Homework 2: due Wednesday, May 52010

Problem 1: On the connection between (in)coherence parameter μ and restricted isometry constant δ_{s} : Show that $\delta_{1}=0, \delta_{2}=\mu$ and $\delta_{s} \leq(s-1) \mu$.

Problem 2: Assume that A satisfies the RIP of order s with RIC δ_{s}. Using the polarization identity

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|_{2}^{2}-\|x-y\|_{2}^{2}\right), \quad x, y \in \mathbb{R}^{n}
$$

prove the inequality

$$
|\langle A x, A y\rangle| \leq \delta_{s+t}\|x\|_{2}\|y\|_{2}
$$

for all $x, y \in \mathbb{R}^{n}$ supported on disjoint subsets $S, T \in\{1, \ldots, n\}$ with $|S| \leq$ $s,|T| \leq t$.
Problem 3: Programing Exercise (you may want to use the software package CVX for this and the next exercise). Let A be a Gaussian random matrix of dimension 100×400. Determine via numerical simulations the range of s for which Basis Pursuit is able to recover successfully a randomly generated s-sparse vector x from $y=A x$. Here, "randomly generated" means that the s non-zero locations are chosen randomly from $\{1, \ldots, 400\}$ according to the uniform distribution, and the amplitudes of x are randomly chosen from the normal distribution. In this example, let us agree that a successful recovery means that the relative error $\left\|x-x^{*}\right\|_{2} /\|x\|_{2}$ between the true solution x and reconstructed solution x^{*} is less than 10^{-3}. A good way to illustrate your findings is to produce a graph that shows how the successfull revocery rate changes as you increase s.
(Since x is not an arbitrary s-sparse vector, but randomly generated, your results will only allow conclusions for most sparse vectors and not for all sparse vectors.)

Problem 4: Programing Exercise: Assume the physical constraints of the problem force/allow you to sample a signal by applying an 128×512 random partial Fourier matrix (generated by extracting 128 randomly chosen rows according to the uniform distribution from the 512×512 DFT matrix), call this matrix A. Let $b=A x$ be the measured vector of size 128×1. You want to recover the original vector x, where x itself is not sparse in the standard basis. But it is known that x is s-sparse in the Hadamard basis H with $s=10$. (you can construct a Hadamard matrix in Matlab with hadamard).
(a) Try to recover x via

$$
\min \|z\|_{1} \quad \text { subject to } B z=y
$$

where $B=A H$ and $x=H z$. What happens? How do you interpret the results?
(b) Now make the following modification. Construct a 512×512 diagonal matrix D whose entries are randomly chosen from $\{ \pm 1\}$ and try to recover x via solving

$$
\min \|z\|_{1} \quad \text { subject to } A D H z=y
$$

What happens now? Explain heuristically what might be behind the different outcomes. Is this modification a valid approach (in terms of the given constraints with respect to measurement matrix and sparsity of x)?

