subactivities:

• Exploration. Since John Tukey’s coining of the term ‘Exploratory Data Analysis’ (EDA),
we all agree that every data scientist devotes serious time and effort to exploring data to
sanity-check its most basic properties, and to expose unexpected features. Such detective
work adds crucial insights to every data-driven endeavor.29.

• Preparation. Many datasets contain anomalies and artifacts.30 Any data-driven project
requires mindfully identifying and addressing such issues. Responses range from refor-
matting and recoding the values themselves, to more ambitious pre-processing, such as
grouping, smoothing, and subsetting. Often today, one speaks colorfully of data cleaning.

GDS2: Data Representation and Transformation. A data scientist works with many different
data sources during a career. These assume a very wide range of formats, often idiosyncratic
ones, and the data scientist has to easily adapt to them all. Current hardware and software
constraints are part of the variety because access and processing may require careful deployment
of distributed resources.

Data scientists very often find that a central step in their work is to implement an appropriate
transformation restructuring the originally given data into a new and more revealing form.

Data Scientists develop skills in two specific areas:

• Modern Databases. The scope of today’s data representation includes everything from
homely text files and spreadsheets to SQL and noSQL databases, distributed databases,
and live data streams. Data scientists need to know the structures, transformations, and
algorithms involved in using all these different representations.

• Mathematical Representations. These are interesting and useful mathematical structures
for representing data of special types, including acoustic, image, sensor, and network data.
For example, to get features with acoustic data, one often transforms to the cepstrum or
the Fourier transform; for image and sensor data the wavelet transform or some other
multi scale transform (e.g. pyramids in deep learning). Data scientists develop facility
with such tools and mature judgement about deploying them.

GDS3: Computing with Data. Every data scientist should know and use several languages for
data analysis and data processing. These can include popular languages like R and Python,
but also specific languages for transforming and manipulating text, and for managing complex
computational pipelines. It is not surprising to be involved in ambitious projects using a half
dozen languages in concert.

29At the Tukey Centennial, Rafael Irizarry gave a convincing example of exploratory data analysis of GWAS data,
studying how the data row mean varied with the date on which each row was collected, convince the field of gene
expression analysis to face up to some data problems that were crippling their studies.

30Peter Huber (2010) recalls the classic Coale and Stephan paper on Teenage Widows
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Beyond basic knowledge of languages, data scientists need to keep current on new idioms for
efficiently using those languages and need to understand the deeper issues associated with
computational efficiency.

Cluster and cloud computing and the ability to run massive numbers of jobs on such clusters
has become an overwhelmingly powerful ingredient of the modern computational landscape.
To exploit this opportunity, data scientists develop workflows which organize work to be split
up across many jobs to be run sequentially or else across many machines.

Data scientists also develop workflows that document the steps of an individual data analysis
or research project.

Finally, data scientists develop packages that abstract commonly-used pieces of workflow and
make them available for use in future projects.

GDS4: Data Visualization and Presentation. Data visualization at one extreme overlaps with
the very simple plots of EDA - histograms, scatterplots, time series plots - but in modern
practice it can be taken to much more elaborate extremes. Data scientists often spend a great
deal of time decorating simple plots with additional color or symbols to bring in an important
new factor, and they often crystallize their understanding of a dataset by developing a new
plot which codifies it. Data scientists also create dashboards for monitoring data processing
pipelines that access streaming or widely distributed data. Finally they develop visualizations
to present conclusions from a modeling exercise or CTF challenge.

GDS5: Data Modeling. Each data scientist in practice uses tools and viewpoints from both of
Leo Breiman’s modeling cultures:

• Generative modeling, in which one proposes a stochastic model that could have generated
the data, and derives methods to infer properties of the underlying generative mechanism.
This roughly speaking coincides with traditional Academic statistics and its offshoots. 31

• Predictive modeling, in which one constructs methods which predict well over some some
given data universe – i.e. some very specific concrete dataset. This roughly coincides with
modern Machine Learning, and its industrial offshoots. 32

GDS6: Science about Data Science. Tukey proposed that a ‘science of data analysis’ exists
and should be recognized as among the most complicated of all sciences. He advocated the
study of what data analysts ‘in the wild’ are actually doing, and reminded us that the true
effectiveness of a tool is related to the probability of deployment times the probability of
effective results once deployed.33

31It is striking how, when I review a presentation on today’s data science, in which statistics is superficially given
pretty short shrift, I can’t avoid noticing that the underlying tools, examples, and ideas which are being taught as
data science were all literally invented by someone trained in Ph.D. statistics, and in many cases the actual software
being used was developed by someone with an MA or Ph.D. in statistics. The accumulated efforts of statisticians over
centuries are just too overwhelming to be papered over completely, and can’t be hidden in the teaching, research, and
exercise of Data Science.

32Leo Breiman (2001) is correct in pointing out that academic statistics departments (at that time, and even since)
have under-weighted the importance of the predictive culture in courses and hiring. It clearly needs additional emphasis.

33Data Analysis per se is probably too narrow a term, because it misses all the automated data processing that goes
on under the label of Data Science about which we can also make scientific studies of behavior ‘in the wild’.
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Data scientists are doing science about data science when they identify commonly-occuring
analysis/processing workflows, for example using data about their frequency of occurrence in
some scholarly or business domain; when they measure the effectiveness of standard workflows
in terms of the human time, the computing resource, the analysis validity, or other performance
metric, and when they uncover emergent phenomena in data analysis, for example new patterns
arising in data analysis workflows, or disturbing artifacts in published analysis results.

The scope here also includes foundational work to make future such science possible – such as
encoding documentation of individual analyes and conclusions in a standard digital format for
future harvesting and meta analysis.

As data analysis and predictive modelling becomes an ever more widely distributed global
enterprise, ‘Science about Data Science’ will grow dramatically in significance.

8.2 Discussion

These six categories of activity, when fully scoped, cover a field of endeavor much larger than what
current academic efforts teach or study.34,35 Indeed, a single category - ‘GDS5: Data Modeling’ -
dominates the representation of data science in today’s academic departments, either in statistics
and mathematics departments through traditional statistics teaching and research, or in computer
science departments through machine learning.

This parsing-out reflects various points we have been trying to make earlier:

• The wedge issue that Computer Scientists use to separate ‘Data Science’ from ‘Statistics’ is
acknowledged here, by the addition of both ‘GDS3: Computing with Data’ and ‘GDS2: Data
Representation’ as major divisions alongside ‘GDS5: Data Modeling’. 37,38

• The tension between machine learning and academic statistics is suppressed in the above clas-
sification; much of it is irrelevant to what data scientists do on a daily basis. As I say above,
data scientists should use both generative and predictive modeling.

34John Chambers’ 1993 vision of ‘Greater Statistics’ proposed 3 divisions: Data Preparation, Data Modeling, and
Data Presentation. We accommodated them here in ‘GDS1: Data Exploration and Preparation’; ‘GDS5: Data Mod-
eling’, and ‘GDS4: Data Visualization and Presentation’, respectively.

35Cleveland’s 2001 program for Data Science included several categories which can be mapped onto (subsets) of those
proposed here; for example:

• Cleveland’s categories ‘Theory’ and ‘Stochastic Models and Statistical Methods’ can be mapped into GDS either
onto the ‘Generative models’ subset of ‘GDS5: Data Modeling’ or onto ‘GDS5 Data Modeling’ itself;

• His category ‘Computing with Data’ maps onto a subset of GDS’ category of the same name; the GDS category
has expanded to cover developments such as Hadoop and AWS that were not yet visible in 2001.

• Cleveland’s category ‘Tool Evaluation’ can be mapped onto a subset of ‘GDS6: Science about Data Science’

Cleveland also allocated resources to Multidisciplinary investigations and Pedagogy. It seems to me that these can be
mapped onto subsets of our categories. For example, Pedagogy ought to be part of the Science about Data Science –
we can hope for evidence based teaching.36

37In our opinion, the scaling problems though real are actually transient (because technology will trivialize them over
time). The more important activity encompassed under these divisions are the many ambitious and even audacious
efforts to reconceptualize the standard software stack of today’s data science.

38Practically speaking, every statistician has to master database technology in the course of applied projects.
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• The hoopla about distributed databases, Map/Reduce, and Hadoop is not evident in the above
classification. Such tools are relevant for ‘GDS2: Data Representation’ and ‘GDS3: Computing
with Data’ but although they are heavily cited right now, they are simply today’s enablers of
certain larger activities. Such activities will be around permanently, while the role for enablers
like Hadoop will inevitably be streamlined away.

• Current Masters programs in Data Science cover only a fraction of the territory mapped out
here. Graduates of such programs won’t have had sufficient exposure to exploring data, data
cleaning, data wrangling, data transformation, science about data science and other topics in
GDS.

Other features of this inventory will emerge below.

8.3 Teaching of GDS

Full recognition of the scope of GDS would require covering each of its 6 branches. This demands
major shifts in teaching.

‘GDS5: Data modeling’ is the easy part of Data Science to formalize and teach; we have been
doing this for generations in Statistics courses; for a decade or more in Machine Learning courses;
and this pattern continues in the Data Science Masters programs being introduced all around us,
where it consumes most of the coursework time allocation. However, this ‘easy stuff’ covers only a
fraction of the effort required in making productive use of data.

‘GDS1: Data Exploration and Preparation’ is more important than ‘GDS5: Data Modeling’,
as measured using time spent by practitioners. But there have been few efforts to formalize data
exploration and cleaning and such topics still are neglected in teaching. Students who only analyze
pre-cooked data are not being given the chance to learn these essential skills.

How might teaching even address such a topic? I suggest the reader study carefully two books
(together).

• The Book [41], analyzes a set of databases covering all aspects of the American game of major
league baseball, including every game played in recent decades and every player who ever
appeared in such games. This amazingly comprehensive work considers a near-exhaustive list
of questions one might have about the quantitative performance of different baseball strategies,
carefully describes how such questions can be answered using such a database, typically by a
statistical two-sample test, (or A/B test in internet marketing terminology).

• Analyzing Baseball Data with R [30] shows how to access the impressive wealth of available
Baseball data using the internet and how to use R to insightfully analyze that data.

A student who could show how to systematically use the tools and methods taught in the second
book to answer some of the interesting questions in the first book would, by my lights, have developed
real expertise in the above division ‘GDS1: Data Exploration and Preparation’. Similar projects can
be developed for all the other ‘new’ divisions of data science. In ‘GDS3: Computing with Data’ one
could teach students to develop and new R packages, and new data analysis workflows, in a hands-on
manner.

Ben Bauman and co-authors review experiences in [22, 2] teaching first and second courses in
Data Science/Statistics that are consistent with this approach.
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The reader will worry that the large scope of GDS is much larger than what we are used to
teaching. Tukey anticipated such objections, by pointing out that Biochemistry textbooks seem
to cover much more material than Statistics textbooks; he thought that once the field commits to
teaching more ambitiously, it can simply ‘pick up the pace’.39

8.4 Research in GDS

Once we have the GDS template in mind, we can recognize that today there’s all sorts of interesting
–and highly impactful – ‘GDS research’. Much of it doesn’t have a natural ‘home’, yet, but GDS
provides a framework to organize it and make it accessible. We mention a few examples to stimulate
the reader’s thinking.

8.4.1 Quantitative Programming Environments: R

The general topic of ‘Computing with Data’ may sound at first as if it’s stretchable to cover lots of
mainstream academic computer science; suggesting that perhaps there’s no real difference between
Data Science and Computer Science. To the contrary, ‘Computing with Data’ has a distinct core, and
an identity separate from academic computer science. The litmus test is whether the work centers
on the need to analyze data.

We argued earlier that the R system transformed the practice of data analysis by creating a
standard language which different analysts can all use to communicate and share algorithms and
workflows. Becker and Chambers (with S) and later Ihaka, Gentleman, and members of the R Core
team (with R) conceived of their work as research how to best organize computations with statistical
data. I too classify this as research, addressing category ‘GDS 3: Computing with Data’. Please
note how essentially ambitious the effort was, and how impactful. In recently reviewing many on-line
presentations about Data Science initiatives, I was floored to see how heavily R is relied upon, even
by data science instructors who claim to be doing no statistics at all.

8.4.2 Data Wrangling: Tidy Data

Hadley Wickham is a well-known contributor to the world of statistical computing, as the author of
numerous packages becoming popular with R users everywhere; these include ggplot2, reshape2,
and plyr; [46, 48, 49]. These packages abstractify and attack certain common issues in data sci-
ence subfield ‘GDS 2: Data Representation and Transformation’ and also subfield ‘GDS 4: Data
Visualization and Presentation’, and Wickham’s tools have gained acceptance as indispensible to
many.

In [47] Wickham discusses the notion of tidy data. Noting (as I also have, above) the common es-
timate that 80% of data analysis is spent on the process of cleaning and preparing the data, Wichkam
develops a systematic way of thinking about ‘messy’ data formats and introduces a set of tools in R
that translate them to a universal ‘tidy’ data format. He identifies several messy data formats which
are commonly encountered in data analysis and shows how to transform each such format into a
tidy format using his tools melt and cast. Once the data are molten, they can be very conveniently

39Tukey also felt that focusing on mathematical proof limited the amount of territory that could be covered in
university teaching.
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operated on using tools from the plyr library, and then the resulting output data can be ‘cast’ into
a final form for further use.

The plyr library abstracts certain iteration processes that are very common in data analysis, of
the form ‘apply such-and-such a function to each element/column/row/slice’ of an array. The general
idea goes back to Kenneth Iverson’s 1962 APL 360 programming language [27], and the reduce
operator formalized there; younger readers will have seen the use of derivative ideas in connection
with Map/Reduce and Hadoop, which added the ingredient of applying functions on many processors
in parallel. Still plyr offers a very fruitful abstraction for users of R, and in particular teaches R
users quite a bit about the potential of R’s specific way of implementing functions as closures within
environments.

Wickham has not only developed an R package making tidy data tools available; he has written
an article that teaches the R user about the potential of this way of operating. This effort may have
more impact on today’s practice of data analysis than many highly-regarded theoretical statistics
papers.

8.4.3 Research Presentation: Knitr

As a third vignette, we mention Yihui Xie’s work on the knitr package in R. This helps data analysts
authoring source documents that blend running R code together with text, and then compiling those
documents by running the R code, extracting results from the live computation and inserting them
in a high-quality PDF file, HTML web page, or other output product.

In effect, the entire workflow of a data analysis is intertwined with the interpretation of the
results, saving a huge amount of error-prone manual cut and paste moving computational outputs
and their place in the document.

Since data analysis typically involves presentation of conclusions, there is no doubt that Data Sci-
ence activities, in the larger sense of GDS, include preparation of reports and presentations. Research
that improves those reports and presentations in some fundamental way is certainly contributing to
GDS. In this case, we can view it as part of ‘GDS3: Computing with data’, because one is capturing
the workflow of an analysis. As we show later, it also enables important research in ‘GDS6: Science
about Data Science’.

8.5 Discussion

One can multiply the above examples, making GDS research ever more concrete. Two quick hits:

• For subfield ‘GDS 4: Data Visualization and Presentation.’ one can mention several exemplary
research contributions: Bill Cleveland’s work on statistical graphics [9, 7], along with Leland
Wilkinson [50] and Hadley Wickham’s [46] books on the Grammar of Graphics.

• For subfield ‘GDS 1: Data Exploration and Presentation’ there is of course the original research
from long ago of John Tukey on EDA [43]; more recently Cook and Swayne’s work on Dynamic
graphics [12].

Our main points about all the above-mentioned research:

(a) it is not traditional research in the sense of mathematical statistics or even machine learning;

(b) it has proven to be very impactful on practicing data scientists;
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(c) lots more such research can and should be done.

Without a classification like GDS, it would be hard to know where to ‘put it all’ or whether a given
Data Science program is adequately furnished for scholar/researchers across the full spectrum of the
field.

9 Science about Data Science

A broad collection of technical activities is not a science; it could simply be a trade such as cooking
or a technical field such as geotechnical engineering. To be entitled to use the word ‘science’ we must
have a continually evolving, evidence-based approach. ‘GDS6: Science about Data Science’ posits
such an approach; we briefly review some work showing that we can really have evidence-based data
analysis. We also in each instance point to the essential role of information technology skills, the
extent to which the work ‘looks like data science’, and the professional background of the researchers
involved.

9.1 Science-Wide Meta Analysis

In FoDA40, Tukey proposed that statisticians should study how people analyze data today.
By formalizing the notion of multiple comparisons [44], Tukey put in play the idea that a whole

body of analysis conclusions can be evaluated statistically.
Combining such ideas leads soon enough to meta-analysis, where we study all the data analyses

being published on a given topic.41 In 1953, the introduction to Tukey’s paper [44] considered a very
small scale example with 6 different comparisons under study. Today, more than 1 Million scientific
articles are published annually, just in clinical medical research, and there are many repeat studies
of the same intervention. There’s plenty of data analysis out there to meta-study!

In the last ten years, the scope of such meta-analysis has advanced spectacularly; we now perceive
entire scientific literature as a body of text to be harvested, processed, and ‘scraped’ clean of its
embedded numerical data. Those data are analyzed for clues about meta-problems in the way all of
science is analyzing data. I can cite a few papers by John Ioannidis and co-authors [24, 26, 4, 32]
and for statisticians the paper ‘An estimate of the science-wise false discovery rate...’ [28] together
with all its ensuing discussion.

In particular, meta-analysts have learned that a dismaying fraction of the conclusions in the
scientific literature are simply incorrect (i.e. far more than 5%) and that most published effects sizes
are overstated, that many results are not reproducible, and so on.

Our government spends tens of billions of dollars every year to produce more than 1 million
scientific articles. It approaches cosmic importance, to learn whether science as actually practiced is
succeeding or even how science as a whole can improve.

40“I once suggested, in discussion at a statistical meeting, that it might be well if statisticians looked to see how
data was actually analyzed by many sorts of people. A very eminent and senior statistician rose at once to say that
this was a novel idea, that it might have merit, but that young statisticians should be careful not to indulge in it too
much, since it might distort their ideas.”, Tukey, FoDA

41The practice of meta-analysis goes back at least to Karl Pearson. I am not trying to suggest that Tukey originated
meta analysis; only reminding the reader of John’s work for the centennial occasion.
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Much of this research occurred in the broader applied statistics community, for example taking
place in schools of education, medicine, public health, and so on. Much of the so far already staggering
achievement depends on ‘text processing’, namely scraping data from abstracts posted in on-line
databases, or stripping it out of PDF files and so on. In the process we build up “Big Data”; for
example, Ioannidis and collaborators recently harvested all the p-values embedded in all Pubmed
abstracts. Participants in this field are doing data science, and their goal is to answer fundamental
questions about the scientific method as practiced today.

9.2 Cross-Study Analysis

Because medical research is so extensive, and the stakes are so high, there often are multiple studies
of the same basic clinical intervention, each analyzed by some specific team in that specific team’s
manner. Different teams produce different predictions of patient outcome and different claims of
performance of their predictors. Which if any of the predictors actually work?

Giovanni Parmigiani at Harvard School of Public Health explained to me a cross-study validation
exercise [3], in which he and co-authors considered an ensemble of studies that develop methods for
predicting survival of ovarian cancer from gene expression measurements. From 23 studies of ovarian
cancer with publicly available data, they created a combined curated dataset included gene expression
data and survival data, involving 10 data sets with 1251 patients in all. From 101 candidate papers
in the literature they identified 14 different prognostic models for predicting patient outcome. These
were formulas for predicting survival from observed gene expression; the formulas had been fit to
individual study datasets by their original analysts, and in some cases validated against fresh datasets
collected by other studies.

Parmigiani and colleagues considered the following cross-study validation procedure: fit each
of the 14 models to one of the 10 datasets, and then validate it on every one of the remaining
datasets, measure the concordance of predicted risk with actual death order, producing a 14 by 10
matrix allowing to study the individual models across datasets, and also allowing to study individual
datasets across models.

Surprising cross-study conclusions were reached. First off, one team’s model was clearly de-
termined to be better than all the others, even though in the initial publication it reported the
middlemost validation performance. Second, one dataset was clearly ‘harder’ to predict well than
were the others, in the sense of initially reported misclassification rate, but it is precisely this dataset
which yielded the overall best model.

This meta study demonstrates that by both accessing all previous data from a group of studies
and trying all previous modeling approaches on all datasets one can obtain both a better result and
a fuller understanding of the problems and shortcomings of actual data analyses.

The effort involved in conducting this study is breathtaking. The authors delved deeply into
the details of over 100 scientific papers and understood fully how the data cleaning and data fitting
was done in each case. All the underlying data was accessed and reprocessed into a new common
curated format, and all the steps of the data fitting were reconstructed algorithmically, so they
could be applied to other datasets. Again information technology plays a key role; much of the
programming for this project was carried out in R. Parmigiani and collaborators are biostatisticians
heavily involved in the development of R packages.
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Acronym Pop. Size Source Timerange Drugs Cond Proc

CCAE 46.5M Private 2003-09 1.03B 1.26B 1.98B
MDCD 20.8 Medicaid 2002-07 360M 552M 558M
MDCR 4.6M Medicare 2003-09 401M 405M 478M
MSLR 1.2M Lab 2003-07 38M 50M 69M

GE 11.2M EHR 1996-08 182M 66M 110M

Table 2: OMOP datasets. Numerical figures give the number of persons or objects. Thus 46.5M
in the upper left means 46.5 million persons; while 110M in the lower right means 110 million
procedures.

9.3 Cross-Workflow Analysis

A crucial hidden component of variability in science is the analysis workflow. Different studies of
the same intervention may follow different workflows, which may cause the studies to get different
conclusions. Joshua Carp [5] studied analysis workflows in 241 fMRI studies. He found nearly as
many unique workflows as studies! In other words researchers are making up a new workflow for
pretty much every study.

David Madigan and collaborators [35, 29] studied the effect of analysis flexibility on effect sizes in
observational studies; their collaboration will be hereafter called OMOP. As motivation, the OMOP
authors point out that in the clinical research literature there are studies of the same dataset, and the
same intervention and outcome, but with different analysis workflow, and the published conclusions
about the risk of the intervention are reversed. Madigan gives the explicit example of exposure to
to Pioglitazone and bladder cancer, where published articles in BJMP and BMJ reached opposite
conclusions on the very same underlying database!

The OMOP authors obtained 5 large observational datasets, covering together a total of more
than 200 Million Patient-years

The OMOP group considered 4 different outcomes, coded “Acute Kidney Injury”, “Acute Liver
Injury”, “Acute Myocardial Infarction”,“GI Bleed”. They considered a wide range of possible in-
terventions for each outcome measure, for example, whether patients taking drug X later suffered
outcome Y. Below, “Acute Liver Injury” stands for the association “Exposure to X and Acute Liver
Injury”.

For each target outcome, the researchers identified a collection of known positive and negative
controls, interventions X for which the ground truth of statements like “Exposure to X is associated
to Acute Liver Injury” is considered known. Using such controls, they could quantify an inference
procedures’s ability to correctly spot associations using the measure of Area Under the Operating
Curve (AUC).

OMOP considered 7 different procedures for inference from observational studies, labelled “CC”,
“CM”, “DP” “ICTPD”, “LGPS”, “OS”, “SCCS”. For example “CC” stands for case-control studies,
while SCCS stands for Self-controlled case series. In each case, the inference procedure can be fully
automated.

In their study, OMOP considered, for each database, for each possible outcome, every one of the
seven types of observational study method (CC,..,SCCS).

The OMOP report concludes that the three so-called self-controlled methods outperform the
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other methods overall, with SCCS being especially good overall. So their study reveals quite a bit
about the effectiveness of various inference procedures, offering an idea what improved inference
looks like and how accurate it might be.

This work represents a massive endeavor by OMOP: to curate data, program inference algorithms
in a unified way, and apply them across a series of underlying situations. Dealing with big data was an
essential part of the project; but the driving motivation was to understand that the scientific literature
contains a source of variation – methodological variation – whose influence on future inference in
this field might be understood, capped, or even reduced. The participants were statisticians and
biostatisticians.

9.4 Summary

There seem to be significant flaws in the validity of the scientific literature [34, 25, 40, 10]. The
last century has seen the development of a large collection of statistical methodology, and a vast
enterprise using that methodology to support scientific publication. There is a very large community
of expert and not-so-expert users of methodology. We don’t know very much about how that body
of methodology is being used and we also don’t know very much about the quality of results being
achieved.

Data scientists can’t blindly churn out methodology without showing concern for results being
achieved in practice. Studies we have classed as ‘GDS6: Science About Data Science’ help us
understand how data analysis as actually practiced is impacting ‘all of science’.

Information technology skills are certainly at a premium in the research we have just covered.
However, scientific understanding and statistical insight are firmly in the driver’s seat.

10 The Next 50 Years of Data Science

Where will Data Science be in 2065? The evidence presented so far contains significant clues, which
we now draw together.

10.1 Open Science takes over

In principle, the purpose of scientific publication is to enable reproducibility of research findings. For
centuries, computational results and data analyses have been referred to in scientific publication, but
typically only have given readers a hint of the full complexity of the data analysis being described.
As computations have become more ambitious, the gap between what readers know about what
authors did has become immense. Twenty years ago, Jon Buckheit and I summarized lessons we had
learned from Stanford’s Jon Claerbout as follows:

An article about computational science in a scientific publication is not the scholarship
itself, it is merely advertising of the scholarship. The actual scholarship is the complete
software development environment and the complete set of instructions which generated
the figures.

To meet the original goal of scientific publication, one should share the underlying code and data.
Moreover there are benefits to authors. Working from the beginning with a plan for sharing code and
data leads to higher quality work, and ensures that authors can access their own former work, and
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those of their co-authors, students and postdocs [14]. Over the years, such practices have become
better understood [36, 37] and have grown [38, 16], through they are still far from universal today.
In absolute terms the amount of essentially non-reproducible research is far larger than ever before
[37].

Reproducible computation is finally being recognized today by many scientific leaders as a central
requirement for valid scientific publication. The 2015 annual message from Ralph Cicerone, President
of the US National Academy of Sciences stresses this theme; while funding agencies [11] and several
key journals [33, 21, 31], have developed a series of reproducibility initiatives.

To work reproducibly in today’s computational environment, one constructs automated workflows
which generate all the computations and all the analyses in a project. As a corollary, one can then
easily and naturally refine and improve earlier work continuously.

Computational results must be integrated into final publications. Traditional methods - running
jobs interactively by hand, reformatting data by hand, looking up computational results and copying
and pasting into documents - are now understood to be irresponsible. Recently, several interesting
frameworks combining embedded computational scripting with document authoring42 have been
developed. By working within the discipline such systems impose, it becomes very easy to document
the full computation leading to a specific result in a specific paper. Yihui Xie’s work with the knitr

package - mentioned above - is one such example.
Reproducibility of computational experiments is just as important to industrial data science as

it is to scientific publication. It enables a disciplined approach to proposing and evaluating potential
system improvements and an easy transition of validated improvements into production use.

Reproducible computation fits into our classification both at ‘GDS 4: Presentation of Data’
and in ‘GDS 6: Science about Data Science’. In particular, teaching students to work reproducibly
enables easier and deeper evaluation of their work; having them reproduce parts of analyses by others
allows them to learn skills like Exploratory Data Analysis that are commonly practiced but not yet
systematically taught; and training them to work reproducibly will make their post-graduation work
more reliable.

Science funding agencies have for a long time included in their funding policies a notional re-
quirement that investigators make code and data available to others. However, there never has been
enforcement, and there was always the excuse that there was no standard way to share code and
data. Today there are many ongoing development efforts to develop standard tools enabling repro-
ducibility [38, 16, 39], some are part of high profile projects from the Moore and Simons foundations.
We can confidently predict that in coming years reproducibility will become widely practiced.

10.2 Science as data

Conceptually attached to a scientific publication is a great deal of numerical information – for example
the P -values reported within it . Such information ought to be studied as data. Today, obtaining
that data is problematic; it might involve reading of individual papers and manual extraction and
compilation, or web scraping and data cleaning. Both strategies are error prone and time consuming.

42Such efforts trace back to Donald Knuth’s Literate Programming project. While Literate programming -mixing
code and documentation - doesn’t seem to have become very popular, a close relative – mixing executable code, data,
documentation, and execution outputs in a single document – is just what the doctor ordered for reproducible research
in computational science.
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With the widespread adoption of open science over the next 50 years, a new horizon becomes
visible. Individual computational results reported in a paper, and the code and the data underlying
those results, will be universally citable and programmatically retrievable. Matan Gavish and I wrote
some papers [18, 17] which proposed a way to open that new world and which then explored the
future of science in such a world.

Those papers defined the notion of Verifiable Computational Result (VCR) a computational re-
sult, and metadata about the result, immutably associated with a URL, and hence permanently
programmatically citable and retrievable. Combining cloud computing and cloud storage, Gavish
developed server frameworks that implemented the VCR notion, recording each key result perma-
nently on the server and returning the citing URL. He also provided client-side libraries (e.g. for
Matlab) that allowed creation of VCRs and returned the associated link, and that provided pro-
grammatic access to the data referenced by the link. On the document creation side, he provided
macro packages that embedded such links into published TeX documents. As a result, one could
easily write documents in which every numerical result computed for a paper was publicly citable
and inspectable - not only the numerical value, but the underlying computation script was viewable
and could be studied.

In a world where each numerical result in a scientific publication is citable and retrievable, along
with the underlying algorithm that produced it, current approaches to meta-analysis are much easier
to carry out. One can easily extract all the P -values from a VCR-compliant paper, or extract all the
data points in a graph inside it, in a universal and rigorously verifiable way. In this future world,
the practice of meta-analysis of the kind we spoke about in Section 9.1 will of course expand. But
many new scientific opportunities arise. We mention two examples:

• Cross-Study Control Sharing. In this new world, one can extract control data from previous
studies [45]. New opportunities include: (a) having massively larger control sets in future
studies; (b) quantifying the impact of specific control groups and their differences on individual
study conlusions; and (c) extensive ‘real world’ calibration exercises where both groups are
actually control groups.

• Cross-Study Comparisons. The cross-study comparisons of Sections 9.2 and 9.3, required mas-
sive efforts to manually rebuild analyses in previous studies by other authors, and then manually
curate their data. When studies are computationally reproducible and share code and data, it
will be natural to apply the algorithm from paper A on the data from paper B, and thereby
understand how different workflows and different datasets cause variations in conclusions. One
expects that this will become the dominant trend in algorithmic research.

Additional possibilities are discussed in [17].

10.3 Scientific Data Analysis, tested Empirically

As Science itself becomes increasingly mineable for data and algorithms, the approaches of cross-
study data sharing and workflow sharing discussed above in Sections 9.2 and 9.3 will spread widely.
In the next 50 years, ample data will be available to measure the performance of algorithms across a
whole ensemble of situations. This is a game changer for statistical methodology. Instead of deriving
optimal procedures under idealized assumptions within mathematical models, we will rigorously
measure performance by empirical methods, based on the entire scientific literature or relevant
subsets of it.
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Many current judgements about which algorithms are good for which purposes will be overturned.
We cite three references about the central topic of classification with a bit of detail.

10.3.1 DJ Hand (2006)

in [19], DJ Hand summarized the state of classifier research in 2006. He wrote:

The situation to date thus appears to be one of very substantial theoretical progress,
leading to deep theoretical developments and to increased predictive power in practical
applications. While all of these things are true, it is the contention of this paper that the
practical impact of the developments has been inflated; that although progress has been
made, it may well not be as great as has been suggested. ...

The essence of the argument [in this paper] is that the improvements attributed to
the more advanced and recent developments are small, and that aspects of real practical
problems often render such small differences irrelevant, or even unreal, so that the gains
reported on theoretical grounds, or on empirical comparisons from simulated or even real
data sets, do not translate into real advantages in practice. That is, progress is far less
than it appears.43

How did Hand support such a bold claim? On the empirical side, he used ‘a randomly selected
sample of ten data sets’ from the literature and considered empirical classification rate. He showed
that Linear Discriminant Analysis, which goes back to Fisher (1936) [15], achieved a substantial
fraction (90% or more) of the achievable improvement above a random guessing baseline. The
better-performing methods were much more complicated and sophisticated - but the incremental
performance above LDA was relatively small.

Hand’s theoretical point was precisely isomorphic to a point made by Tukey in FoDA about
theoretical optimality: optimization under a narrow theoretical model does not lead to performance
improvements in practice.

10.3.2 Donoho and Jin (2008)

To make Hand’s point completely concrete, consider work on high-dimensional classification by myself
and Jiashun Jin [13].44

Suppose we have data Xi,j consisting of 1 ≤ i ≤ n observations on p variables, and binary labels
Yi ∈ {+1,−1}. We look for a classifier T (X) which, presented with an unlabelled feature vector
predicts the label Y . We suppose there are many features, i.e. p is large-ish compared to n.

Consider a very unglamorous method: a linear classifier C(x) =
∑

j∈J+
x(j)−

∑
j∈J− x(j) which

combines the selected features simply with weights +1 or -1. This method selects features where
the absolute value of the univariate t-score exceeds a threshold and uses as the sign of the feature
coefficient simply the sign of that feature’s t-score. The threshold is set by higher criticism. In the
published paper it was called HC-clip; it is a dead-simple rule, much simpler even than classical Fisher
Linear discriminant analysis, as it makes no use of the covariance matrix, and doesn’t even allow

43The point made by both Hand and Tukey was that optimality theory, with its great charisma, can fool us. JR
Pierce made a related point in rejecting the ‘glamor’ of theoretical machine translation.

44We didn’t know about Hand’s paper at the time, but stumbled to a similar conclusion.
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for coefficients of different sizes. The only subtlety is in the use of Higher Criticism for choosing the
threshold. Otherwise, HC-clip is a throwback to a pre-1936 setting, i.e. to before Fisher [15] showed
that one ‘must’ use the covariance matrix in classification.45

Dettling (2004) developed a framework for comparing classifiers that were common in Machine
Learning based on a standard series of datasets (in the 2-class case, the datasets are called ALL,
Leukemia, and Prostate, respectively). He applied these datasets to a range of standard classifier
techniques which are popular in the statistical learning community (Boosted decision trees, Random
Forests, SVM, KNN, PAM and DLDA). The Machine Learning methods that Dettling compared are
mostly ‘glamorous’, with high numbers of current citations and vocal adherents.

We extended Dettling’s study, by adding our dead-simple clipping rule into the mix. We con-
sidered the regret (i.e. the ratio of a method’s misclassification error on a given dataset to the best
misclassification error among all the methods on that specific dataset). Our simple proposal did just
as well on these datasets as any of the other methods; it even has the best worst-case regret. That
is, every one of the more glamorous techniques suffers worse maximal regret. Boosting, Random
Forests and so on are dramatically more complex and have correspondingly higher charisma in the
Machine Learning community. But against a series of pre-existing benchmarks developed in the Ma-
chine Learning community, the charismatic methods do not outperform the homeliest of procedures
– feature clipping with careful selection of features.

As compared to Hand’s work, our work used a pre-existing collection of datasets that might seem
to be less subject to selection bias, as they were already used in multi-classifier shootouts by machine
learners.

10.3.3 Zhao, Parmigiani, Huttenhower and Waldron (2014)

In a very interesting project [51], Parmigiani and co-authors discuss what they call the Más-o-Menos
classifier, a linear classifier where features may only have coefficients that ±1; this is very much like
the just-discussed HC-clip method, and in fact one of their variants included only those features
selected by HC - i.e. the method of the previous section. We are again back to pre-Fisher-says-use-
Covariance-Matrix, pre-1936 setting.

In their study, Zhao et al. compared Más-o-Menos to ‘sophisticated’ classifiers based on penal-
ization (e.g. Lasso, Ridge).

Crucially, the authors took the fundamental step of comparing performance on a universe of
datasets used in published clinical medical research. Specifically, they curated a series of datasets
from the literature on treatment of bladder, breast, and ovarian cancer, and evaluated prediction
performance of each classification method over this universe.

We ... demonstrated in an extensive analysis of real cancer gene expression studies
that [Más-o-Menos] can indeed achieve good discrimination performance in realistic set-
tings, even compared to lasso and ridge regression. Our results provide some justification
to support its widespread use in practice. We hope our work will help shift the emphasis
of ongoing prediction modeling efforts in genomics from the development of complex mod-
els to the more important issues of study design, model interpretation, and independent
validation.

45In the era of desk calculators, a rule that didn’t require multiplication but only addition and subtraction had some
advantages.
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The implicit point is again that effort devoted to fancy-seeming methods is misplaced compared
to other, more important issues. They continue

One reason why Más-o-Menos is comparable to more sophisticated methods such as
penalized regression may be that we often use a prediction model trained on one set of
patients to discriminate between subgroups in an independent sample, usually collected
from a slightly different population and processed in a different laboratory. This cross-
study variation is not captured by standard theoretical analyses, so theoretically optimal
methods may not perform well in real applications.46

In comparison to the articles [19, 13] discussed in previous subsections, this work, by mining
the scientific literature, speaks directly to practitioners of classification in a specific field - giving
evidence-based guidance about what would have been true for studies to date in that field, had
people all known to use the recommended technique.

10.4 Data Science in 2065

In the future, scientific methodology will be validated empirically. Code sharing and data sharing will
allow large numbers of datasets and analysis workflows to be derived from studies science-wide. These
will be curated into corpora of data and of workflows. Performance of statistical and machine learning
methods will thus ultimately rely on the cross-study and cross-workflow approaches we discussed in
Sections 9.2 and 9.3. Those approaches to quantifying performance will become standards, again
because of code and data sharing. Many new Common Task Frameworks will appear; however, the
new ones won’t always have prediction accuracy for their performance metric. Performance might
also involve validity of the conclusions reached, or empirical type I and II error. Research will
move to a meta level, where the question becomes: ‘if we use such-and-such a method across all of
science, how much will the global science-wide result improve?’, measured using an accepted corpus
representing science itself.

In 2065, mathematical derivation and proof will not trump conclusions derived from state-of-the-
art empiricism. Echoing Bill Cleveland’s point, theory which produces new methodology for use in
data analysis or machine learning will be considered valuable, based on its quantifiable benefit in
frequently occurring problems, as shown under empirical test.47

11 Conclusion

Each proposed notion of Data Science involves some enlargement of academic statistics and machine
learning. The ‘GDS’ variant specifically discussed in this article derives from insights about data
analysis and modeling stretching back decades. In this variant, the core motivation for the expansion
to Data Science is intellectual. In the future, there may be great industrial demand for the skills
inculcated by GDS; however the core questions which drive the field are scientific, not industrial.

46Again this vindicates Tukey’s point from 1962 that optimization of performance under narrow assumptions is
likely a waste of effort, because in practice, the narrow assumptions don’t apply to new situations and so the supposed
benefits of optimality never appear.

47I am not arguing for a demotion of mathematics. I personally believe that mathematics offers the only way to
create true breakthroughs. The empirical method is simply a method to avoid self deception and appeals to glamor.
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GDS proposes that Data Science is the science of learning from data; it studies the methods
involved in the analysis and processing of data and proposes technology to improve methods in an
evidence-based manner. The scope and impact of this science will expand enormously in coming
decades as scientific data and data about science itself become ubiquitously available.

Society already spends tens of billions of dollars yearly on scientific research, and much of that
research takes place at universities. GDS inherently works to understand and improve the validity
of the conclusions produced by university research, and can play a key role in all campuses where
data analysis and modeling are major activities.
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