Homework 1: due Wednesday, April 212010

Problem 1: Let $i=\sqrt{-1}$ and set

$$
A=\left[\begin{array}{ccc}
i & 0 & -i \\
0 & i & -i
\end{array}\right]
$$

Using the null space property, show that ℓ_{1}-minimization can recover any 1 -sparse vector x, given $A x=y$.

Problem 2: Prove that a unique minimizer of $\|z\|_{1}$ subject to $A z=y$ is not necessarily m-sparse, where m is the number of rows of A. (Hint: Consider the matrix A and the vector x below.)

$$
A=\left[\begin{array}{ccc}
i & 0 & -i \\
0 & i & -i
\end{array}\right], \quad x=\left[1, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right]^{T}
$$

Problem 3: Consider

$$
\min \|x\|_{1} \quad \text { subject to } A x=b, x>0
$$

Show that if this optimization problem has at least two solutions, it has already infinitely many solutions. (In fact, this still holds true if we drop the condition $x>0$.)

Problem 4: Find a 2×3 matrix A and a nonsingular 3×3 diagonal matrix D such that A has the first order null space property, but $A D$ does not.

Problem 4: Prove that any unit-norm equiangular frame $\left\{a_{k}\right\}_{k=1}^{m}$ for \mathbb{C}^{n}, $n \leq m$, whose coherence is

$$
\mu=\sqrt{\frac{m-n}{n(m-1)}},
$$

must be a tight frame.
Problem 5: Given two orthonormal bases $U=\left\{u_{1}, \ldots, u_{n}\right\}$, and $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{C}^{n}, prove that their mutual coherence $\mu(U, V)=\max _{1 \leq i, j \leq n}\left|\left\langle u_{i}, v_{j}\right\rangle\right|$ satisfies $\frac{1}{n} \leq \mu \leq 1$.
Problem 6: Prove that the $m+1$ vertices of a regular simplex in \mathbb{R}^{m} centered at the origin form an equiangular tight frame for \mathbb{R}^{m}.

Problem 7: Let $\left\{a_{k}\right\}_{k=1}^{m}$ be a frame for \mathbb{C}^{n} and let $\alpha, \beta>0$ be the optimal frame bounds satisfying

$$
\begin{equation*}
\alpha\|x\|_{2}^{2} \leq \sum_{k=1}^{m}\left|\left\langle x, a_{k}\right\rangle\right|^{2} \leq \beta\|x\|_{2}^{2} \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{C}^{n}$. As usual, we identify the frame with the $n \times m$ matrix $A=$ $\left[a_{1}\left|a_{2}\right| \ldots \mid a_{m}\right]$. Setting $\delta=\frac{\beta-\alpha}{\beta+\alpha}$ and $\lambda=\frac{\beta+\alpha}{2}$, show that the inequality (1) can be expressed equivalently as

$$
\left\|\frac{1}{\lambda} A A^{*}-I_{n}\right\|_{\mathrm{op}} \leq \delta
$$

(Here $\|B\|_{\text {op }}$ denotes the operator norm of B, i.e., its largest singular value.)

